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Abstract 
Cell surface proteins serve as primary drug targets and cell identity markers. The emergence of 

techniques like CITE-seq has enabled simultaneous quantification of surface protein abundance 

and transcript expression for multimodal data analysis within individual cells. The published data 

have been utilized to train machine learning models for predicting surface protein abundance based 

solely from transcript expression. However, the small scale of proteins predicted and the poor 

generalization ability for these computational approaches across diverse contexts, such as different 

tissues or disease states, impede their widespread adoption. Here we propose SPIDER (surface 

protein prediction using deep ensembles from single-cell RNA-seq), a context-agnostic zero-shot 

deep ensemble model, which enables the large-scale prediction of cell surface protein abundance 

and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER 

outperforms other state-of-the-art methods. Using the predicted surface abundance of >2500 

proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER 
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including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in 

hepatocellular carcinoma and colorectal cancer. 

   

Introduction 
      Cell surface proteins are crucial for a cell to sense extracellular signals, mediate cell-cell 

interactions, and perform cellular functions. They often serve as cell identity markers and hold the 

most significant therapeutic implications, covering over 60% of current drug targets (Santos, Rita, 

et al., 2017; Bausch-Fluck Damaris et al., 2018). Quantifying surface protein abundance at cellular 

levels provides broad applications including cell type annotation, disease biomarker discovery, 

drug target identification, and cell-cell interaction analysis. There has been rapid development in 

single-cell multi-omics technologies for profiling cell surface protein abundance, including CITE-

seq (Stoeckius Marlon et al., 2017), REAP-seq (Peterson Vanessa M et al., 2017), ABseq (Shahi 

Payam et al., 2017), and mass cytometry-based multimodal assay (Bennett, Hayley M., et al., 

2023). These methods use antibodies to tag cell surface proteins and allow for the simultaneous 

measurement of cell surface protein abundance and transcriptome in the same cell, yet several 

significant limitations remain. These experiments remain cost-prohibitive in many labs, and 

technology barriers restrict widespread access to these methods. Moreover, while in theory these 

technologies have no upper bound for measurable surface proteins, in practice they only routinely 

measure fewer than 300 surface proteins, and even merely 10~20 surface proteins in many cases, 

only accounting for a small portion of the maximum number of 5570 human cell surface proteins 

as predicted by the Human Protein Atlas (HPA) (Uhlén, Mathias, et al., 2015). This is not solely 

due to cost considerations but also because many proteins lack suitable antibodies (Vistain, Luke 

F., and Savaş Tay., 2021).  

      To mitigate these challenges, computational approaches offer promising options by predicting 

surface protein abundance from single-cells transcriptomes. Current approaches include 

multimodal data integration models such as Seurat (Hao, Yuhan, et al., 2021), totalVI (Gayoso, 

Adam, et al., 2021) and sciPENN (Lakkis, Justin, et al., 2022), as well as models specifically 

designed for surface protein imputation like cTP-net (Zhou, Zilu, et al., 2020). These models are 

trained on CITE-seq datasets to learn the relation between transcript expression and surface protein 

abundance. Yet, the downstream application of their predicted surface protein abundance to 

addressing real biomedical problems is limited by two unsolved challenges. Firstly, these models 
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are constrained to predicting the same proteins as present in the training/reference CITE-seq 

dataset, thus limiting the scale of predictable surface proteins to fewer than 300. Secondly, these 

models do not intend to generalize to various contexts (e.g., different tissues or disease states). In 

fact, there are much fewer CITE-seq datasets compared to single-cell RNA-sequencing (scRNA-

seq) datasets, and CITE-seq datasets for certain tissues and diseases are rare or absent. For instance, 

there is a lack of CITE-seq dataset for the human kidney or Alzheimer’s disease, making it difficult 

to prepare a reference dataset that shares the same cellular context as a provided query dataset, 

highlighting the need for designing models to extrapolate surface protein abundance prediction to 

different contexts.  

      Here we propose SPIDER, a context-agnostic zero-shot deep ensemble model that enables 

abundance prediction for a large scale of cell surface proteins across various contexts with strong 

generalization ability. To consider the influence of contextual variations on surface protein 

expression, and improve model performance in new contexts, SPIDER incorporates contextual 

information, encompassing tissue, disease state, and cell type, as integral components of the input 

alongside transcriptome data. Moreover, to expand the scale of predictable proteins, SPIDER 

predicts for both proteins seen during training and unseen proteins (different from the trained 

proteins) via zero-shot learning mechanisms. Through comprehensive benchmarking, we show 

that SPIDER outperforms baselines in terms of both seen and unseen proteins in a variety of 

contexts. Further, we use SPIDER to predict the abundance for over 2500 cell surface proteins on 

hepatocellular carcinoma (HCC) and colorectal cancer (CRC) liver metastasis transcriptomes. 

Based on its prediction, we perform downstream analyses including cell type annotation, disease 

biomarker identification, and cell-cell interaction analysis. These applications underscore 

SPIDER’s versatility across a wide array of contexts, even those different from the reference 

dataset.   

 

Results 
SPIDER model overview. SPIDER employs a deep ensemble architecture combined with zero-

shot learning methods to achieve abundance prediction for thousands of surface proteins in 

single cells (Fig. 1a). To start with, a reference dataset is built from CITE-seq dataset(s) and 

trained for SPIDER to learn a relation between each specific protein’s cell surface abundance 

and the single-cell transcriptomes (Fig. 1b). However, such relation could be largely affected by 
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other environmental context factors including tissue, disease and cell type, especially considering 

the situation where a query dataset may source from a context different from the reference 

dataset, increasing the difficulty for accurate prediction. Therefore, SPIDER also adopts a 

context-agnostic approach to elevate context generalization ability, where one-hot encoding is 

used to encode the information on these context factors and combines it with transcriptomes for 

training (Fig. 1b). To bolster SPIDER’s context-awareness, a comprehensive reference dataset is 

compiled by consolidating CITE-seq datasets from six studies, which comprise a total of 289 

proteins and 120,461 cells covering five tissues, four diseases, and 17 cell types (Methods) (Fig. 

2a and Extended Data Table 1). To mitigate batch effects among transcriptome datasets, 

scArches-SCANVI (Lotfollahi, Mohammad, et al) is used to embed them into lower dimensions 

before combining with context factors (Fig. 2b, Methods). During SIPDER’s training stage, deep 

neural networks (DNN) are individually trained for each protein with an internal 10-fold random 

holdout validation, where each DNN captures the intricate relation between each protein’s cell 

surface abundance and the embedded transcriptomes within its corresponding context. These 

trained proteins are referred to as seen proteins, and the trained weights of corresponding DNNs 

are saved and directly used to predict cell surface abundance of the same 289 proteins on any 

given embedded query scRNA-seq dataset within its context (Fig. 1b).  

       To achieve the prediction of the abundance of unseen cell surface proteins, SPIDER enables 

the zero-shot capability. Zero-shot learning (ZSL) originates from the problem setting where one 

needs to predict the class for a sample whose actual class was not seen during the training stage 

(Xian, Yongqin, et al., 2018). ZSL methods generally solve this problem by relating seen and 

unseen classes through auxiliary information such as class-class similarity. SPIDER extends the 

ZSL method to solve the regression problem of predicting the abundance for unseen proteins by 

adopting the protein-protein similarity as a type of auxiliary information that relates a given 

unseen protein to every seen protein in the reference set (Fig. 1b). To derive context-specific 

protein-protein similarity, we first gather the names for all seen and unseen proteins, and for each 

protein we compute its gene co-expression pattern based on the query transcriptome, where the 

co-expression value is calculated between this protein’s corresponding coding gene and all the 

other genes in the query transcriptome data (Methods). This gene co-expression matrix then 

serves as protein representation, and the cosine similarity is calculated between a given unseen 

protein’s and every seen protein’s representation. After obtaining this protein-protein similarity, 
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SPIDER then proceeds to perform zero-shot prediction for unseen proteins via a deep ensemble 

architecture which combines previously trained DNNs with a linear regression algorithm (Fig. 

1b). For each given unseen protein, a filtering is applied to the DNNs by first removing the low-

quality DNNs with poor internal validation performance, and then ranking the rest of the high-

quality DNNs by their corresponding protein-protein similarity to the given unseen protein, 

where the top eight DNNs with the largest similarity values are selected to form ensemble 

members for that unseen protein’s prediction (Methods). Each ensemble member makes a 

separate prediction on the query dataset, and the outputs have their weights assigned the same 

values as their corresponding protein-protein similarities. The outputs from ensemble DNNs are 

aggregated using these weights to produce the final prediction of the given unseen protein’s cell 

surface abundance on the query dataset (Fig. 1b).  

