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Proteins and peptides are major components of snake venom. Venom protein transcriptomes and proteomes of
many snake species have been reported; however, snake venom complexity (i.e., the venom protein‐protein
interactions, PPIs) remains largely unknown. To detect the venom protein interactions, we used the most com-
mon snake venom component, phospholipase A2s (PLA2s) as a “bait” to identify the interactions between PLA2s
and 14 of the most common proteins in Western diamondback rattlesnake (Crotalus atrox) venom by using
yeast two‐hybrid (Y2H) analysis, a technique used to detect PPIs. As a result, we identified PLA2s interacting
with themselves, and lysing‐49 PLA2 (Lys49 PLA2) interacting with venom cysteine‐rich secretory protein
(CRISP). To reveal the complex structure of Lys49 PLA2‐CRISP interaction at the structural level, we first built
the three‐dimensional (3D) structures of Lys49 PLA2 and CRISP by a widely used computational program‐
MODELLER. The binding modes of Lys49 PLA2‐CRISP interaction were then predicted through three different
docking programs including ClusPro, ZDOCK and HADDOCK. Furthermore, the most likely complex structure
of Lys49 PLA2‐CRISP was inferred by molecular dynamic (MD) simulations with GROMACS software. The tech-
niques used and results obtained from this study strengthen the understanding of snake venom protein inter-
actions and pave the way for the study of animal venom complexity.
1. Introduction

Snakebite remains a major public health problem (Kasturiratne
et al., 2008), particularly in impoverished rural communities
(Gutiérrez et al., 2017). The World Health Organization therefore rec-
ognized snakebite as a high priority neglected tropical disease (WHO,
2018). The venom proteome and transcriptome of many snake species
have been reported, such as European viper (Leonardi et al., 2019) and
Sidewinder Rattlesnakes (Hofmann et al., 2018). Recently,
Suryamohan et al. (2020) completed transcriptome and genome
sequencing of Indian cobra. Moreover, the pathophysiological effects
of many individual snake venom components have been characterized.
However, snake venom is a complex mixture of proteins and peptides
that are stored in the gland lumen to exert a wide range of toxic actions
during envenomation; therefore, we hypothesize that venom proteins
interact with each other to make a cocktail of proteins and peptides
and synergistically exert their toxic effects. To our knowledge, in addi-
tion to the extensively reported lysing‐49 PLA2s (Lys49 PLA2) homod-
imers (Almeida et al., 2016; Salvador et al., 2019), aspartic acid‐49
PLA2(Asp49) homodimers (Corrêa et al., 2008) and Lys49‐Asp49 het-
erodimer (Mora‐Obando et al., 2014), little is known about the venom
protein‐protein interactions (PPIs), particularly the non‐homologous
venom protein interactions. Understanding the snake venom PPIs is
critically important for deciphering the synergistic actions which exert
various pathophysiological effects of snakebites.

Western diamondback rattlesnake (Crotalus atrox) is likely respon-
sible for most snakebite fatalities in northern Mexico, and the second
greatest number in the U.S.A. after Eastern diamondback rattlesnake
(Crotalus adamanteus) (Campbell and Lamar, 2004). The proteome
(Calvete et al., 2009) and incomplete transcriptome (Rokyta et al.,
2011; Jia et al., 2020) of C. atrox venom protein have been reported;
however, its venom PPIs remain poorly understood. The lack of a deep
understanding of how C. atrox venom proteins interact is an important
roadblock in advancing efforts to uncover the corresponding
mechanisms of the synergistic effects for developing antivenom to
treat snakebites. In our previous work (Jia et al., 2020), we identified
14 protein transcripts from the venom of C. atrox by using reverse
transcription polymerase chain reaction (RT‐PCR) and modeled
their three‐dimensional (3D) structures using predicted amino
acid sequences and computational approach (MODELLER). These 14
actions.
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Table 1
PCR primer sequences.

