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We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral
striatum) from parametric 11C-raclopride positron emission tomography (PET) brain images. We focus on the images acquired
using a novel brain dedicated high-resolution (HRRT) PET scanner. The segmentation method first extracts the striatum using
a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The
weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired
number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our
method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could
be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution
PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in
brain research and drug development.
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1. Introduction

POSITRON emission tomography (PET) is a widely used
functional imaging technology. PET imaging allows mea-
suring physiological processes in human’s in vivo and
computing three dimensional (3D) images quantifying the
parameters of these processes. This functional information
enhances the understanding of biochemical basis of normal
and abnormal bodily functions [1]. The type of the func-
tional information provided by the PET images depends
on the applied radiopharmaceutical that is injected into the
subject. To create quantitative 3D images of the physiological
parameter of interest—so called parametric images—one
needs to study the dynamics of the concentration of the
applied radiopharmaceutical at each voxel and relate these to
the input function. The input function is the concentration
of the radiopharmaceutical in either arterial plasma or

in a specific brain region known as the reference region
[2]. In this study, raclopride labeled with 11C is used
as the radiopharmaceutical. 11C-Raclopride is a selective
antagonist and binds reversibly to dopamine D2 receptors.
The parameter of interest in this case is the binding potential
(BP) of D2 dopamine receptors which reflects the receptor
density. The striatum contains the highest density of D2
receptors in the brain. In this work, we propose an automatic
method to segment striatal substructures in 11C-raclopride
PET images. Here, we consider BP as the ratio of specific
to free plus nonspecific binding in tissue, and refer to it
this point forward as BPND [2]. An example of a parametric
image representing the BPND of 11C-raclopride is shown in
Figure 1.

Most image segmentation in clinical environments is
currently done by manual slice editing, meaning that a
human operator manually delineates the region of interest
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Figure 1: An example of one 11C-raclopride PET image of a human head: (a) transaxial, (b) sagittal, (c) coronal views.

(ROI) on each 2D slice of the 3D image. This process
has several disadvantages. For example, the results will be
dependent on any subjective bias on part of the operator
deducing the spatial shape of 3D brain structures by viewing
the 2D slices. Thus, the final result might not be reproducible
by another operator, hampering the comparability between
individual raters. Second, the enormous amount of data
that must be manually or semiautomatically extracted makes
the manual segmentation process time-consuming and
expensive.

We have earlier presented an automatic method to
extract striatal structures, namely left and right caudate
and putamen, from 11C-raclopride PET images [3]. This
method has been shown to produce more reproducible
segmentations than the traditional manual slice editing [3,
4]. So far, this method has not been applied to the images
acquired using the newest generation of PET scanners, the
High-Resolution Research Tomograph (HRRT), because a
new, improved method is needed for the segmentation of
these images.

There are two primary reasons for this need. First,
the segmentation method presented in [3] relies on the
computation of the eigenvalues and eigenvectors of an
image derived affinity matrix. However, when the image size
increases, eigenvalue computation becomes computationally
prohibitive especially regarding the memory requirements.
The images acquired using a high-resolution PET scanner
(ECAT HRRT, Siemens Medical Solutions, Knoxville, Tenn,
USA) are of a size that exceeds the limit of making
the eigenvalue computations impractical. The reconstructed
dynamic images have approximately 800 Mbytes of data and
the size of the affinity matrix is approximately 16000 ×
16000. Second, the method used in [3] was designed to
extract only caudate and putamen, but, with the resolution
enhancement offered by HRRT, more substructures can be
separated.

Accurate segmentation of the striatum from high-
resolution PET images is of great interest because the
functional anatomy of this structure is far more complex
than what can be captured by previous generation PET
scanners with lower spatial resolution. Indeed, the stria-
tum can be divided based on topographically organized
anatomical connections with cerebellar cortex into limbic

(nucleus accumbens, and ventral parts of caudate and
precommissural putamen), associative (most of the head of
caudate and ventral parts of precommissural putamen), and
sensorimotor (postcommissural putamen) divisions [5, 6].
This anatomical framework may have implications for the
regional distribution of D2 receptors within the striatum.
Therefore, in the present work, we introduce an automatic
technique that is able to extract multiple striatal structures
from parametric 11C-raclopride BPND images generated with
HRRT PET.