       In addition, SPIDER also estimates the prediction confidence for all the seen and unseen 

proteins, where higher confidence means the protein is more likely to be predicted accurately 

(Fig. 1b). A seen protein is estimated to be highly confident if its corresponding DNN’s internal 

10-fold random holdout validation performance shows a correlation exceeding 0.6 between 

prediction and ground truth, and an unseen protein is estimated to be highly confident if it has a 

maximum protein-protein similarity of  >0.85 to the ensemble members (Methods). 

 

Prediction performance for seen proteins across various contexts. In order to elevate model 

generalization ability across various contexts, besides transcriptomes, we also incorporate three 

types of context factors: tissue, disease and cell type (Fig. 1b). To validate that adding context 

factors to the input indeed improves model performance, we compare the internal validation 

performance of SPIDER for seen proteins with different model input combinations. Results show 

that SPIDER performs best when all three types of context factors are added to the input 

(Extended Data Fig. 1). Only adding tissue or disease factor to model input also elevates model 

performance compared to utilizing transcriptomes alone. Interestingly, the inclusion of cell type 

factor does not yield a discernible impact on model performance within this internal validation, 

likely because the expression features embedded from scArches-SCANVI have already encoded 

pertinent cell type information (Extended Data Fig. 1). 

      To assess SPIDER’s capability in predicting the abundance of a large scale of surface 

proteins across datasets with various contexts, including those differing from the reference 
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dataset, we conduct external validation on four CITE-seq datasets covering a variety of contexts: 

healthy bone marrow, healthy pancreas, pancreatitis pancreas, and COVID-19 bronchoalveolar 

lavage fluid (BALF), respectively (Ordered from the most similar to the reference dataset, to the 

least similar) (Extended Data Table 1). Since SPIDER utilizes different prediction approaches 

for seen and unseen proteins, and the baselines for comparison are also different, we evaluate the 

prediction accuracy for seen proteins and unseen proteins separately.  

     We first consider the condition of predicting for seen proteins on the four external validation 

sets. To assess whether SPIDER’s performance is satisfying or not, we compare SPIDER’s 

prediction accuracy to state-of-the-art surface protein prediction methods Seurat V4, totalVI, 

sciPENN and cTPnet (Fig. 2c and Extended Data Fig. 2). Finally, we add another two baselines, 

one using each protein’s corresponding normalized RNA count as the prediction, the other one 

using imputed RNA values by SAVERX (Wang, Jingshu, et al., 2019), as when scRNA-seq 

experiments are conducted in lieu of CITE-seq experiments, normalized or imputed 

transcriptomes are often used by researchers as a surrogate for representing protein abundance.  

       We evaluate the prediction performance for seen proteins from several different 

perspectives. Firstly, we evaluate the prediction performance for every seen protein across all 

cells. For all four tested external validation sets, SPIDER achieves higher median correlation and 

lower median RMSE between the prediction and ground truth of the tested seen proteins, 

compared to the Seurat, sciPENN, cTPnet and normalized RNA baselines (Fig. 2c and Extended 

Data Fig. 2). For comparison to totalVI and SAVERX baselines, SPIDER also outperforms them 

in terms of both median correlation and RMSE for three out of all four external validation sets, 

only obtaining a slightly lower median correlation in one dataset, where SPIDER still 

outperforms them in terms of median RMSE (Fig. 2c). Notably, there is a tendency that the more 

different the query dataset’s context is from the reference set, the larger degree SPIDER  

outperforms other baselines. As shown in Fig. 2c, compared to the second best-performed model 

totalVI, SPIDER elevates the correlation by 25.5%, 39.8%, 42.5%, for the healthy pancreas, 

pancreatitis pancreas, and COVID-19 BALF query datasets, respectively. This indicates that 

SPIDER’s context-agnostic approach largely improves the model’s ability to generalize across 

diverse contexts compared to other models. The scatter plot of CD11b’s prediction in all cells on 

the query healthy pancreas dataset illustrates an example of the significant improvement in 

prediction accuracy by SPIDER compared to other baselines, where SPIDER’s prediction is 
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highly correlated to the ground truth (correlation coefficient = 0.80), while none of the three 

baselines reach a correlation coefficient of 0.5 (Fig. 2d).  

        Secondly, we evaluate the within-cell type prediction performance for every seen protein. 

Cell types containing at least 100 cells are selected for evaluation. For the COVID-19 BALF 

query dataset, in all three cell types, SPIDER outperforms Seurat, totalVI and normalized RNA 

in terms of both median correlation and median RMSE (Extended Data Fig. 3a). For the other 

three query datasets, SPIDER consistently exhibits better overall performance in most cell types 

compared to the other baselines (Extended Data Fig. 3b-d). 

        Thirdly, we examine the distribution of predicted abundance for several cell type markers 

selected from the seen proteins across all cells. In the healthy pancreas query dataset, 

visualization of SPIDER’s predicted surface protein abundance across all cells closely resembles 

that of CITE-seq (Fig. 2e). Compared to normalized RNA, all four machine learning models 

show stronger signals of expression at the similar magnitude as CITE-seq. Moreover, 

visualization of the aforementioned protein CD11b shows evident high abundance only in 

monocytes for CITE-seq quantification and SPIDER prediction, whereas Seurat, totalVI and 

sciPENN falsely predict high abundance of CD11b in NK cells and T cells as well, indicating 

that SPIDER captures cell marker abundance distributions more accurately than the other 

baselines (Fig. 2e).  

        Taken together, these results prove that SPIDER is capable of predicting cell surface 

abundance for seen proteins in query datasets with similar or even completely different contexts 

from the reference dataset, and that SPIDER achieves higher prediction accuracy than current 

state-of-the-art methods. Another interesting observation is that in three out of all four query 

datasets, compared to SPIDER, totalVI displays a wide range of correlations among all predicted 

seen proteins, with its lowest correlation significantly lower than that of SPIDER (Fig. 2c). This 

suggests that SPIDER is more robust for prediction than totalVI.  

 

SPIDER enables accurate prediction for unseen proteins. One strength of SPIDER is its 

capability of predicting cell surface abundance for a large scale of proteins. This achievement 

goes beyond the prediction for seen proteins and encompasses the prediction of considerable 

unseen proteins. Protein-protein similarity serve as auxiliary information in our ZSL method for 

predicting unseen proteins (Fig. 1b). Considering the inherent variability in expression patterns 
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of cell surface proteins across different query dataset contexts, SPIDER uses an across-all-cell 

type gene co-expression pattern generated from the query transcriptomes as protein 

representations to further derive context-specific protein-protein similarity (Methods). During the 

process of determining the best type of protein representations, we also consider using Gene 

Ontology (GO) terms, Protein-Protein Interaction (PPI) scores, as well as within-cell type gene 

co-expression patterns generated from the query transcriptomes as another three types of protein 

representations to further derive the protein-protein similarity, where the first two approaches 

barely associate with the query dataset’s context (Methods). Our comparison results of internal 

validation performance for unseen proteins show that SPIDER performs the best when using the 

across-all-cell type context-specific gene co-expression pattern as protein representations, with 

the median correlation between prediction and ground truth elevated by 158.9%, 84.7%, and 

75.80% compared to using GO terms, PPI scores, and within-cell type gene co-expression 

patterns, respectively (Extended Data Fig. 4).  

        To evaluate SPIDER’s prediction accuracy for unseen proteins in various contexts, we 

utilize the same four external validation sets as used in the evaluation of seen proteins. For each 

protein in an external validation set that has its corresponding RNA expression measured, we 

first deliberately make it an unseen protein by excluding its corresponding DNN from the 

prediction process entirely, and then select the ensemble members solely from the remaining 

trained DNNs for this unseen protein’s prediction. We repeat this set-aside and prediction 

process to predict for every protein in all four external validation sets and further compare 

SPIDER’s prediction accuracy to the RNA baseline. We exclude Seurat, totalVI and cTPnet 

from baselines since they are incapable of predicting unseen proteins.  