Transcript Primer pair Primer sequences (50–30)

Lys49 PLA2 Lys49-EcoRI F
Lys49-BamH I R

GGTGAATTCAGCCTGGTCGAATTGGGGAA
GGTGGATCCTCATTAGCATGTATCTGGCTTCTT

Asp49 PLA2 Asp49-EcoRI F
Asp49-BamH I R

GGTGAATTCAACCTGCTGCAATTCAACAA
GGTGGATCCTCATTAGCATTTCTCTGAAGGGT

SVMP I MPI-EcoRI F
MPI-BamHI R

GGTGAATTCGTGAATGATTATGAAGTA
GGTGGATCCTCATTAAGCCTCCAAAAGTTCATT

SVMP II MPII-EcoRI F
MPII-BamHI R

GGTGAATTCATAATCCTGGAATCTGGGA
GGTGGATCCTCATTAGCCATAGAGGCCATTT

SVMP III MPIII-EcoRI F
MPIII-BamHI R

GGTGAATTCATAATCCTGGAATCTGGGA
GGTGGATCCTCACTAGTAGGCTGTAGCCA

C-type lectin Lect-EcoRI F
Lect-BamHI R

GGTGAATTCGATTGTCCCTCTGGTT
GGTGGATCCTCACTATGCCTTGCAGACGA

3FTx 3FTx-EcoRI F
3FTx-BamHI R

GGTGAATTCCTGGAATGTGAAGCATGCAA
GGTGGATCCTCATTAAGCGTTGCACAGGTT

CRISP Cri-EcoRI F
Cri-BamHI R

GGTGAATTCAGTGTTGATTTTGATT
GGTGGATCCTCACTATATTATTTTATTT

Vespryn Ves-EcoRI F
Ves-BamHI R

GGTGAATTCGATGTGACGTTTGACTCAA
GGTGGATCCTCATTAAAGAGTTGTGAGT

Crotamine Cro-EcoRI F
Cro-BamHI R

GGTGAATTCCAATCACAGTGTGAACA
GGTGGATCCTCATTATTTTCCAATTTTGCT

LAAO LAAO-EcoRI F
LAAO-BamHI R

GGTGAATTCATGTCTTCTGTGACAGTT
GGTGGATCCTCATTAAAATTCATTGTCAT

PLB PLB-EcoRI F
PLB-BamHI R

GGTGAATTCGATATCCACTATGCTA
GGTGGATCCTCATCACAGCACTGGTTTCA

EGF* EGF-pBD F
EGF-pBD R

CATGGAGGCCGAATTCCTCTGGGCACCTCCGA
GCAGGTCGACGGATCCAAAGTCTTCATGGGTA

EGF* EGF-pAD F
EGF-pAD R

GGAGGCCAGTGAATTCCTCTGGGCACCTCCGA
CGAGCTCGATGGATCCAAAGTCTTCATGGGTA

SVSP* Sp-pBD F
SP-pBD R

CATGGAGGCCGAATTCGTCGTTGGAGGTGATGAA
GCAGGTCGACGGATCCATGGGGGGCAGGTCGCAT

SVSP* SP-pAD F
SP-pAD R

GGAGGCCAGTGAATTCGTCGTTGGAGGTGATGAA
CGAGCTCGATGGATCCATGGGGGGCAGGTCGCAT

*Homologous recombination-technique was used for both EGF and SVSP due
to either EcoRI or BamHI site presenting in the open-reading frames.
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transcripts are particularly important for us to further understand the
complexity of C. atrox venom as well as to uncover the toxicity of each
venom component by producing recombinant venom proteins. Therefore,
to advance our knowledge about the venom complexity of C. atrox, in this
study we attempted to detect the venom PPIs by using these 14 venom
protein transcripts including PLA2s and cysteine‐rich secretory protein
(CRISP) transcripts. Snake venom PLA2, the most extensively studied
venom components, is a major protein in most snake venoms. Snake
venom PLA2s were classified into Group I (Elapidae) or Group II (Viperi-
dae) of PLA2 superfamily that is composed of 16 Groups (Dennis et al.,
2011). Group II snake venom PLA2s were further subdivided into at least
two subgroups: the catalytically active Asp49‐PLA2s which have an aspar-
tic acid residue at the position 49, and catalytically inactive lys49‐PLA2