The segmentation problem is divided in three parts, the
extraction of the left and right striatum, the creation of
a striatal image graph, and partitioning the striatal image
graph into a predefined number of segments corresponding
to striatal substructures. The extraction of the striatum
is performed by a global optimization based deformable
surface model. Then, a weighted striatal image graph, whose
nodes correspond to striatal voxels, is constructed. The
weights of the edges in the graph are computed based on
the spatial locations and intensity values of voxels. The
image graph can be represented by a matrix of the edge
weights called the affinity matrix. Once the affinity matrix
is constructed, we apply a graph partitioning algorithm
to find the optimal partitioning. Spectral methods, such
as normalized cuts algorithm applied in [3], are a widely
used choice for partitioning. However, spectral clustering
methods rely on the computation of the eigenvalues and
eigenvectors of the affinity matrix to partition the graph.
In cases where the large size of affinity matrix makes the
eigenvector computation prohibitive, spectral methods will
fail. The HRRT data used in this study produced large
affinity matrix, rendering the spectral methods impractical.
Therefore, our implementation of a graph partitioning
method has to dwell with this data size problem. In [7] it was
shown that the weighted kernel k-means clustering criterion
with particular selections of kernel and weights is equivalent
to the multiway normalized cuts criterion. The weighted
kernel k-means criterion is a generalization of the well
known k-means criterion. It can be locally optimized using
a simple and fast algorithm similar to k-means clustering
algorithm. This equivalence provides a principled way to
avoid the eigenvalue computations to solve normalized cuts
type graph partitioning criteria.
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2. Methods

Our method for the segmentation of striatal structures from
HRRT PET images proceeds in a top-down manner. The
automatic method consists of a series of consecutive steps
shown in the hierarchy graph in Figure 2.

The preprocessing step consists of the extraction of the
striatum, from HRRT PET BPND images, see Figure 2(a).
This extraction method is the same as the one used in the
earlier method [3] except for slight tuning of the initial
parameters.

Once the striatum has been extracted an affinity matrix
containing the similarity values between all pairs of striatal
voxels is constructed using voxel coordinates and intensities
as features, see Figure 2(b). We call this step feature extrac-
tion and it is described in Section 2.2.

Finally, the clustering algorithm segments the striatum
into components corresponding to caudate, ventral striatum
and anterior and posterior putamen, see Figure 2(c). The
clustering process is treated as a graph partitioning problem,
where the affinity matrix defines to the graph to be parti-
tioned. The clustering algorithm is described in Section 2.3.

2.1. Preprocessing. Before we can proceed with the striatum
segmentation, we need to segment left and right striatum
from the background. This preprocessing can be subdivided
in three steps: extraction of the brain surface using a
deformable surface model [8], segmentation of the brain
image in right and left brain hemispheres based on the
extracted brain surface [8], and finally extraction of the
striatum from each hemisphere [3]. The previous method
[3] was found to be applicable for also HRRT-PET images
with a minor parameter tuning and we refer to [3] for more
detailed information on these methods.

2.2. Feature Extractor. The feature extractor aims to con-
struct an affinity matrix using features extracted from the
analyzed image. As we have already mentioned, the affinity
matrix can be understood as a graph and vice versa. This
graph contains the similarity values between all pairs of
voxels belonging to the striatum. The image features used
in our method are coordinates of voxel centers and voxel
intensity values, that is, BPND values. Let D denote the set of
voxels within left or right striatum and let I(i) be the intensity
value of the voxel i = (ix, iy , iz) belonging to D. We define the
similarity A(i, j)′ between voxels i and j as

A
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⎧
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The voxel i is said to be connected to the voxel j if j
is included in the neighborhood of i. Voxels i and j are
neighbors if the Euclidean distance between their centers is
less than given constant. This constant should be selected to
reflect the noise level and spatial resolution of the images to
be segmented: with noisy images the constant needs to be
lower than with less noisy images. Assuming that I(i) > 0

for all i, A(i, j) takes values between exp(−2) and 1 if the
voxels i and j are connected. We still enhance the boundaries
between the different structures by thresholding the affinity
matrix. The final thresholdedA(i, j) affinity matrix is defined
as
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In (2), A(i, j) corresponds to the final affinity value
between voxels i and j, while A(i, j)′ is computed by (1).
This second thresholding removes connections between any
two voxels with A(i, j)′ inferior to a chosen threshold. This
threshold is defined in (2) as Percentage Threshold (PT).
The values of PT can vary from 0 to 1. In this work, we set
PT = 0.5 based on experimental data.