        For unseen proteins we also evaluate the prediction performance from aforementioned three 

aspects as with seen proteins. Firstly, by evaluating the prediction performance for every protein 

in all cells, our results show that in all four query datasets, among all the tested unseen proteins, 

SPIDER achieves a higher median correlation between prediction and ground truth compared to 

the RNA baseline (Fig. 3a). It could be expected that the overall prediction accuracy of unseen 

proteins should be poorer than that of seen proteins, as no ground truth labels of unseen proteins 

appear during training. Nevertheless, SPIDER manages to reach a moderately strong median 

correlation of 0.59, 0.56 and 0.53 for the healthy bone marrow, healthy pancreas and pancreatitis 

pancreas datasets, respectively (Fig. 3a). Regarding median RMSE, SPIDER also outperforms 
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the RNA baseline in three out of all four datasets, and performs comparably to the RNA baseline 

for the healthy bone marrow dataset (Fig. 3a). By selecting highly confident unseen proteins 

estimated by SPIDER (Methods), we could enhance the median correlation to 0.81, 0.63, 0.68, 

and 0.79 with a protein coverage of 41.8%, 58.3%, 50.0% and 6.7% for the respective query 

datasets (Fig. 3b). For the selected highly confident proteins, SPIDER continues to surpass the 

RNA baseline in three out of all four query datasets regarding the correlation metric, and in all 

four query datasets regarding the RMSE metric (Fig. 3b). Furthermore, in two out of all four 

query datasets, all the selected highly confident proteins could achieve a relatively accurate 

prediction with a correlation coefficient of >0.5 between predicted abundance and ground truth 

(Fig. 3b). 

       Secondly, we evaluate the within-cell type prediction performance for every tested unseen 

protein. In the healthy bone marrow query dataset, SPIDER outperforms the RNA baseline in 11 

out of all 12 cell types in terms of median RMSE, and in 7 out of 12 cell types in terms of 

correlation (Extended Data Fig. 5a). In the other three query datasets, SPIDER performs better 

than the RNA baseline regarding RMSE in most of the cell type (Extended Data Fig. 5b-d). 

       Thirdly, we scrutinize the distribution of predicted abundance for several cell type markers 

selected from SPIDER’s estimated highly confident unseen proteins. Results show that in the 

pancreatitis pancreas query dataset, visualization of SPIDER’s predicted surface protein 

abundance across all cells closely resembles that of CITE-seq (Fig. 3c). Compared to RNA, 

SPIDER shows stronger signals of expression, exhibiting the similar magnitude as CITE-seq 

(Fig. 3c). Taken together, our results demonstrate that beyond seen proteins, SPIDER is 

equipped to predict abundance for unseen proteins while ensuring high accuracy through 

confidence estimation.  

 

SPIDER assists with cell type annotation. To showcase SPIDER’s various downstream 

applications, from scRNA-seq data we first apply SPIDER to predict the abundance for all the 

human cell surface proteins as listed by the UniProt database, and then conduct multiple 

downstream analysis using the predicted surface protein abundance values (Methods). We first 

aim to demonstrate SPIDER’s application to cell type annotation, an important procedure for 

characterizing cells and understanding cellular heterogeneity within cell populations. We use two 

pre-integrated and annotated scRNA-seq datasets sourcing from human liver with distinct 
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disease contexts of (1) hepatocellular carcinoma and (2) healthy, respectively (Fig. 4d-e) (Lu, 

Yiming, et al., 2022) (Annotation is performed in a manuscript under submission). We utilize 

SPIDER to predict the abundance for 2811 surface proteins on these two datasets (Extended Data 

Table 1, Supplementary Table 1).  

      To demonstrate SPIDER’s application to cell type annotation, one prerequisite is to confirm 

that SPIDER can accurately identify the canonical surface markers for corresponding cell types, 

as these markers are commonly used to define a cell type for each cell cluster during annotation. 

Thus, we conduct differential expression (DE) analysis among the pre-annotated cell types based 

on predicted protein abundance levels or RNA levels, leading to differentially expressed proteins 

(DEPs) or differentially expressed genes (DEGs) serving as markers for these distinct cell types 

(Methods, Supplementary Table 1). Our results show that many canonical cell type surface 

markers could be identified by SPIDER, for instance, CD56, CD16, CD161, CD7 for NK-like 

cells, CD3, CD8, CD27, CD28 for αβ T cells, and CD19, CD20, CD21, CD72 for mature B cells 

(Fig. 4a, Supplementary Table 1). Moreover, comparison between the above DEPs and DEGs 

shows that SPIDER detects canonical cell type markers which fail to be observed from RNA 

expression. For instance, CD21 (CR2) is a vital mature B cell marker, playing a role in antigen 

recognition and B cell activation (Ahearn, Joseph M., and Douglas T. Fearon., 1989; Fearon, 

Douglas T et al., 2000). In the HCC dataset, SPIDER’s prediction shows CD21 as a marker for 

mature B cells with distinct high expression at protein level, whereas RNA expression fails to 

unveil CR2 as a mature B cell marker due to its extremely low expression level (Fig. 4f). 

Another example is CD16 (FCGR3A), an important NK cell marker initiating cellular toxicity 

(Lanier, Lewis L et al., 1988). SPIDER’s prediction successfully reveals CD16 as an NK-like 

cell marker, but this is not observed from RNA levels (Fig. 4b). These results prove that SPIDER 

can accurately predict the canonical cell type surface markers at protein level, including those 

that fail to be identified from RNA expression.  

        Besides the known canonical cell type markers, SPIDER also predicts some novel cell type 

markers which have not been reported by present studies, such as CD244 and CD94 for γδ1 T 

cells (Supplementary Table 1), suggesting SPIDER’s large potential in discovering novel 

markers that could be further used for defining and annotating various cell types.  

        One contribution of SPIDER to cell type annotation is discovering cell populations that 

could be overlooked by observing RNA expression alone. To prove this, we first cluster all cells 
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based on highly confident surface proteins predicted by SPIDER, and then use canonical cell 

type markers from identified DEPs to annotate these clusters (Extended Data Fig. 6a). In 

comparison, we mask the pre-annotated cell type labels and re-cluster all cells based on their 

transcriptomes, and use canonical cell type markers from identified DEGs to annotate these 

clusters (Extended Data Fig. 6b, Methods). Our results show more subtly annotated cell 

subpopulations within the αβ T cell population with SPIDER’s prediction compared to 

transcriptomes, as a cluster of CD4+ CD25- T cells is uniquely discovered with SPIDER’s 

prediction but not with transcriptomes (Extended Data Fig. 6c-e). Taken together, our results 

show that SPIDER assists with defining and annotating cell types. 

 

SPIDER facilitates identification of disease biomarkers on cell surface. Another important 

application of single-cell surface protein abundance is to unearth disease-related surface markers 

within a cell population, which could potentially serve as biomarkers for disease diagnosis and 

targets for disease treatment. To illustrate how SPIDER facilitates identification of disease-

related surface markers, we use the same human liver scRNA-seq dataset with 2811 surface 

proteins predicted by SPIDER as previously described, and perform DE analysis for each cell 

population between tumor and control condition based on RNA levels or SPIDER-predicted 

protein levels (Supplementary Table 1).  

       Results of DEPs and DEGs reveal multiple HCC-related surface markers in immune cells, 

including those that could only be identified from SPIDER but not RNA expression. For 

instance, in mature B cells, CD40 is identified by SPIDER to be a positive surface marker for 

HCC, while RNA expression fails to show this (Fig. 4f). This prediction of SPIDER aligns with 

a recent publication, where CD40 is reported to be more highly expressed in tumor-infiltrating B 

cells compared to PBMC-derived B cells as measured by flow cytometry (Hladíková, Kamila et 

al., 2019). Other publications support the significance of SPIDER’s prediction by showing 

CD40’s vital role in regulating B cells and its great potential in HCC diagnosis and treatment 

(Sugimoto, Kazushi et al., 1999; Inoue, Satoshi et al., 2006). Other examples include SPIDER’s 

identification of PIK3IP1 as a negative, and PD-1 (CD279, PDCD1) as a positive surface marker 

within γδ2 T cells in HCC, a distinction not captured by RNA expression (Fig. 4g). SPIDER’s 

prediction of PD-1 is supported by previous publications where PD-1’s expression in γδ2 T cells 

is reported to be upregulated following antigenic stimulation in breast cancer as measured by 
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flow cytometry (Iwasaki, Masashi et al., 2011). For PIK3IP1, although the relation between its 

expression in γδ2 T cells and HCC has not been reported yet, SPIDER’s prediction could be 

partially supported by the knowledge that T cells downregulate PIK3IP1 expression following 

activation (Saravia, Jordy et al., 2020), indicating that SPIDER facilitates the identification of 

potential novel disease markers such as PIK3IP1 which may be a novel negative HCC-related 

surface marker in γδ2 T cells.  

