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IntroductIon
Oxidative stress is common in the brain following acute 
injuries, such as trauma, ischemic or hemorrhagic strokes 
(Chong et al., 2005; Rodrigo et al., 2013; Seifert and 
Pennypacker, 2014; Xiong et al., 2014; Hasegawa et al., 
2015; Schlunk and Greenberg, 2015; Suzuki, 2015). The 
primary targets of reactive oxygen species (ROS) or reac-
tive nitrogen species (RNS) following acute brain injury 
are macromolecules, including proteins, fatty acids and 
lipids, and deoxyribonucleic acids. The secondary ef-
fects of ROS and RNS are multiple; for example, they 
trigger apoptosis and neuroinflammation (Rodrigo et al., 
2013; Ahmad et al., 2014; Fayaz et al., 2014; Seifert and 
Pennypacker, 2014; Chen et al., 2015a, b; Xiong and Yang, 
2015; Zhao et al., 2015). The brain is rich in lipids and 
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vulnerable to oxidative stress; therefore, anti-oxidative 
approach has priority in protecting the brain (Chong et 
al., 2005; Rodrigo et al., 2013).

antI-oxIdatIve systeMs
Biological entities have built-in anti-oxidative systems, 
and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a 
key member in the systems. Nrf2 is a master transcription 
factor that controls the expression of a battery of anti-
oxidative enzymes (van Muiswinkel and Kuiperij, 2005; 
Zhang et al., 2013). Under physiological conditions, Nrf2 
is sequestered in the cellular cytosol and quickly degraded 
by the S26 proteasomes after its synthesis. The regulation 
of Nrf2 degradation has two arms, one is by Kelch-like 
ECH associated protein 1 (Keap1) and Cullin3 (Cul3)-
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related E3 ligase, and the other is by glycogen synthase 
kinase 3 (GSK3β) and another E3 ligase known as beta-
transducin repeat-containing protein. Following oxidative 
stress, Keap1 or GSK3β undergoes modification and loses 
the ability to bind Nrf2; free Nrf2 then translocates to the 
nucleus and upregulates the expression of downstream 
anti-oxidative genes. Furthermore, the activity of Nrf2 can 
be regulated via phosphorylation by protein kinases, such 
as protein kinase B and C (Cross et al., 1995; Zhang et al., 
2013), and the phosphorylation of Nrf2 affects its binding 
to Keap1 and its nuclear transportation (Zhang et al., 2013). 

antI-oxIdatIve enzyMes Induced by Inhaled 
anesthetIc gases
The downstream genes of Nrf2 include four groups of anti-
oxidative enzymes (van Muiswinkel and Kuiperij, 2005; 
Zhang et al., 2013). (1) Detoxifying enzymes, including 
heme oxygenase 1 (HO-1) and NAD(P)H: quinone oxi-
doreductase 1. (2) Glutathione group, such as glutathione 
synthetases and glutathione peroxidases. (3) Thioredoxin 
enzyme group, including thioredoxins, thioredoxin reduc-
tases, peroxiredoxins, and sulfiredoxin. (4) Transferase 
group, such as glutathione S-transferase, sulfotransferase. 
These enzymes can be induced on purpose by using Nrf2 
activators, including some inhaled anesthetic gases (Hoetzel 
and Schmidt, 2010; Zhao et al., 2013; Lee et al., 2015).

protectIve effect of Inhaled anesthetIc gases
The inhaled anesthetic gases that are widely applied in 
clinic settings and in experimental studies include isoflu-
rane, sevoflurane and xenon, especially isoflurane (Zhang 
et al., 2012, 2014b; Hu et al., 2014; Sehba, 2014; Chen 
et al., 2015a; Cheng et al., 2015; Schlunk et al., 2015; 
Zuloaga et al., 2015). Importantly, isoflurane has been 
reported to reduce the brain injury induced by ischemic 
stroke (Bickler and Fahlman, 2006; Li and Zuo, 2009; 
Bedirli et al., 2012; Yin et al., 2014; Sosunov et al., 2015) 
and hemorrhagic stroke (Gigante et al., 2011; Altay et al., 
2012). Sevoflurane protects the brain against ischemic 
stroke (Engelhard et al., 2003; Wang et al., 2011, 2016; 
Yu et al., 2011; Bedirli et al., 2012; Li et al., 2014), and 
hemorrhagic stroke (Karwacki et al., 2005; Lee et al., 
2015). The research on desflurane is limited; however, its 
protection against ischemia has been reported (Haelewyn 
et al., 2003). Xenon protects the brain against traumatic 
brain injury (TBI) (Harris et al., 2013) and ischemic injury 
(Dingley et al., 2006; Hobbs et al., 2008; Esencan et al., 
2013; Sabir et al., 2014; Liu et al., 2016).

The inhaled anesthetic gases can be used as either a 
pre-conditioning approach or a post-conditioning one. Pre-
conditioning has demonstrated protective effects against 

TBI (Harris et al., 2013; Deng et al., 2014; Khan et al., 
2015; Shu et al., 2016), ischemic stroke (Dingley et al., 
2006; Wang et al., 2011, 2016; Yu et al., 2011; Liu et al., 
2013; Shi et al., 2013), and hemorrhagic stroke (Gigante 
et al., 2011; Sheng et al., 2012). Post-conditioning is a 
relative new concept and it has been reported in ischemic 
stroke (Li et al., 2014; Yin et al., 2014; Lee et al., 2015; 
Liu et al., 2016).

antI-oxIdatIve MechanIsMs of Inhaled anesthetIc 
gases
The anti-oxidative mechanisms of these inhaled anesthetic 
gases are not fully understood, especially the ways they 
activate Nrf2 pathway. Although there are no reports show-
ing that these gases inhibit Keap1, it has been reported 
that isoflurane, sevoflurane, and desflurane inhibit GSK3β 
activity and reduce neuronal injury after oxygen-glucose 
deprivation (Lin et al., 2011). It seems that activating 
protein kinases is an important approach for the gases to 
activate Nrf2 pathway. Both isoflurane and sevoflurane 
have been reported to activate phosphoinositide 3 kinase 
(PI3K) and protein kinase B (Akt) (Bickler and Fahlman, 
2006; Ye et al., 2012; Zhang et al., 2014a), and sevoflurane 
can activate protein kinase C (Lee et al., 2015). Xenon 
may activate Nrf2 pathway by phosphorylating Akt and 
extracellular signal-regulated kinases (Liu et al., 2016).

clInIcal prospect
It is certain that these inhaled anesthetic gases offer 
anti-oxidative and neuroprotective effects against TBI and 
strokes. There are several advantages to use anesthetic gases 
in clinical settings. They have been used for many years in 
clinical settings. Moreover, they are safe, fat-soluble with 
high permeability to blood brain barrier, which are critical 
for delivery to the brain. In addition, they are routinely given 
with oxygen, making them preferable and convenient for 
clinical use, especially in emergent conditions and in opera-
tion room. However, several aspects need to be clarified for 
clinical translation, such as the optimal dose and route for 
delivery, their protective mechanisms, and the machineries 
by which they activate Nrf2 pathway and upregulate anti-
oxidative enzymes.
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