homologue (or PLA2‐like myotoxins) that the aspartic acid residue at
the position 49 is replaced by Lysine (Renetseder, et al., 1985;
Maraganore and Heinrikson, 1986). In addition to the primary catalytic
function, snake venom PLA2s display an array of pathophysiological
effects including neurotoxicity, myotoxicity, cardiotoxicity, hemolytic
activity, hypotensive activity, anticoagulant activity, etc. (Reviewed in
Kini (2003)). CRISPs, single chain polypeptides with molecular weights
of ~20–30 kDa, were found in mammalian epididymis and the immune
system, and then in many snake venoms (Yamazaki and Morita, 2004).
The overall structure of CRISP family proteins is well‐conserved, consist-
ing of an N‐terminal domain (PR‐1), and a conserved divalent metal‐ion
binding site that connected PR‐1 to C‐terminal domain (CR) (Shiol et al.,
2019). The physiological functions of mammalian CRISPs, such as CRISP‐
1, ‐2 and ‐3, are associated with reproduction, cancer, and immune
responses, while snake venom CRISPs inhibit ion channels (reviewed in
Tadokoro et al. (2020)).

There are many molecular biology approaches that can be used to
detect venom PPIs (Ho et al., 2002; Jares‐Erijman and Jovin, 2006;
Michnick et al., 2010). Among them, yeast two‐hybrid (Y2H) analysis,
since its inception (Fields and Song, 1989), has been extensively used to
detect the physical interactions between any two proteins in different spe-
cies. More importantly, Y2H analysis is amenable to being used in a high
throughput setting, allowing a protein of interest to be tested for interac-
tions with many proteins (Galletta and Rusan, 2015). For example, PPIs in
yeast (Yu et al., 2008), nematode (Simonis et al., 2009), plant (Trigg et al.,
2017; Marshall et al., 2019), human (Rolland et al., 2014) and bacterium
(Rajagopala et al., 2014) were identified by high throughput Y2H analy-
sis. By using Y2H analysis coupled with various computational programs
including template‐based modeling – MODELLER, protein‐protein dock-
ing and molecular dynamics (MD) simulations, here we report the most
common snake venom protein – phospholipase A2s (PLA2s) interacting
with themselves and Lys49 PLA2 interacting with venom CRISP, as well
as the most likely conformation of Lys49 PLA2‐CRISP.

2. Materials and methods

2.1. Venom protein transcripts

Fourteen of the most common venom protein transcripts including
Asp49 PLA2, Lys49 PLA2, snake venommetalloproteinase I (SVMPI), snake
venom metalloproteinase II (SVMPII), snake venom metalloproteinase III
(SVMPIII), snake venom serine proteinase (SVSP), L‐amino acid oxidase
(LAAO), C‐type lectin, crotamine, three‐finger toxin (3FTx), vespryn,
CRISP, epidermal growth factor‐like domain protein (EGF) and phospholi-
pase B (PLB) used in this study, were obtained from our previous results
(Jia et al., 2020). All translated amino acid sequences of these protein tran-
scripts are available in our previous publication (Jia et al., 2020). All chem-
icals were purchased from Sigma‐Aldrich (St. Louis, MO, USA).

2.2. Yeast two-hybrid analysis

Y2H activation and binding domain vectors (pAD and pBD) were pur-
chased from Takara Bio USA, Inc (Mountain View, CA, USA). Polymerase
2