        By combining SPIDER’s prediction on cell type markers and disease-related markers 

together, we can even pinpoint disease biomarkers within more finely defined immune cell 

subpopulations. For instance, in αβ T cells, SPIDER identifies CD278 (ICOS) and CD177 as two 

positive surface markers for HCC (Fig. 4h). More specifically, SPIDER’s prediction clearly 

shows that CD278 is mainly highly expressed in the CD4+ T cell subpopulation in tumor 

environment, and CD177 is primarily expressed in the regulatory T cell (Treg) subpopulation as 

defined by canonical Treg markers CD4 and CD25. In contrast, CD177 is not observed to be an 

HCC-related marker from RNA expression (Fig. 4h). Recent publications strongly support 

SPIDER’s prediction by reporting higher CD278 expression in tumor-infiltrating CD4+ T cells 

(Di Blasi, Daniela et al., 2020), as well as upregulated CD177 expression in Tregs as measured 

via flow cytometry in HCC (Kim, Myung-Chul et al., 2021). 

        Besides immune cells, SPIDER can also identify disease-related surface markers in non-

immune cells. For instance, in a hepatocyte subpopulation, SPIDER identifies CD44 as a positive 

HCC-related surface marker, which is not identified from corresponding RNA expression due to 

its extremely weak expression signal (Fig. 4c). SPIDER’s prediction aligns with previous 

publications reporting the upregulation of cell surface CD44 expression by malignant 

hepatocytes in HCC as tested via immunohistochemistry experiments (MATHEW, JOSEPH et 

al., 1996; Endo, Kanenori and Tadashi Terada., 2000).  

        Taken together, the results demonstrate that SPIDER facilitates the identification of disease-

related cell surface markers, including not only those that have already been validated by 

previous publications, but also highly-potential novel markers that have not been reported such 

as PIK3IP1 (Fig. 4g). Moreover, SPIDER identifies disease-related surface markers that are 

overlooked by observing RNA expression alone, thereby opening up new avenues for novel 

disease biomarker discovery.   

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.605432doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.605432
http://creativecommons.org/licenses/by-nc/4.0/


Application to cell-cell interaction analysis. Cell-cell interactions (CCIs) mainly describe the 

physical interactions mediated by proteins and ligands between two or more cells. Analyzing 

CCIs helps elucidate communication networks and signaling pathways that govern cellular 

behavior, development, immune response, and disease progression, providing valuable insights 

into the heterogeneity and dynamics of cellular populations. Due to the lack of technology for 

proteomics measurement at single-cell resolution, existing single-cell CCI analysis tools such as 

CellChat only infers from transcriptomes based on ligand-receptor co-expression (Jin, Suoqin, et 

al., 2021; Armingol Erick, et al., 2021). With SPIDER-predicted single-cell surface protein 

abundance, we can now use CellChat to conveniently and directly infer CCIs from protein 

abundance data.  

        To showcase SPIDER’s application to CCI analysis, we use CellChat to infer CCIs from 

SPIDER-predicted highly confident cell surface proteins’ abundance on the previously described 

HCC dataset, and compare inferred CCIs between the normal and tumor environment (Methods). 

Our results show strengthened interactions between the mature B cell population (outgoing) and 

all the T cell populations (incoming) in tumor environment (Fig. 4i), supporting the notion that 

the functional interaction between T cells and B cells enhances local immune activation in HCC 

and contributes to better prognosis (Garnelo Marta, et al., 2017). Moreover, our results show a 

strengthened interaction between inflammatory macrophages (outgoing) and αβ T cells 

(incoming) in tumor environment (Fig. 4j), aligning with previous research indicating that 

inflammatory macrophages express T helper cell-attracting chemokines and promote T helper 

cell response upon antigen presentation (Biswas Subhra K and Alberto Mantovani, 2010). 

Furthermore, our results unveil a weakened interaction between mature B cells (outgoing) and 

portal endothelial cells (incoming) in tumor environment, which has not been reported, 

suggesting that SPIDER may facilitate the discovery of novel cell-cell interactions in HCC (Fig. 

4i).  

       Taken together, SPIDER facilitates the identification of CCIs, not only containing those that 

have already been validated by previous publications, but also potential novel CCIs that have not 

previously been reported. As a result, SPIDER may ultimately enhance our understanding of 

immune response and cell crosstalk in diseases.   
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SPIDER facilitates the identification of cancer metastasis surface markers. To further 

showcase SPIDER’s broad application across various contexts, we delve into the study of cancer 

metastasis, a complex and dynamic process involving the spread of cancer cells from the primary 

tumor to distant organs or tissues. With the predicted surface protein abundance across multiple 

tissues by SPIDER, we aim to identify surface markers associated with cancer metastasis. To 

demonstrate this capability, we apply SPIDER to single-cell transcriptomes from a colorectal 

cancer (CRC) liver metastasis study containing a total of 125,150 cells (Che Li-Heng et al., 

2021) (Fig. 5d-e). There are six datasets with distinct tissue and disease conditions (Extended 

Data Table 1). We use SPIDER to predict the abundance for as many as 2664 human cell surface 

proteins on these six transcriptome datasets (Supplementary Table 2). 

       To show that SPIDER enables the identification of metastasis-related surface markers, we 

take all treatment-naïve cells and conduct DE analysis for every cell population between 

different tumor sites based on RNA levels or SPIDER-predicted protein levels (Supplementary 

Table 2). Results of DEPs and DEGs reveal multiple metastasis-related surface markers in 

epithelial cells (cancer cells) that could only be identified from SPIDER’s prediction but not 

RNA expression. For instance, in epithelial cells, SPIDER identifies EPB41L3 and KCTD12, 

which are more lowly expressed in liver metastases site compared to the primary tumor site, as 

two negative surface markers for CRC liver metastasis; whereas they cannot be identified from 

the RNA expression (Fig. 5a). SPIDER’s prediction of EPB41L3 is supported by a study 

highlighting its downregulation in gastric cancer liver metastases, which significantly promotes 

cancer cell migration and invasion (Li Xiaohua et al., 2011). While direct evidence linking 

KCTD12 to cancer metastasis is currently absent, a recent study by Merhi Maysaloun et al 

partially supports our results, where decreased KCTD12 expression in CRC cells is reported to 

increase cancer cell viability and invasiveness (Merhi Maysaloun et al., 2023), indicating that 

KCTD12 could potentially be a novel CRC metastasis surface marker identified by SPIDER.  

        Besides cancer cells, SPIDER further identifies potential novel metastasis-related surface 

markers in other cell populations as well. For instance, in cancer-associated fibroblasts (CAFs), 

SPIDER detects IFITM2 which is more highly expressed in liver metastases compared to the 

primary site, as a positive surface marker, and KCTD12 and IFNGR2 as two negative surface 

markers for CRC liver metastasis; whereas these three markers cannot be identified from the 

RNA level (Fig. 5c). IFITM2 is verified by FACS to be expressed on human fibroblasts and 
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contribute to cancer metastasis (De Marco, Margot, et al.). On the other hand, neither of the two 

predicted negative markers has been reported, suggesting SPIDER may have identified novel 

CRC metastasis-related surface markers. 

        We are also curious about the overall changes in surface protein abundance within every 

cell population during CRC liver metastasis, and how much difference there is between the 

overall changes in surface protein abundance and RNA expression. More significant changes in 

overall surface protein abundance may indicate larger contribution for that cell population to 

cancer metastasis. To explore this, we first summarize the total number of SPIDER-predicted 

highly confident proteins, from which we then calculate the proportion of DEPs between the 

primary tumor site and the liver metastases site for every cell population. In comparison, for 

these SPIDER-predicted highly confident proteins we select their corresponding genes, and 

perform the same calculation for DEG proportions to these genes for every cell population. As a 

result, we find that the overall change in surface protein abundance exceeds that of RNA 

expression (Fig. 5f). Specifically, CAFs (39.02%), epithelial cells (36.93%) and plasmacytoid 

dendritic cells (pDCs) (21.95%) exhibit the most significant alterations in surface protein 

expression patterns as predicted by SPIDER, aligning with the knowledge that CAFs play a vital 

role in modulating cancer metastasis through production of growth factors (Sahai Erik et al., 

2020), as well as the fact that colorectal tumorigenesis results from progressive transformation of 

epithelial cells. pDCs are the most important professional antigen presenting cells (APCs) with 

the broadest range of antigen presentation (Kambayashi Taku, and Terri M Laufer, 2014; 

Mitchell Dana, Sreenivasulu Chintala, and Mahua Dey, 2018), therefore, it is also reasonable that 

pDCs show a great change in overall surface protein abundance as predicted by SPIDER. In 

contrast, RNA expression patterns merely change 0.35%, 15.33%, and 0.35% for CAFs, 

epithelial cells and pDCs, respectively, suggesting that SPIDER detects expression changes at 

protein level that fail to be revealed by corresponding RNA expression (Fig. 5f). There are cell 

populations showing consistent magnitude of expression changes at both protein level and RNA 

level as well, such as endothelial cells and mast cells with the smallest expression change (<5%) 

at both protein level and RNA level, indicating their minor role in CRC metastasis (Fig. 5f). 