2.3. Clustering Process. We partition the graph represented
by the affinity matrix A into subgraphs corresponding the
caudate, anterior and posterior putamen, ventral striatum,
and background using weighted kernel k-means algorithm.

As already mentioned, the weighted kernel k-means
algorithm is a generalization of the well known k-means
algorithm. The weighted kernel k-means criterion function
is [7]

d
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)
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k∑

i=1

∑
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∥
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In (3), πi denotes ith cluster with the cluster centre
mi =

∑
b∈πi W(b)φ(b)/

∑
b∈πi W(b) and W(b) is the weight

assigned to the voxel b. These weight values are computed
based on the affinity matrix (2) as we will show in what
follows. The nonlinear function φ maps the original (input)
space to a higher-dimensional feature space. This mapping
allows extracting the clusters that are not linearly separable
in the input space. This mapping is also computed based on
the affinity matrix.

Let W be a diagonal matrix of the weights W(a)
for all voxels in D and Wj be a diagonal matrix of
weights in the cluster πj . Further, collect all the inner
products φ(a) · φ(b), a, b ∈ D into the kernel matrix K . The
weighted kernel k-means criterion can be locally optimized
by Algorithm 1.

The weighted form of the kernel k-means is mathe-
matically equivalent to a general weighted graph clustering
[7]. Such equivalence implies that the weighted kernel k-
means algorithm can be used to locally optimize a number
of graph clustering objectives such as normalized cuts.
The equivalence of (3) to the normalized cuts criterion is
obtained by selecting

W(i, i) =
∑

j

A
(
i, j
)
,

K =W−1AW−1,

(4)

where A is the affinity matrix defined in (2).
Although the weighted kernel k-means algorithm allows

for segmenting a large number of striatal voxels into the
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Figure 2: Steps of the segmentation of caudate, putamen, and ventral striatum: (a) preprocessing steps, (b) affinity matrix construction
method, (c) clustering process.

Function [{πc}kc=1] = KernelKmeans(K , k,W , tmax, {π(0)
c }kc=1)

Input−→
K :Kernel matrix;
k:number of clusters;
W :sum of weights for each point;
tmax = maximum number of iterations;

{π(0)
c }kc=1:intial cluster.

Output−→
{πc}kc=1:final clusters.

1. If no intial clustering is given, initialize the k clusters (i.e., randomly).
Set the iteration counter t = 0.

2. For each point ai and every cluster c, compute:

d(ai,mc) = Kii − 2

∑
aj∈π(t)

c
Wjki j

∑
aj∈π(t)

c
Wj

+

∑
aj ,al∈π(t)

c
WjWlKjl

(
∑

aj∈π(t)
c
Wj)

2

3. Find
c∗(ai) = arg minc d(ai,mc), resolving ties arbitrarily.
Compute the updated cluster
π(t+1)
c = {a : c∗(ai) = c}.

4. If not converged or tmax > t, set t = t + 1 and go to step 2;
Otherwise, stop and output the final clusters

{πc}kc=1 = {π(t+1)
c }kc=1

Algorithm 1: Graph partition algorithm (Weighted Kernel k-means). This algorithm assigns the voxel ai to the cluster πc if the cluster πc
minimizes the distance function from point 2 [7].
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desired substructures of interest, it has some subtleties.
Namely, the final result depends on the desired number of
clusters and the initial clustering. These parameters have to
be carefully tuned to provide the most accurate result. We
examined several different choices for these parameters and
found an initial configuration that was both reliable and
accurate in this application. Particularly, the initial clustering
was formed by dividing the striatal domain D into k = 4
components of the equal size based on a lexicographical
ordering. Voxels in the striatum were lexicographically
ordered first scanning the domain from left to right direction,
then from anterior to posterior direction, and finally from
inferior to superior direction. Technically, for the image with
dimensions X × Y × Z, each voxel i = (ix, iy , iz) in D was
assigned a score s(i) = ix + Xiy + XYiz, where ix, iy , and iz
are coordinates of i in the left-right, anterior-posterior, and
inferior-superior axes, respectively. The voxels were ordered
based on these scores: the voxel i was initially assigned to the
cluster πc if (c − 1)|D|/4 < r(i) ≤ c|D|/4, where r(i) is the
rank of s(i) among the voxels in D. No differences to the final
results were observed if instead of scanning from left to right
we would scan from lateral to medial in the case of the right
striatum. Note that the initialization process is deterministic,
that is, there is no random component in our algorithm. This
is important for the current application because it ensures
the reproducibility of the automatic segmentations.