Chain reactions (PCR) were carried out using cloned transcripts (Jia et al.,
2020) as templates and Phusion High‐Fidelity DNA Polymerase pur-
chased from ThermoFisher Scientific (Waltham, MA, USA) by standard
molecular biology methods (Table 1. Primer sequences). The PCR prod-
ucts of 14 mature transcripts were individually purified from agarose
gel. Each transcript was ligated into EcoRI and BamHI sites of pAD vector
as “prey” by using either restriction enzyme based‐method or homolo-
gous recombination‐based approach if enzymatic sites were present in
the transcript sequence (such as EGF and SVSP). Using the same enzy-
matic method, transcripts for Lys49 PLA2, Asp49 PLA2 and CRISP were
cloned into EcoRI and BamHI sites of pBD vector as “bait”. Empty vectors
(pAD, pBD) served as negative controls. The conjunctions of recombinant
DNAs were confirmed by Sanger sequencing, and the confirmed “bait”
and “prey” constructs were co‐transformed into yeast (Saccharomyces
cerevisiae) strain (Y2HGold) cells (Takara Bio USA, Inc) based on the
Takara instruction manual. The co‐transformed cells were subsequently
spread on double dropout (DDO, without tryptophan and leucine) med-
ium and incubated at 30 °C until the colonies grew (~2 days) for confirm-
ing the successful pairwise transformation. Plasmid DNAs were extracted
from co‐transformed cells to verify the presence of both “bait” and “prey”.
Verified single co‐transformed colonies were diluted to optical density
OD600 = 1 in distilled water. Equal amounts (5 μl) of each colony were
spotted on DDO and quadruple dropout (QDO) medium (without
tryptophan, leucine, histidine, and adenine). QDO plates were incubated
at 30 °C for 55 h to detect PPIs and photographed. X‐alpha‐Gal
(40 μg/ml) was added in QDO medium for ‘reciprocal’ Y2H (rY2H)
(swapping “bait” and “prey” venom proteins between pAD and pBD
vectors). At least 3 different colonies from each co‐transformation were
spotted on both DDO and QDO mediums to validate the reproducibility
of results.
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2.3. Molecular dynamics simulation

Amino acid sequences of Lys49 PLA2 and CRISP were blasted
against Protein Data Bank (PDB) (Berman et al., 2007). Crystal struc-
tures with PDB codes for 6CE2 and 1RC9 corresponding to Lys49
PLA2 and CRISP were selected as the templates for modeling the 3D
structures of Lys49 PLA2 and CRISP by the most widely used
template‐based protein structure modeling software, MODELLER ver-
sion 9.24 (Ŝali and Blundell, 1993; Webb and Ŝali, 2014), using the
procedures detailed in previous work (Jia et al., 2020). But this time,
we simulated 100 candidate models for each venom protein and
selected the one with the lowest discrete optimized protein energy
(DOPE) score for subsequent protein‐protein docking programs. The
modeled structures of Lys49PLA2 and CRISP were evaluated through
the following criteria: 1) DOPE score (Webb and Ŝali, 2014), the low-
est DOPE score model represents the more accurate protein model at
its native conformation; 2) overall quality factor (ERRAT) (Colovos
and Yeates, 1993), checking if the score is above the expected accuracy
of 70% of residues for medium resolution structure; 3) Verify3D
(Eisenberg et al., 1997), testing if more than 70% residues having com-
patibility between the 3D model and the amino acid sequence (1D); 4)
Z‐score (Wiederstein and Sippl, 2007), testing if the protein model pre-
dicted falls within range of high quality experimental structure with a
similar size and shape; and 5) Ramachandran (φ/ψ) plot
(Ramachandran et al., 1963), checking if interrogated phi and psi dihe-
dral angles of more than 90% of C‐alpha residues were within the protein
model. All 3D structures of Lys49 PLA2, CRISP and Lys49 PLA2‐CRISP
were revealed by UCSF Chimera program (Pettersen et al., 2004). Fur-
ther, three top listed docking programs including ZDOCK (Pierce et al.,
2014), HADDOCK (van Zundert et al., 2016) and ClusPro (Kozakov
et al., 2017) were used to predict the binding modes of Lys49 PLA2‐
CRISP interaction using default settings except HADDOCK by activation
of random patches. The top docked modes from each docking program
were selected for MD simulations by using GROMACS 2020 package
(Hess et al., 2008). The CHARMM36 force field (Best et al., 2012) and
the standard TIP3P water model (Jorgensen et al., 1983) were chosen
for all MD simulations. 1) Each complex was embedded in the center
of a dodecahedron water box with a minimum distance from the complex
to the box boundary of 10 Å. 2) The complex was solved with water mod-
eled by the TIP3P force field. 3) The system was further neutralized by
proper NaCl solution. 4) Energy minimization was carried out for each
complex using a steepest‐descent integrator to reach negative potential
energy and the maximum force for less than 1,000 kJ/(mol.nm) on any
atom. 5) To relax the protein complex, the equilibration was performed
with positional restraints on all heavy atoms of complex under two
ensembles, NVT (constant number of particles, volume and temperature)
under constant temperature at 300 K for 100 picoseconds (ps), and NPT
(constant number of particles, pressure, temperature) under constant
pressure at 1 bar for 100 ps. 6) The production MD simulation was con-
ducted for 1 nanosecond (ns) for initial screening, then 10 ns for further
confirmation of structure stability by using the same settings as the pre-
vious equilibration but without restraints. The complex structure stability
of Lys49 PLA2 interacting with CRISP was assessed by measuring room‐
mean‐square deviation (RMSD) for backbone atoms of each complex.
The RMSDs were illustrated with R‐program (Team, 2013).
3. Results