Taken together, these results show that SPIDER’s prediction of changes in surface protein 

abundance during cancer metastasis is biologically significant, and reveal evident difference in 
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expression changes between surface protein level and RNA level, suggesting that SPIDER could 

complement the limitation of transcriptomes in metastasis marker identification.  

       To gain further insights into what pathways the above significantly changed surface proteins 

involve during cancer metastasis, we conduct pathway enrichment analysis based on the 

previously obtained DEPs and DEGs, respectively, for the top 3 cell populations CAFs, epithelial 

cells, and pDCs (Fig. 5g, Methods). Results show that enriched pathways generated from the 

predicted down-regulated surface proteins in metastases are largely related to immune response 

and shared by the three cell populations, suggesting major participation of these cell populations 

in cancer metastasis via regulating immune response by changing relevant surface proteins’ 

expression, and active interactions among these cell populations (Fig. 5g). While enriched 

pathways generated from RNA levels fail to show this pattern of collaborative immune response 

pathways shared by the three cell populations. Taken together, these results show that SPIDER 

compensate for the limitations in transcriptomes by accurately predicting cancer metastasis 

surface markers, and further reveal their biological roles within specific cellular contexts during 

metastasis, providing new insights for cancer metastasis study. 

 

SPIDER promotes the identification of disease treatment targets on cell surface. We have 

demonstrated SPIDER’s great potential in identifying disease biomarkers including cancer 

metastasis markers on cell surface. Furthermore, SPIDER also facilitates the identification of 

potential disease treatment targets. Using the same CRC dataset, we conduct DE analysis for 

every cell population between treatment-naïve and after-treatment conditions (Supplementary 

Table 2). Our results reveal that SPIDER predicts epithelial cells to express higher GPNMB in 

chemotherapy-treated compared to treatment-naïve liver metastases (Fig. 5a), indicating 

GPNMB’s involvement in drug responses, and its inhibitors could be potentially repurposed to 

enhance metastatic CRC treatment subsequent to chemotherapy. Our prediction aligns with a 

report from a phase 2 trial where GPNMB-targeted antibody is used for cancer treatment (Kopp, 

Lisa M., et al., 2019). Additionally, SPIDER predicts epithelial cells to express lower SLC43A2 

at chemotherapy-treated CRC primary site compared to treatment-naïve site (Fig. 5a). Since it is 

reported that the high expression of SLC43A2 on tumor cells is linked with the impairment of 

CD8+ T cell’s function (Du Wan et al., 2022), SPIDER’s prediction on SLC43A2 is reasonable, 

indicating that inhibitors targeting SLC43A2 on cancer cells may serve as a novel CRC 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.605432doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.605432
http://creativecommons.org/licenses/by-nc/4.0/


treatment. On the other hand, both GPNMB and SLC43A2 fail to be identified as DEGs from 

RNA expression. Taken together, these results show that SPIDER can assist with the 

identification of potential cell surface target for disease treatment.  

      Additionally, SPIDER predicts two immune response related surface proteins, IL1R2 and 

HLA-A2, to be down-regulated in liver metastases after chemotherapy, indicating an altered 

immune microenvironment after chemotherapy and potential treatment response (Fig. 5b). 

      Moreover, we compare CCIs inferred from SPIDER-predicted surface protein abundance or 

transcriptomes between treatment-naïve and after-treatment conditions on this CRC dataset. 

Results show that SPIDER strengthens CCI signals and shows clearer changes in CCIs compared 

to using RNA (Extended Data Fig. 7). For instance, SPIDER exhibits an obvious weakened 

interaction between epithelial cells (outgoing) with other major immune cells (incoming) at the 

primary tumor site after chemotherapy treatment compared to before treatment (Extended Data 

Fig. 7a). While with CCIs inferred from RNA expression, these changes are not as obvious as the 

ones shown by SPIDER. Moreover, SPIDER exhibits weakened interactions between T cells 

(outgoing) and other cell populations (incoming) including epithelial cells and pDCs at the 

primary tumor site after treatment compared to before treatment (Extended Data Fig. 7b). On the 

other hand, CCIs inferred from RNA expression show no interaction between T cells and 

epithelial cells before and after chemotherapy, and the magnitude of interaction between T cells 

and pDCs stays unchanged (Extended Data Fig. 7b). These results indicate that SPIDER 

facilitates CCI analysis by magnifying the CCI signals, showing clearer changes in CCIs, and 

revealing CCI patterns that cannot be inferred from RNA expression data.           

 

Discussion 
      We propose SPIDER, a context-agnostic zero-shot deep ensemble model taking single-cell 

transcriptomes and context factors as input, that predicts abundance for a large scale of cell 

surface proteins on a query scRNA-seq dataset. Users can easily implement SPIDER by either 

using our pretrained model and saved weights for direct prediction on transcriptomes, or train 

their own SPIDER model using new reference CITE-seq datasets. There are three major 

distinctions of SPIDER. Firstly, it introduces zero-shot learning method through context-specific 

protein-protein similarity, which not only enables model prediction for unseen proteins, but also 

considers the contextual specificity of protein expression patterns (Fig. 1b, Extended Data Fig. 
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4). Confidence-estimation by SPIDER ensures a high overall accuracy for predictable unseen 

proteins (Fig. 3). Secondly, SPIDER is also unique in that it fully considers the effects of 

environmental context on surface protein abundance patterns by adding one-hot encoded context 

factors to input (Fig. 1b). The underlying biological meaning is that as the context changes, the 

process of protein translation from mRNA and transportation onto cell surface is regulated 

differently, which may ultimately lead to the change in cell surface protein abundance. SPIDER 

captures such influence of contexts on surface protein expression, enhancing its generalization 

across diverse contexts (Fig. 2c). Thirdly, SPIDER adopts a deep ensemble architecture, enabling 

one model to accommodate two different approaches to predicting seen and unseen proteins (Fig. 

1b). The knowledge learned from DNN’s training is transferred to assist with the zero-shot 

prediction approach, making the model highly efficient. This architecture also enables SPIDER 

to include multiple CITE-seq datasets for training and train the union of all proteins, which 

maximizes data utilization compared to other models that either only train the intersection of all 

proteins in multiple training sets, or only include one single-cell dataset for training.   

       We have shown SPIDER’s generalization ability to a variety of contexts and its superior 

prediction performance in terms of both seen and unseen proteins compared to other baselines 

(Fig. 2 and Fig. 3). We have also showcased SPIDER’s broad applications including cell type 

annotation, disease biomarker identification, treatment target identification, and cell-cell 

interaction, proving that SPIDER compensate for the limitations in the transcriptome 

measurement (Fig. 4 and Fig. 5). Beyond these applications, SPIDER holds immense potential in 

many other tasks. For instance, coupling SPIDER’s prediction with drug discovery efforts may 

identify novel cell surface targets for personalized medicine based on an individual’s single-cell 

transcriptome profile. In addition, leveraging protein-protein similarity may enable the design of 

an optimal panel of surface proteins for CITE-seq experiments, essentially creating a novel 

reference set that ensures accurate prediction for the entire surfaceome.  

       SPIDER has its limitations. Firstly, it cannot predict for proteins whose corresponding RNA 

expression is not measured in the query dataset, indicating that in addition to transcriptome data, 

other types of information on such proteins may be needed for them to be predictable. Secondly, 

although SPIDER makes overall accurate prediction and outperforms other baselines, there are 

still a small number of proteins that could not be predicted well, which is also shown by other 

baselines (Fig. 2c). This is likely caused by the complexity of regulation in some proteins or the 
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biological instability of some proteins’ abundance on cell surface, for instance, some surface 

proteins could be degraded rapidly after its transportation to cell surface, leading to very 

dynamic abundance at different time points.  