3. Experiments

3.1. Phantom Study. We performed experiments with sim-
ulated HRRT PET phantoms to evaluate the automatic
segmentation method. For this, we generated dynamic
phantoms corresponding 11C-raclopride brain images. The
construction of the phantoms required a model of anatomy
(a labeled 3D brain volume) and a model of physiology
(Time Activity Curves (TACs) for each brain region).

The anatomical model was derived from a manually
segmented T1-weighted brain MR image (the Jacob phantom
by Montreal Neurological Institute [9]). We reduced the
number of brain structures represented in the Jacob phantom
to 9 distinct anatomical structures for our anatomical model.
The structures in the anatomical model were anterior (dor-
sal) and posterior putamen, ventral striatum (including only
nucleus accumbens in our model), caudate (dorsal), white
and gray matter, cerebellum, sinuses, scalp, and skull. The
putaminal subdivision was defined according to previously
published criteria [10].

The physiological model consisted of a set of TACs, each
one describing the dynamic behavior of the radiopharma-
ceutical in a different anatomical structure. The TAC’s for
the individual structures were taken from [11]. In [11],
the model of physiology did not include separate TACs for
posterior/ anterior putamen or ventral striatum. Therefore,
an estimation of those TAC’s had to be done in order to test
our method properly. The TAC for the anterior putamen was
obtained by multiplying the TAC of the posterior putamen
by a constant (1.05). Similarly, the TAC for the ventral
striatum was obtained by multiplying the caudate TAC by a

constant (0.9). These are reasonable approximations based
on our experience with these data. We additionally generated
images using a set of different constant values. Different
constants led to different BPND values in the structures,
and for us, increased or decreased contrast between the
structures. However, slightly altered contrasts caused only
minor changes to the segmentation results and therefore we
only report quantitative results with phantoms constructed
using the physiological model specified above.

The noiseless dynamic PET phantom was generated by
assigning each voxel and each time frame to a count value
based on the anatomical model used and the time activity
curves (TACs) of the radiopharmaceutical. The dimensions
for the phantom were 256× 256 × 200 with 26 time frames.
The voxel size was 1.22 mm × 1.22 mm × 1.22 mm. The
phantom was convolved with a 2.5 mm3 Gaussian kernel
to model the resolution of the ECAT HRRT scanner [12].
After generating radioactive decay effects, noise was added
by drawing voxelwise counts from the Poisson distribution
with the mean as the count value in the noiseless convolved
phantom. This ideal level of noise is much lower than the
one encountered in reality due to the effects of scatter,
attenuation, randoms, and detector dead time. In addition to
the phantom with ideal noise level, we generated a phantom
with a more realistic noise level. For this we multiplied
the voxel values by an estimated survival probability of
0.04 before generating the noise. The survival probability
models the probability that a photon pair resulting from
positron-electron annihilation is detected by the scanner.
Our rough estimate of the survival probability was based on
the approximation that 80% of the true counts are lost due
to attenuation and other 80% are lost due to detector dead-
time. Other factors affecting the noise level were ignored in
this estimate. The performance evaluations of HRRT PET
scanners are available [12], but linking these performance
characteristics to image noise estimates is challenging [13],
and thus we settled for this rough noise level estimate. The
images were decay corrected, multiplied by the inverse of the
survival probability and the units were converted to nCi/ml.
Finally, the BPND image was computed using the simplified
reference region model using the cerebellum as the reference
region [14]. Examples of the phantom with ideal and realistic
noise levels can be seen in Figure 3.