3.1. Venom Lys49 PLA2 interacts with CRISP

We screened C. atrox venom proteins encoded by 14 of the most
common transcripts for detecting the venom PPIs using the most com-
mon venom component, PLA2 including Lys49 PLA2 and Asp49 PLA2

as “bait” by Y2H analysis. The screening results showed that PLA2s
interact with themselves, which can be served as perfect internal
3

positive controls in Y2H analysis because native venom PLA2 dimers
have been extensively reported, including C. atrox Lys49 PLA2 homod-
imer (Brunie et al., 1985) and Asp49 PLA2 homodimer (Keith et al.,
1981). Moreover, Lys49 PLA2 strongly interacts with venom CRISP,
while Asp49 PLA2 weakly interacts with 3FTx (Fig. 1A). To eliminate
the false positives, we deployed “rY2H” analysis by swapping “bait”
and “prey” proteins between pAD and pBD vectors (i.e., pBD‐Lys49
PLA2 × pAD‐CRISP, and pBD‐CRISP × pAD‐Lys49 PLA2). Briefly, 1)
we repeated above screening results but individually and with more
stringent detection by adding X‐alpha‐Gal. The results are reproducible
in that PLA2S form dimers and Lys49 PLA2 interacts with CRISP
(Fig. 1B). 2) To further verify the genuine interaction between Lys49
PLA2s and CRISP, we switched Lys49 PLA2 to pAD and CRISP to
pBD vectors (Fig. 1C), yielding the same results as in Fig. 1B except
the ‘unilateral’ interaction between Asp49 PLA2 and CRISP (Fig. 1C).
Empty vectors (pAD and pBD) served as negative controls showing
no interactions with any venom proteins (Fig. 1 A, B and C).