      One future direction involves augmenting the reference set with additional datasets, thereby 

furnishing SPIDER with more diverse contexts. Our current construction of SPIDER’s reference 

set comprises five tissues, four diseases and 17 cell types. Although this already covers a variety 

of contexts, there remains room for improving prediction performance, especially on contexts 

that extremely differ from the reference set. This is evident from our examination of the COVID-

19 BALF query dataset in figure 2c. With the continued advancement of CITE-seq technologies, 

it is likely that experiments will span a wider range of contexts, which could be incorporated into 

the reference set. Another avenue for future exploration would be extending the zero-shot 

ensemble architecture of SPIDER to other technologies of cell surface protein and transcriptome 

measurement such as REAP-seq and spatial transcriptomics. The current version has already 

included one ABseq dataset in the reference set (Extended Data Table 1), suggesting the 

plausibility of SPIDER to be applied to other technologies. Finally, we could utilize SPIDER to 

predict for intracellular protein abundance when relevant experimental data is available for 

training.  

 

Methods  
Dataset preprocessing. For all the RNA expression data from CITE-seq, ABseq and scRNA-seq 

(Extended Data Table 1), low-quality cells with <200 or >2500 genes detected are removed, cells 

with high percentages (>30%) of UMIs from mitochondrial genes are also removed. Low-quality 

genes with <5 counts are removed. The RNA expression data are then normalized with Seurat’s 

LogNormalize method. All the ADT data from CITE-seq and ABseq are normalized with Seurat’s 

centered log-ratio (CLR) method. 

 

Cell type annotation. The scArches-SCANVI embedding method requires annotated cell type 

labels for the reference set as input. For this input, we use SingleR and celldex packages in R to 

automatically annotate the cells in the reference set.  
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      For SPIDER’s training, prediction, as well as internal and external validations, SingleR and 

celldex are used to give a consistent annotation of cell types for all the reference and query 

transcriptomes. Cell types with <100 cells across all training datasets are removed from SPIDER 

training. We set the parameter ref to HumanPrimaryCellAtlasData() for celldex. 

      For the two case study analysis after SPIDER’s prediction, cells in the HCC datasets are 

integrated in Seurat using the FindIntegrationAnchors and IntegrateData functions with the top 50 

PCA dimensions. The re-clustering of the transcriptomes and the clustering of predicted surface 

protein abundance are performed by the FindClusters function in Seurat with a resolution of 0.5. 

The FindConservedMarkers function is used for identifying DEPs and DEGs as cell type markers 

for each cell cluster. The αβ T cell population is annotated using TRBC1, TRBC2, and CD3 

(CD3D), and subpopulations are annotated using: Tregs (CD4+, CD25+ (IL2RA+)), double-

negative T cells (CD3+, CD4-, CD8- (CD8A-)), CD8+ T cells (CD3+, CD8+, CD4-), CD4+ CD25- T 

cells (CD3+, CD4+, CD25-, CD8-). For the CRC transcriptome datasets, cells are integrated and 

clustered using the same method as described previously. Cell types are annotated using the 

markers as described in the original paper (Che, Li-Heng, et al, 2021).  

 

Transcriptomes embedding. We use scArches-SCANVI (version: 0.4.0) to embed all 

preprocessed RNA expression data for SPIDER training and prediction (Lotfollahi, Mohammad, 

et al., 2022). Top 1000 highly variable genes are selected from the training datasets and used for 

reference embedding. We save the reference embeddings for later training of the SPIDER model. 

For query datasets, the same 1000 genes as training sets are selected to generate query embedding. 

Genes that only exist in training datasets but not in query datasets are imputed with zeros. For both 

the reference and query embeddings, we set the parameter n_latent to 128 to obtain 128-

dimensional feature embeddings (For other selections of feature dimensions, refer to Extended 

Data Fig. 1).    

 

The SPIDER model. Training sets. For normalized RNA expression data derived from m CITE-

seq datasets, they are merged by shared genes and embedded into a single matrix G, where the 

number of rows is the sum of all cells, and the number of columns is 128. Provided that there are 

k proteins (aka seen proteins) in the union of normalized Antibody-Derived Tag (ADT) data from 

the same m CITE-seq datasets, SPIDER split the normalized ADT data and re-concatenated them 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.605432doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.605432
http://creativecommons.org/licenses/by-nc/4.0/


into k vectors denoted as 𝑃!, where 𝑃! ∈ ℝ"! , 𝑎𝑛𝑑	𝑖 ∈ {1, 2, 3, … , 𝑘}. Here 𝑃!  consists of values of 

the ith protein’s cell surface abundance in all corresponding measured 𝑛! 	cells across all m datasets. 

For any 𝑃!, SPIDER takes a 𝑛! × 128 matrix 𝐺! 	(𝑖 ∈ {1, 2, 3, … , 𝑘}) from G, where the 𝑛! 	cells in 

𝐺!  are the same 𝑛! 	cells as in 𝑃!. 

 

Deep neural networks. k individual DNNs are built and trained, denoted as Di (𝑖 ∈ {1, 2, 3, … , 𝑘}), 

where Di outputs the imputed cell surface abundance values for the ith protein. One-hot encoding 

of cell type, tissue and disease labels for the ith protein in all trained 𝑛! 	cells are denoted as 𝑐! , 𝑡! , 𝑑!, 

respectively. During the training of Di, it learns a function fi mapping the protein abundance value 

in the jth cell 𝑃!# from [𝐺!# 	𝑐!# 	𝑡!# 	𝑑!#], where the [ ] symbol denotes the row-wise concatenation 

operation. f  denotes all such functions fi ( 𝑖 ∈ {1, 2, 3, … , 𝑘}) . Di’s hidden layers have the 

dimensions: 64, 32, 16. All layers are fully connected (FC) with rectified linear unit (ReLU) 

activation function (except the last layer). The objective function for Di is	

																																															argmin
$!

  %
"!
∑ A𝑃!# − 𝑓!DE𝐺!# 			𝑐!# 			𝑡!# 			𝑑!#FGH

&"!
#'%                                           (1)                                

For each Di, the objective function is optimized stochastically with Adam with learning rate set to 

0.0001 and internal 10-fold random holdout validation, where a random 10% of all 𝑛! cells are 

selected to be the internal validation set and the rest of the 𝑛! cells are used as the training set.  

       For a given query dataset which is a 𝑢 × 𝑔	matrix denoted as 𝑄 , where 𝑔  genes’ RNA 

expression values are measured in u cells, its embedded form is a 	𝑢 × 128 matrix denoted as 𝑄′. 

One-hot encoding of cell type, tissue and disease labels in all u cells are denoted as 𝑐′, 𝑡′, 𝑑′, 

respectively. The surface abundance value of the ith seen protein in the jth cell is predicted as	

																																																																	𝑓!D[	𝑄′!# 			𝑐′!# 			𝑡′!# 			𝑑′!#]G                                                     (2) 

 

Protein-protein similarity. Given that there are 𝑔′  genes shared between the training 

transcriptomes and the query dataset 𝑄, and provided there are r unseen proteins which we aim to 

predict for 𝑄	(To be predictable, these r unseen proteins should have their corresponding coding 

genes’ RNA expression measured in 𝑄), and among all k seen proteins there are k′ proteins having 

their corresponding coding genes’ RNA expression measured in	𝑄. For any vth	seen	protein	(𝑣 ∈

{1, 2, 3, … , 𝑘′}), or any tth unseen protein (𝑡 ∈ {1, 2, 3, … , 𝑟}), the gene co-expression values are 

computed between its corresponding coding gene’s RNA expression (denoted as vector 𝑄(  for any 
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vth	seen	protein, or 𝑄) for any tth unseen protein) and every other genes’ RNA expression (denoted 

as 𝑄* , 𝑤 ∈ {1, 2, 3, … , 𝑔′}), where 𝑄(,𝑄),𝑄* ∈ ℝ, and u is the aforementioned number of cells in	

𝑄. Denoting gene co-expression values as vector 𝑍(  for any vth	seen	protein, or 𝑍)  for any tth 

unseen protein, where 𝑍(,𝑍) ∈ ℝ-.. The wth element in 𝑍( or 𝑍) is calculated as 

                                                   								𝑍(* = corr(𝑄* , 𝑄(), 𝑤 ∈ {1, 2, 3, … , 𝑔′}                                   (3)                                               

                                                    							𝑍)* = corr(𝑄* , 𝑄)), 𝑤 ∈ {1, 2, 3, … , 𝑔′}                                   (4) 

where corr denotes the computation of Pearson correlation. 