With the phantom images, it is possible to quantitatively
evaluate our method because we know the ground truth
BPND values for each structure. Because the main interest
was in evaluating the accuracy of the extracted regional
BPND values, we limit the discussion on the evaluation
of the accuracy of structure-wise BPND values computed
based on automatic segmentation. The structure-wise BPND

values were computed by averaging the voxel-wise BPND

values in a parametric image for a given structure (left and
right caudate, ventral striatum, and anterior and posterior
putamen). The performance of our method was measured
using the normalized absolute similarity (NAS), which is
defined:

NAS = 1−
(

2
|BPa − BPb|
(BPa + BPb)

)
. (5)
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Figure 3: HRRT phantom. (a), (b), and (c) represent the transaxial, sagittal, and coronal views of the HRRT phantom with the ideal noise
level, while (d), (e), and (f) represent to the same phantom with the more realistic noise level. Figures 3(g) to 3(l) are the zoomed (400%) to
the striata in the images presented in (a) to (f).

In (5), BPa and BPb represent, respectively, the average
BPND values computed based on the automatic segmentation
and the ground truth BPND value computed based on the
physiological ground truth TAC. The NAS values range from
−1 to 1 assuming that BPND values are positive. This and
closely related performance measures are widely applied to
assess test-retest variability within PET imaging (e.g., [3,
4, 15]) which simplifies its interpretation relative to other
studies.

We also compared the automatically segmented volumes
to the anatomical ground-truth volume. The applied figure
of merit was positive predictive value (PPV) introduced
in our earlier work [3] to estimate the quality of PET
image segmentations. PPV was computed for every structure
separately. We define true positives (TPs) as voxels which
truly belong to a certain brain structure and are also labeled
as belonging to that same brain structure in an automatic

segmentation. False positives (FPs) are voxels which do not
truly belong to a brain structure in the anatomical ground-
truth but are labeled as belonging to it in an automatic
segmentation. PPV is now defined as

|TP|
|TP| + |FP| , (6)

where |TP| (|FP|) is the number of TPs (FPs). PPV is used
as the figure of merit here, because, as argued in [3], it is
important that an extracted brain structure contains only
voxels truly belonging to that brain structure and it is not that
important whether or not we detect all the voxels belonging
to that brain structure.

3.2. PET Studies with Healthy Volunteers. We compared our
automatic segmentation method to manual ROI segmenta-
tion. This comparison was done using 11C-raclopride BPND
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high-resolution PET images. The PET scans were provided
by Turku PET Center and were acquired from four right-
handed, nonsmoking healthy male volunteers. This study
was approved by the Joint Ethical Committee of the Uni-
versity of Turku and Turku University Central Hospital, and
was conducted according to the Declaration of Helsinki. All
subjects gave ethical committee-approved written informed
consents. All subjects were free of any somatic or psychiatric
illness, illicit drug abuse, and alcoholism, as confirmed by
blood and urine tests, somatic assessment, and a structured
clinical interview for DSM-IV Axis I disorders conducted by
a psychiatrist. The age, height, and weight of the subjects
were 27.5 ± 7.74; (20.3 to 33.1) years, 175 ± 1 (174 to
176) cm, and 76.1±5.16 (70.0 to 82.5) kg, respectively (mean,
s.d.; range). All subjects underwent T1-weighted magnetic
resonance imaging at 1.5T to rule out structural brain
abnormalities.

The radioligand 11C-raclopride was prepared as previ-
ously described [15]. PET imaging was performed by a
brain-dedicated ECAT HRRT, Siemens Medical Solutions,
Knoxville, Tnee, USA) [12]. In the acquired measurements,
a molded thermoplastic mask was used as a head fixa-
tion to reduce the noise due to head movements. The
right antecubital vein was cannulated and 11C-raclopride
was administered as an intravenous rapid bolus flushed
with saline. Injected dose and the specific radioactivity
were 443.25 ± 104.69 MBq and 185.7 ± 218.4 MBq/nmol,
respectively (mean ± S.D.). The PET 11C-raclopride scans
were acquired in list mode and histogrammed by axial
compression of span 9. The 11C-raclopride uptake was
measured for fifty one minutes after injection and the frame
sequence consisted of three frames of sixty seconds, four
frames of one hundred and eighty seconds, and six frames
of three hundred and sixty seconds. The image size of each
scan was 200 × 200 × 150 slices and they had an isotropic
voxel dimension of 1.22 × 1.22 × 1.22 mm3. The raw data
was reconstructed with a speed-optimized version of OP-
OSEM-3D (Ordinary Poisson-OSEM in full 3D) [16], with
sixteen subsets and eight full iterations [17]. The frame-
images of each dynamic PET image were first realigned to
correct for head movement during the scan. Integral image
(summed over time) was calculated from the realigned PET-
image and the MRI was coregistered to this PET-image. All
realignment and coregistration procedures were performed
using Statistical Parametric Mapping software version 2
(SPM2, Wellcome Department of Cognitive Neurology,
University College London, UK). The parametric BPND