3.2. The stable and possible binding mode of Lys49 PLA2-CRISP

Y2H technique can be used to identify PPIs, but it is unable to
reveal the complex 3D structure of PPIs. To display the 3D structure
of Lys49 PLA2‐CRISP interaction, we first built the models for Lys49
PLA2 and CRISP based on the crystallographic structures of MjTX‐I
(PDB ID 6CE2) from Bothrops moojeni venom (Salvador et al., 2018)
and Stecrisp (PDB ID 1RC9) from Trimeresurus Stejnegeri venom (Guo
et al., 2004), respectively. The amino acid sequences of the models
shared higher sequence identity (more than 70%) and overall
sequence coverage of 100% to that of the templates (Table 2). The
RMSD values after superimposition and aligning all atoms of models
(Lys49 PLA2 and CRISP) to the templates (6CE2 and 1RC9) were
0.154 and 0.200 Å, respectively. This suggests very little deviation
between carbon main chain atoms of models and templates, demon-
strating that modeled structures are near to the native structures. To
further evaluate the accuracy and reliability of modeled structures,
we used various stereochemical parameters including ERRAT, verti-
fy3D, Z‐Score, and backbone φ/ψ angles. The results shown in Table 3
support that predicted models are of good quality and satisfied the
quality checks. After choosing the validated models, we conducted
the protein‐protein docking, followed by MD simulations. The top
complex structures of 11, 9 and 8 were generated by ClusPro, HAD-
DOCK and ZDOCK docking programs, respectively. Subsequently, the
great challenge is to identify the correct binding modes of Lys49
PLA2 and CRISP interaction. Fortunately, MD simulation is a well‐
established technique and can be used for identifying the possible cor-
rect binding mode by assessing the time‐resolved motions and stability
of protein‐protein complex structures at atomic resolution (Radom
et al., 2018; Sakano et al., 2016; Dror et al., 2012; Perilla et al.,
2015). Therefore, we determined which complex structure forms the
stable conformation by using MD simulations. All above 28 docked
structures were run for 1000 ps (Fig. 2A) by using GROMACS. After
MD simulations, the three docking poses, model3, cluster21 and com-
plex6 with average complex backbone RMSDs of 0.229 ± 0.034 nm2,
0.245 ± 0.054 nm2 and 0.363 ± 0.058 nm2, respectively, show the
most stable binding modes in each group (Fig. 2D, 2E, 2F). We further
conducted MD simulations for these three top complex structures by
extending time to 10 ns, resulting that model3 is the most stable complex
structure and therefore is the most likely docking mode for Lys49‐CRISP
interaction, whereas complex6 and particularly cluster21 quickly shifted
from initial mode at the time of 2 ns (Fig. 2G). During 10 ns simulations,
the average RMSD of backbone atoms of the three systems (Lys49 PLA2,
CRISP and model3) indicated that CRISP (0.21 ± 0.02) had very similar
RMSD values compared to 0.23 ± 0.02 for model3, whereas Lys49 PLA2

had even lower RMSD (0.14± 0.03), suggesting that three systems show
similar behavior (Fig. 2G). Additionally, there are 3 hydrogen bonds for-
matted between Lys49 PLA2 and CRISP within 3 Å in model3, and no



Fig. 1. Yeast two-hybrid analysis. Colony growth on DDO medium (without leucine and tryptophan) indicates the successful binary co-transformations, while
colony growth on QDO medium (without histidine, leucine, tryptophan, and adenine) shows the protein-protein interactions (PPIs). A, using pBD-Asp49 PLA2 and
pBD-Lys49 PLA2 as “bait” to detect the venom PPIs between PLA2s and 14 venom proteins in pAD vector (empty pBD and pAD served as negative control). B, C,
the results of ‘reciprocal’ Y2H, swapping venom proteins from pBD (B) to pAD vector (C), show that PLA2s form dimers and Lys49 PLA2 interacts with CRISP on
QDO/X-alpha-Gal medium.

Table 2
BLASTP analysis of Lys49 PLA2 and CRISP and the selected templates.

Models Templates Identity (%) Similarity (%) Cover (%) Mas score E-values

Lys49 PLA2 6CE2 72 80 100 176 4e−58
CRISP 1RC9 81 91 100 391 4e−140

Table 3
Evaluation of Lys49 PLA2 and CRISP models.

Models DOPE ERRAT (%) Verify3D (%) Z-score φ/ψ-plot (%)

Lys49 PLA2 −11141.5 82.3 87.6 −5.0 91.4
CRISP −22896.4 86.6 88.2 −5.7 92.8

DOPE (Discrete Optimized Protein Energy) scores were generated via many iterations by MODELLER (Webb et al., 2014) scripts; more negative DOPE score values
tend to correlate with more native-like models. ERRAT scores over 80% indicate that only a few residues have an elevated error function when compared with
similar experimental structures. Verify3D scores over 80% signify that the amino acids have compatibility between the 3D model and the amino acid sequence. Z-
score is used to assess if the knowledge-based potential could recognize a native fold from the other alternatives (acceptable range from −12 to 12).
Ramachandran plot is used to test if protein amino acid residues are in most favored phi (φ) and psi (ψ) dihedral angle region. ERRAT, Verify3D, Z-score and
Ramachandran plot were calculated by PROCHECK (Laskowski et al., 1993).
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inter‐residue‐hydrogen bonds formatted in cluster21 and complex6
(Fig. 2D, 2E, 2F).
4. Discussion