        Protein-protein similarity between the vth	seen	protein and the tth unseen protein is defined 

as the cosine similarity: 

 																																																																										𝑆(,) =
/"#/$

|/"|% |/$|%
                                                              (5)                                 

 

Ensemble member selection. A quality control is performed on DNNs via removing low-quality 

DNNs with internal validation performance of < 0.6 Pearson correlation coefficient between the 

prediction and ground truth. For any tth unseen protein, all DNNs are first ranked by their 

corresponding protein similarity (𝑆) to this unseen protein, only the most relevant N DNNs with 

the largest protein similarity values are selected as ensemble members for predicting the tth unseen 

protein.  

      To decide the value of N, we design the following internal validation scheme: We consider 

every one of all k proteins in the reference set as an unseen protein. To create this setting, for the 

ith protein’s prediction (𝑖 ∈ 1,2,3, … , 𝑘), we set aside its corresponding trained DNN Di, and from 

the rest of all (k-1) DNNs, we rank their corresponding proteins’ similarity (S) to the ith protein 

from the largest to the smallest. We then select the top N DNNs with the largest S values to form 

ensemble members for predicting the ith protein. In this case, the set-aside ith protein is an unseen 

protein whose data will not be used for its prediction. We consider the set-aside ith protein’s paired 

transcriptome and protein abundance data used for training Di as an internal validation set, and use 

the selected N ensemble members to make prediction on the set-aside protein’s transcriptome data 

as described in Zero-shot deep ensembles. For every one of all k proteins, we repeat this set-aside 

and prediction procedure, and compare its predicted protein abundance to the actual protein 

abundance to obtain a Pearson correlation coefficient, then we calculate the average correlation 

across all k proteins. For any N varying from 1 to k, we repeat the above steps, and plot the average 
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correlation across all k proteins. We find that the internal validation performance is the best when 

N=8 (Extended Data Fig. 8), therefore, we set N to 8 for SPIDER.    

 

Zero-shot deep ensembles. For the tth unseen protein, the ensemble model linearly combines all the 

separate predictions made by the N ensemble members, respectively. Each ensemble member’s 

corresponding protein similarity (𝑆) serves as its linear coefficient. 𝑆2,) denotes the value of protein 

similarity between the lth ensemble member’s corresponding (seen) protein and the tth unseen 

protein. A softmax-like normalization is performed to constrain 𝑆 to non-negative values: 

                                                   𝑆.2,) =
3&',$

∑ 3&),$*
)+,

, a ∈ {1,2,3, … , 𝑁}                                                 (6)          

The output from the ensemble model is the final predicted value for the unseen protein’s cell 

surface abundance. The surface abundance value of the tth unseen protein in the 𝑗.th cell in the 

query dataset 𝑄 is predicted as 

 

																										𝑌)#- = ∑ 𝑆′2,) A𝑓2D[	𝑄′)#- 			𝑐′)#- 			𝑡′)#- 			𝑑′)#-]GH ,5
2'% 𝑙 ∈ {1, 2, 3, … , 𝑁}                  (7) 

where 𝑓2 denotes the mapping function learned from the lth ensemble member out of all N ensemble 

members.   

 

Prediction confidence estimation. The tth unseen protein is estimated to obtain highly confident 

prediction if  

                                                   max(𝑆2,)) > 𝜏, 𝑙 ∈ {1, 2, 3, … , 𝑁}                                                (8) 

We set 𝜏 as 0.85 in our study. A seen protein is estimated to obtain highly confident prediction if 

it has DNN internal validation performance of > 0.6 Pearson correlation coefficient between the 

prediction and ground truth. 

  

Benchmarking procedures. Seurat anchor V4 imputes surface protein abundance via finding a 

set of reference-based transfer anchors between the query and the reference datasets (Hao, Yuhan, 

et al., 2021). totalVI imputes surface protein abundance via learning protein likelihood parameters 

from a variational autoencoder (VAE) that encodes cells into a latent space (Gayoso, Adam, et al., 

2021). For multiple CITE-seq datasets as a combined reference set, Seurat V4 and totalVI 

originally only support imputation prediction of the intersection of all proteins for a new query 
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transcriptome dataset (i.e., by default, proteins which do not overlap between multiple CITE-seq 

datasets cannot be trained, and cannot be predicted either). sciPENN is a deep learning model 

enabling multiple CITE-seq datasets which may have incompletely overlapped proteins to serve 

as reference. By default, all the proteins in union can be trained via sciPENN’s censored loss 

function approach, and can be imputed for a new query transcriptome dataset. To ensure a fair 

comparison with SPIDER in terms of predicting for seen proteins, we use the same preprocessed 

reference data as SPIDER for Seurat V4, totalVI and sciPENN, where there are m CITE-seq 

datasets with k proteins in union, and merge the m RNA expression matrices by shared genes (sg) 

without further embedding. We also use the same four external validation sets as SPIDER 

(Extended Data Table 1) for model evaluation. For Seurat’s and totalVI’s training, we first follow 

the same method as described in The SPIDER model’s Training datasets to split the 

transcriptome data and the normalized protein abundance data, obtaining split transcriptome 

matrix 𝐺′!  (𝑖 ∈ 1,2,3, … , 𝑘) of dimensions 𝑛! × 𝑠𝑔 and protein abundance vectors 𝑃! (where 𝑃! ∈

ℝ"! , 𝑖 ∈ {1, 2, 3, … , 𝑘}) for the ith protein. Then Seurat V4 and totalVI are implemented to impute 

the ith protein for the query transcriptome dataset. We perform the above implementation one time 

for imputing one seen protein for one query dataset until finishing the imputation of all the seen 

proteins for all four query datasets. For sciPENN’s training, we directly input the reference data 

without splitting them.  

        cTPnet is a pretrained multi-task DNN model for imputing cell surface abundance for 24 

proteins, with no option for training on new data (Zhou, Zilu, et al., 2020). For cTP-net, we use its 

saved weights to directly predict on the same query datasets as SPIDER. We only compare the 

shared predicted seen proteins between SPIDER and cTP-net. The training set for cTPnet is 

different from SPIDER’s reference dataset. Therefore, this comparison is not a direct head-to-head 

between SPIDER and cTPnet. Also, since the healthy bone marrow dataset among our query 

datasets was used for cTPnet’s pretraining, we exclude this query dataset from benchmarking 

comparison with cTPnet. 

        Pearson correlation and root mean square error (RMSE) are used as metrics to evaluate the 

prediction accuracy between the predicted abundance and its ground truth pre-measured by CITE-

seq. The metrics for SPIDER, Seurat and totalVI are all calculated in the log-normalized feature 

space. 
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Gene ontology terms. GO terms are generated using R package ontologySimilarity for each tested 

unseen protein’s corresponding gene, and one-hot encoded. We select GO terms that appear at 

least one time across all tested unseen proteins. The one-hot encoded selected GO terms serve as 

protein representations to further derive protein-protein similarity. 

 

Protein-protein interaction score. Human PPI scores (with the default threshold of >400) are 

obtained from STRINGdb (Szklarczyk, Damian, et al., 2023). For each training protein (i.e., seen 

protein) or tested unseen protein, the PPI scores between that protein and all the other proteins 

listed in STRINGdb serve as the protein representation to further derive protein-protein similarity. 

Missing PPI scores are imputed with zeros. 

 

Downstream analysis using predicted surface protein abundance. Of all human cell surface 

proteins listed by the UniProt database, proteins present in SPIDER’s reference set are imputed by 

SPIDER as seen proteins. Among the rest of the proteins listed, proteins with their corresponding 

genes present in the query scRNA-seq dataset are imputed by SPIDER as unseen proteins. The 

SPIDER-imputed seen and unseen proteins together constitute the large-scale surfaceomes and 

these predicted abundance data are used for downstream analysis. 

 

Differential expression analysis. For identification of DEGs and DEPs in disease biomarker 

analysis and metastasis marker analysis, we use the FindMarkers function in Seurat, where the 

logfc.threshold parameter is set to 0.25, and the test.use parameter is set to "wilcox". For 

identification of DEGs and DEPs in cell type annotation with the HCC and CRC datasets, we use 

the FindConservedMarkers function in Seurat. Genes and proteins with adjusted p values < 0.05 

are considered DEGs and DEPs. DoHeatmap and FeaturePlot functions in Seurat are used for 

visualizing the proteins and genes. 