images were created from the dynamic images using the
simplified reference tissue model with the cerebellar cortex
as the reference region [14].

Regions of interest (ROIs) were manually drawn to
coregistered transaxial MRI using Imadeus software (version
1.2., Forima Inc., Turku, Finland). ROIs onto dorsal caudate,
dorsal putamen, ventral striatum, thalamus, and cerebellum
were defined as previously described [16]. Simplified refer-
ence tissue model with the cerebellar cortex as the reference
region [14] was applied to TAC data to obtain the regional
BPND values.

Average NAS (ANAS) over the four subjects was used
to measure the similarity of the BPND values based on the
automatic segmentation and the manual segmentation. In
this case the BPa and BPb in (5) represent, respectively, the
BPND values computed based on the automatic segmentation
and manual segmentation. In this case, however, it cannot
be claimed that the BPND values based on the manual
segmentation would be correct although they can be used as
benchmarks.

4. Results

4.1. Phantom Study. Table 1 presents the BPND and NAS
values from automatic segmentations of caudate, ventral
striatum, putamen, anterior and posterior putamen. These
results were obtained when applying the automatic method
to ideal and realistic noise phantoms. The voxel connectivity
threshold in (1) was set to 10 with the phantom images.

Table 1 shows that the ideal phantom NAS results were
between 92.3% and 99.9%, while the phantom with a realistic
noise level had NAS values between 94.9% and 99.9%. In a
test-retest setting, where the same subject is studied twice
with a short interval between the scans, the similarity of
BPND estimations is typically in the range of 90%–95%
[3, 18]. Therefore, the automatic segmentations provided
accurate BPND values in the phantom experiments, in that
the deviation from the ground truth was less than the typical
test-retest variability. Moreover, the NAS values presented in
Table 1 also indicate that the increase of noise level did not
affect the NAS values, suggesting that the automatic method
was resistant to noise. The PPV values were high for caudate
and anterior putamen indicating that the functionally driven
segmentations were also in an excellent agreement with the
anatomy with respect to these structures. The PPV values for
posterior putamen were lower resulting from the posterior
putamen in automatic segmentation containing many partial
volume voxels between posterior and anterior putamen,
and also, between anterior putamen and surrounding white
matter tissue. This was expected since the BPND values of
the partial volume voxels between anterior putamen and
surrounding white matter were similar to BPND values of
voxels in posterior putamen. The PPV values for ventral
striatum were low reflecting the mixing of ventral striatum
and caudate in automatically segmented volumes. This
was due to small size of the structure, 954 voxels when
both left and right hemispheres were considered, majority
of which were partial volume voxels (922 voxels had a
neighboring voxels belonging to another structure) in the
anatomical ground truth. However, while the segmentation
of ventral striatum was anatomically incorrect, the BPND

values obtained based on it were accurate. This was explained
by the fact that the majority of the voxels incorrectly labeled
as ventral striatum were partial volume voxels near the
boundary of caudate and ventral striatum. Thus, we do not
consider the low PPV values of ventral striatum particularly
worrisome. Note also that we have taken nucleus accumbens
to represent ventral striatum while ventral striatum also
encompasses some adjacent areas.
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Table 1: BPND values, NAS values, the number of voxels in each brain structure, and PPV values computed based on the ideal phantom and
the realistic noise phantom.