4.1. Venom protein interaction

Proteins and peptides constitute the complex mixture of snake
venom and understanding the venom complexity is critical for devel-
4

oping antivenom for the treatment of snakebites. However, to the best
of our knowledge, there is no systematic report of even a single venom
complexity, partially due to the lack of high‐throughput technique for
detecting venom PPIs. Fortunately, since its inception, Y2H analysis
has been extensively used to detect any PPIs. Certainly, like all the
other approaches, there are some limitations of Y2H analysis. The
major drawback of Y2H analysis is that it generates false positives.
Many researchers utilized different approaches such as different Y2H
systems (Caufield et al., 2012), pull‐down analysis (Rimbault et al.,
2019), size exclusion (Kirkwood et al., 2013; Busch et al., 2018),



Fig. 2. Prediction of Lys49 PLA2-CRISP complex structure by molecular dynamics (MD) simulations. Room-mean-square deviation (RMSD) of backbone atoms
from docked modes of (Lys49-CRISP) as a function of simulation time. A, B and C: During the simulation (1 ns), some complexes in each docking method (ClusPro,
ZDOCK and HADDOCK) move away from the initial pose (the trajectory drift away from the initial structure), while the others remain close. The former could be
identified as wrong docking models, and the latter as possible correct models (e.g., model3, cluster21, complex6). D, E and F: The 3D complex structures of
model3, cluster21 and complex6 (CRISP in magenta, Lys49 PLA2 in blue, and hydrogen bonds denoted by black line in model3), visualized by UCFC Chimera. G:
The comparison of structure stability of Lys49 PLA2, CRISP and three complexes in extended time (10 ns). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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etc. as complementary approaches to validate the Y2H results. Among
them, a widely used method is to increase the stringency of the inter-
actions. In the present study, apart from using stringent interactions by
adding X‐alpha‐Gal, we deployed “rY2H” method to validate the true
interactions. We only consider the PPIs from “rY2H” results as the gua-
nine interactions, e.g., interactions between Lys49 PLA2 and CRISP, as
well as Lys49 PLA2 homodimer and PLA2 heterodimer (Fig. 1A, 1B,
and 1C). Braun et al. (2009) and Caufield et al. (2012) also successfully
validated the true PPIs by swapping bait‐prey proteins in Y2H systems.
PPIs from ‘unilateral’ Y2H need to be further confirmed such as the
interactions of Asp49 PLA2 and CRISP in Fig. 1C but not in Fig. 1B,
as well as Asp49 PLA2‐3FTx interaction in Fig. 1A.

PLA2 enzymes are one of the most common proteins in most snake
venoms and are responsible for diverse toxicities including neurotoxi-
city, myotoxicity, blood coagulation, etc. (Kini, 2003; Lomonte et al.,
2003). We predicted that PLA2 interacting with other venom proteins
plays a key role in pathophysiological effects. Surprisingly, our find-
ings demonstrated that venom PLA2 only interacts with few venom
proteins such as PLA2 itself, CRISP, and possibly with 3FTx. This result
5

implies that venom toxins probably either execute toxic effects individ-
ually, or transiently interact with other molecules to exhibit synergistic
activity during envenomation. The most common function of snake
venom CRISP is to inhibit ion channels, but no snake venom CRISP
so far have proved lethal to mammals (reviewed in Tadokoro et al.
(2020)), whereas Lys49 PLA2s were extensively reported that they pos-
sess myotoxic activity; thus, we speculate that the interaction of Lys49
PLA2 and CRIDP probably produce more potent myotoxicity or strong
binding capacity to various target molecules such as ion channels to
affect cellular signaling. Our findings are in good agreement with prior
conclusion that most snake venom toxins exhibit their pharmacologi-
cal activities on their own; however, some proteins form covalent/
non‐covalent complexes with other proteins to exhibit more potent
pharmacological activities (reviewed in Doley and Kini (2009)). It
appears that snake venom proteins preferentially form homodimers
or heterodimers with different members of the same venom protein
family, and they scarcely interact with non‐homologous venom pro-
teins. Understanding this principle is critical for the development of
universal antivenom or complement methods to treat snakebite, the
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neglected tropical disease that results in high mortality (138,000
deaths per annum) and morbidity (~400, 000 cases per annum)
(Gutiérrez et al., 2017).
4.2. Complex structure of venom protein interactions