 

Cell-cell interaction analysis. The CellChat package in R is used to for cell-cell interaction 

analysis. For cell surface protein-based analysis, we replace the RNA expression data with 

SPIDER-predicted surface protein abundance data and repeat the same analysis procedures as 

using RNA expression data. As CellChat does not support negative values as input, we set all 
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negative values in protein abundance data to zeros. For the identifyOverExpressedGenes function, 

we set the parameters thresh.pc, thresh.fc, thresh.p to 0.1, 0.25 and 0.05, respectively. 

 

Pathway enrichment analysis. Pathway enrichment analysis is performed by Seurat’s 

DEenrichRPlot function. We set the parameters num.pathway, logfc.threshold, p.val.cutoff to 5, 

0.25, 0.05, respectively. The obtained p values are used to generate alluvial plot by ggplot2 in R. 

 

Statistical analysis. Wilcoxon rank-sum test (Mann–Whitney U-test) in Seurat is used for all DE 

analysis. p < 0.05 is considered significant. 

 

Data availability 
Public datasets for training and prediction of SPIDER in this manuscript can be found at National 

Center for Biotechnology Information Gene Expression Omnibus (GEO) under accession number 

GSE164378 (GSM5008737, GSM5008738), GSE163120 (GSM4972212) , GSE172155 

(GSM5242790, GSM5242791, GSM5242792, GSM5242793), GSE143363, GSE128639, 

GSE165045 (GSM5025052, GSM5025059), GSE167118 (GSM5093918), GSE149614, 

GSE178318, as well as at figshare: https://figshare.com/projects/Single-cell_proteo-

genomic_reference_maps_of_the_human_hematopoietic_system/94469, respectively. 
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Fig. 1 | SPIDER analysis pipeline. a, SPIDER takes query single-cell transcriptome data and 
contextual information including tissue, disease and cell type as input, then uses its zero-shot 
deep ensemble architecture to predict the abundance for large-scale (>2500) cell surface proteins 
on the query transcriptome data. SPIDER predicts both seen and unseen proteins. SPIDER-
predicted surface protein abundance data allow downstream analysis including cell type 
annotation, disease biomarker identification, and cell-cell interaction analysis. b, Schematic of 
the SPIDER model. SPIDER builds a reference set using m CITE-seq datasets. SPIDER splits 
the m datasets (Gi, Pi) and combines them with one-hot encoded contextual information (ti, di, ci) 
to train protein-specific DNNs, which are used to directly predict the abundance for seen cell 
surface proteins on query transcriptome data. The trained DNNs also form ensemble members 
for predicting unseen proteins. The deep ensembles are combined with a zero-shot learning 
method where context-specific protein-protein similarity (S) generated from the query 
transcriptome data is used as auxiliary information for relating unseen proteins to seen proteins. 
Finally, SPIDER estimates unseen proteins with maximum protein-protein similarity of >0.85 to 
be highly confident predicted proteins.  
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Fig. 2 | Benchmarking with seen proteins across various contexts. a-b, UMAP visualization 
of the embeddings on the reference set’s transcriptomes. a, CITE-seq datasets from various 
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contexts are combined together to construct the reference set. Embeddings of the transcriptomes 
are visualized and colored by dataset source. b, Embeddings of the transcriptomes are visualized 
and colored by cell type. c, Prediction accuracy for every seen protein in all cells. Four CITE-seq 
datasets covering a variety of contexts are used as external validation datasets: healthy bone 
marrow, healthy pancreas, pancreatitis pancreas and COVID-19 BALF. SPIDER is compared to 
Seurat V4, totalVI, sciPENN, normalized RNA expression, and SAVERX-imputed 
transcriptomes. Pearson correlation (Left) and RMSE (Right) are shown between every cell 
surface protein’s predicted abundance (or normalized RNA expression) and CITE-seq measured 
abundance for each method. Each dot represents a protein. d, Scatter plots of CD11b’s predicted 
abundance (or normalized RNA expression) versus CITE-seq measured abundance across all 
cells in the healthy pancreas query dataset. Each dot represents a cell. e, UMAP visualization of 
the transcriptome data of the healthy pancreas query dataset, colored by predicted abundance (or 
normalized RNA expression) and CITE-seq measured abundance of selected cell type markers 
across all cells. All protein abundances are in the log-scale.  
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Fig. 3 | Benchmarking with unseen proteins across various contexts. a, Prediction accuracy 
for every unseen protein in all cells. The same four CITE-seq datasets as with the evaluation of 
the seen proteins are used as external validation datasets. SPIDER is compared to normalized 
RNA expression. Pearson correlation (Left) and RMSE (Right) are shown between every cell 
surface protein’s predicted abundance (or normalized RNA expression) and CITE-seq measured 
abundance for each method. Each dot represents a protein. b, Prediction accuracy for every 
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SPIDER-estimated highly confident unseen protein across all cells. SPIDER is compared to 
normalized RNA expression. Pearson correlation (Left) and RMSE (Right) are shown between 
every cell surface protein’s predicted abundance (or normalized RNA expression) and CITE-seq 
measured abundance for each method. Each dot represents a protein. c, UMAP visualization of 
the transcriptome data of the pancreatitis pancreas query dataset, colored by predicted abundance 
(or normalized RNA expression) and CITE-seq measured abundance of selected cell type 
markers across all cells. All protein abundances are in the log-scale.  
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Fig. 4 | Application of SPIDER to human hepatocellular carcinoma scRNA-seq data. a, 
Heatmaps showing the top DEPs (Left) or DEGs (Right) with maximum fold-change identified 
using differential expression analysis for each cell type on SPIDER-predicted surface protein 
abundance and transcriptome data, respectively. b-h, comparison between SPIDER-predicted 
surface protein abundance and corresponding RNA expression level for identified cell type-
related or disease-related proteins within specific cell populations. Disease-related surface 
proteins and their corresponding RNA are colored dark-green, and cell type-related surface 
proteins are colored dark-purple. Surface proteins and genes labeled with asterisk mean they are 
DEPs or DEGs under corresponding differential expression analysis. b, UMAP visualization of 
predicted surface protein abundance and corresponding RNA expression in NK-like cells. c, 
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UMAP visualization of predicted surface protein abundance and corresponding RNA expression 
in Hep.4. d-e, UMAP visualization of all cells in the HCC dataset, colored (d) by cell type or (e) 
by disease state. Hep: Hepatocytes. Macs: Macrophages. LSECs: Liver sinusoidal endothelial 
cells. f-h, UMAP visualization of predicted surface protein abundance and corresponding RNA 
expression (f) in mature B cells, (g) in γδ2 T cells, and (h) in αβ T cells. i-j, Cell-cell interactions 
inferred from SPIDER-predicted surface protein abundance. The values represent the strength of 
interactions. i, CCIs between mature B cells and other cell populations under tumor and control 
conditions. j, CCIs between inflammatory macrophages and other cell populations under tumor 
and control conditions.      
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Fig. 5 | Application of SPIDER to human colorectal cancer liver metastasis scRNA-seq 
data. a-e, comparison between SPIDER-predicted surface protein abundance and corresponding 
RNA expression level for identified tissue site-related or treatment-related proteins within 
specific cell populations. Site-related surface proteins and their corresponding RNAs are colored 
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dark-green, and treatment-related surface proteins are colored dark-purple. Surface proteins and 
genes labeled with asterisk mean they are DEPs or DEGs under corresponding differential 
expression analysis. a-c, UMAP visualization of predicted surface protein abundance and 
corresponding RNA expression for (a) epithelial cells, (b) T cells and (c) cancer-associated 
fibroblasts. d, UMAP visualization of all cells in the CRC liver metastases dataset, colored by 
contexts of tissue and treatment. e, UMAP visualization of all cells in the CRC liver metastases 
dataset, colored by cell types. f, comparison of the overall changes in SPIDER-predicted surface 
protein abundance to the overall changes in RNA expression during CRC metastasis within 
every cell population. For each cell population, DEPs and DEGs are identified between the CRC 
primary site and liver metastases based on the predicted protein abundance and RNA expression, 
respectively. The percentage of DEPs within a cell population is the number of identified DEPs 
divided by the number of the total predicted highly confident proteins; and from their 
corresponding genes, the percentage of DEGs within a cell population is also calculated. g, 
comparison between enriched pathways generated from SPIDER-predicted surface protein 
abundance and from corresponding transcriptomes in CAFs, epithelial cells, and pDCs.  
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