Mean BPND value NAS # voxels PPV

Ideal phantom

Caudate

Average Automatic 1.614
0.9834

3672
0.8295

Average Ground truth 1.641 6190

Ventral striatum

Average Automatic 1.351
0.9817

2325
0.0714

Average Ground truth 1.376 954

Putamen

Average Automatic 2.698
0.9897

4874
0.9984

Average Ground truth 2.726 6289

Posterior Putamen

Average Automatic 2.524
0.9230

2639
0.4433

Average groung truth 2.726 1929

Anterior Putamen

Average Automatic 2.911
0.9993

2235
0.9817

Average Ground truth 2.913 4360

Realistic noise phantom

Caudate

Average Automatic 1.655
0.9915

4340
0.7005

Average Ground truth 1.641 6190

Ventral striatum

Average Automatic 1.403
0.9806

2399
0.0354

Average Ground truth 1.376 954

Putamen

Average Automatic 2.854
0.9541

5063
0.9891

Average Ground truth 2.726 6289

Posterior Putamen

Average Automatic 2.591
0.9492

2271
0.5042

Average Ground truth 2.726 1929

Anterior Putamen

Average Automatic 2.804
0.9619

2792
0.9362

Average Ground truth 2.913 4360

4.2. PET Studies with Healthy Volunteers. Table 2 presents
the average BPND values obtained based on the automatic
and the manual segmentation of the HRRT images of four
healthy subjects. The average BPND values attained when
applying manual segmentation to the real test data were
3.54 ± 0.53 for caudate, 4.26 ± 0.61 for putamen, and
3.42 ± 0.59 for ventral striatum. Note that the BPND values
are average values across hemispheres and subjects. The
average BPND values obtained with the automatic method
were 2.97 ± 0.59 for caudate, 3.85 ± 0.64 for putamen, and
3.24± 0.57 for ventral striatum.

As can be seen from Table 2, the BPND values for the
automatic and manual segmentations were similar for all
structures and ANAS varied from 78% to 91%. These
ANAS values indicate that the variations in regional BPND

due to ROI extraction method were small compared to
variations due to other choices in the image processing (e.g.,

the reconstruction and the parametric image generation
method). The ANAS values were smallest in caudate. By
visually inspecting the automatic segmentation results, it
could be seen that the caudate cluster did not only include
caudate, but also some white matter. This was probably the
reason for the lower BPND, and thereby, lowers NAS values
for the caudate.

Figure 4 shows the result of applying the automatic
segmentation method to both left and right striatum from
one of the HRRT PET scans. The results are from slices
115 (a), 112 (b), 109 (c), 106 (d), and 103 (e) from the
coronal view. The segmentation results were appropriate,
namely, the algorithm found four clusters corresponding
to anterior putamen, posterior putamen, ventral striatum,
and caudate. In Figure 4 the orange and white clusters
correspond, respectively, to the posterior and the anterior
putamen, the red cluster corresponds to the caudate and, the
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Table 2: BPND and ANAS values obtained from the average of the HRRT PET data. These measurements allow the similarity analysis between
the automatic and manual segmentations.

mean ± SD ANAS

Caudate

Left Manual 3.56± 0.46
0.78

Left Automatic 2.86± 0.41

Right Manual 3.53± 0.59
0.84

Right Automatic 3.07± 0.79

Average Manual 3.54± 0.53
0.81

Average Automatic 2.97± 0.59

Putamen

Left Manual 4.29± 0.63
0.89

Left Automatic 3.86± 0.60

Right Manual 4.24± 0.61
0.90

Right Automatic 3.84± 0.69

Average Manual 4.26± 0.61
0.90

Average Automatic 3.85± 0.64

Ventral striatum

Left Manual 3.41± 0.57
0.91

Left Automatic 3.16± 0.57

Right Manual 3.43± 0.61
0.86

Right Automatic 3.35± 0.71

Average Manual 3.42± 0.59
0.90

Average Automatic 3.24± 0.57

yellow cluster corresponds to the ventral striatum and a part
of the caudate head.

The results presented in Figure 5(a) are from slices 110,
115, and 120, from coronal, sagittal, and transverse views,
while in Figure 5(b) they are from slice 110, 145, and 120.
The images presented in Figures 4 and 5 are taken from the
same clustering result.