While the successful detection of venom PPIs is important, the
study of venom protein interactions at the structural level plays a cru-
cial role in structure‐based antivenom development because the patho-
physiological effects of venom proteins or protein complexes are
known to be closely related to their 3D structures. To predict the com-
plex structure of Lys49 PLA2‐CRISP interaction, the accuracy and reli-
ability of modeled individual structures of Lys49 PLA2 and CRISP were
critically important for following docking and MD simulations. Both
modeled structures of Lys49 PLA2 and CRISP are close to the native
structures with less than 0.2 Å RMSD between templates and modeled
structures. Furthermore, the various structure parameters indicate that
the modeled structures of Lys49 and CRISP are close to the crystal
experimental structures (Table 3). Subsequently, based on Critical
Assessment of protein Structure Prediction (CASP)‐Critical Assessment
of PRediction of Interactions (CAPRI) (Lensink et al., 2017; Vangone
et al., 2017; Kurkcuoglu and Bonvin, 2019; Agrawal et al., 2019),
we employed the three top ranked protein‐protein docking methods
(ClusPro, ZDOCK and HADDOCK) for predicting the complex structure
of Lys49 PLA2‐CRISP interaction. To further identify the most likely
docking mode of Lys49 PLA2‐CRISP interactions, we performed the
MD simulations and the results revealed that the model3 (Fig. 2D
and G) shows stable complex structure in extended time (10 ns) and
exhibits similar stable behavior with Lys49 PLA2 and CRISP
(Fig. 2G) when comparing with cluster21 and complex6. MD simula-
tion can evaluate the thermodynamic stability of protein complex
structures in time‐resolved motions, and the highly stable complex
structures should represent the most likely biological form of func-
tional structure (Krissinel and Henrick, 2007). In addition, MD simula-
tion has been tested for several systems to identify the correctly
docked modes (Dror et al., 2011; Shan et al., 2011; Buch et al.,
2011), and it is commonly accepted that the correctly docked confor-
mations appear to be thermodynamically stable (Quezada et al., 2017;
Radom et al., 2018; Bhakat et al., 2018).

The study of venom protein interactions at the structural level plays
a crucial role in the investigation of toxic systems and the development
of antivenom. However, the current situation in animal venom
research is that there are numerous venom protein transcripts and
even protein sequences available in various databases. For example,
there are 10 transcript sequences of Crotalus CRISP deposited in NCBI
GenBank, but only one crystal structure of Crotalus CRISP is available
in PDB (accessed in January 2021). Therefore, there is a large gap
between the number of available venom protein sequences and their
experimentally solved crystal structures. Developing crystal structures
of venom proteins is a time consuming and tedious laboratory process.
To fill out this gap, computational modeling of the 3D structure of
complexes from their protein sequences play a central role in structural
venom research. From our current study, we believe that the combina-
tion of experimental (Y2H) and computational (modeling) approaches
appears promising for not only detections of venom PPIs, but also for
dissection of venom complexity at the structural level.
5. Conclusions

Understanding the venom protein interactions is essential for deci-
phering venom complexity and designing specific chemical modifica-
tions to develop new reagents and therapeutics for the treatment of
snakebites. We detected the venom protein‐protein interactions of C.
atrox and the results showed that venom PLA2s interact with
themselves and Lys49 PLA2 interacts with CRISP. The thermodynami-
6

cally stable conformations of Lys49‐CRISP were further predicted by
MD simulations. Based on the above and our other preliminary results
(data not shown), we propose that, although snake venom is a cocktail
of proteins and other molecules, most venom proteins individually
exert their pathophysiological effects or are coupled with small mole-
cules such as peptides and chemical compounds. Future studies will
entail testing the synergistic activities of Lys49‐CRISP complex.
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