Interestingly, the automatic method was able to divide
the putamen into two substructures. A slight difference
between BPND values within anterior and posterior putamen
was observed in this study. Table 3 shows the BPND values
from anterior and posterior putamen from all the four
HRRT PET images. Unfortunately, the manual segmentation
of these putaminal subdivisions was not available and we
cannot compare the automatic BPND values with the manual
ones. However, by inspecting Table 2, it can be seen that
the similarity between the putamen BPND values obtained
with the help of automatic and manual segmentations was
approximately 90%. This indicates that the whole putamen
was segmented very similarly with automatic and manual
methods what reassures the correctness of the automatic
segmentation. Moreover, when the method was applied to
the phantoms, where the BPND values from those subdivi-
sions were known, the algorithm accurately segmented both
subdivisions (Table 1). These two facts allow us to assume
that this separation was correct.

In Table 3, BPND values from Image1 are lower than for
other images. The same was visible from the whole putamen
BPND values based on the manual segmentation: left and
right putamen average BPND was 3.41 for Image1 while it

was greater or equal than 4.27 for other images. In the visual
inspection, the BPND Image 1 appeared considerably noisier
compared to the other images featured in this study, and
especially, posterior putamen had also lower BPND values
compared to the other images. The reasons for this might
include the low injected dose (292 MBq), imaging artifacts
(e.g., subject movements), and individual variability.

The final segmentation results were found to be highly
dependent on the initial clustering guesses when applying
the kernel weighted k-means algorithm to subdivide the
striatum. The best segmentation results were obtained when
the initial clusters were separated into four clusters each
with the same size. A random initialization resulted usually
in a single cluster consisting of the entire striatum. The
neighborhood parameter in (1) needed also to be tuned
to achieve the best segmentation. A voxel connectivity
threshold of 4 voxel-sides achieved the best results. This
value was different from the phantom experiments due to
more complex noise patterns with real data. It was also
noted that the method always resulted in four clusters even
if the number of the initial clusters was greater than four. In
other words, starting with more than four clusters resulted in
empty clusters.

5. Discussion

A new automatic method was developed to extract striatal
brain structures, namely ventral striatum, caudate, anterior
putamen and posterior putamen, from parametric HRRT
11C-raclopride PET images. This anatomical subdivision
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(a) (b) (c)

(d) (e)

Figure 4: Segmentation of the right and left striatum using the automatic method. Coronal (a) slice 115, (b) slice 112, (c) slice 109, (d) slice
106, and (e) slice 103 magnified to show only the striatum. The orange and white clusters correspond, respectively, to the posterior and the
anterior putamen, the red cluster corresponds to the caudate and, the yellow cluster corresponds to the ventral striatum. It can be seen that
ventral striatum contains also a part of the caudate head.

(a)

(b)

Figure 5: Segmentation result using the automatic method: (a) left
striatum and (b) right striatum. In both images (a), (b), the orange
and white clusters correspond, respectively, to the posterior and the
anterior putamen, the red cluster corresponds to the caudate and,
the yellow cluster corresponds to the ventral striatum and a part of
the caudate head.

of the striatum has relevant functional implications. An
automatic method for the extraction of these structures
from high-resolution PET images allows for inexpensive
and reproducible extraction of the quantitative information
from these images necessary in brain research and drug
development. The method developed in this study proved
to be accurate and reproducible, and was found to provide
more information about the distribution of D2 receptors
within the striatum than manual segmentation. We evaluated
it using both images from healthy volunteers and simulated
images (phantoms).

The method is based on the extraction of the striatum
using deformable surfaces. The extracted striatum is then

Table 3: BPND values from anterior and posterior putamen from all
4 HRRT PET scans.

Binding potential values

Anterior putamen

Image 1
Left 3.5810

Right 3.2744

Image 2
Left 3.8194

Right 3.7010

Image 3
Left 3.8194

Right 3.5784

Image 4
Left 4.4652

Right 4.7607

Posterior putamen

Image 1
Left 2.5193

Right 1.9575

Image 2
Left 4.3798

Right 4.6810

Image 3
Left 4.3961

Right 4.2066

Image 4
Left 4.5961

Right 4.3590

sub-divided into four clusters corresponding to ventral
striatum, caudate and anterior and posterior putamen using
the weighted kernel k-means algorithm. In this clustering,
we take into account both the intensity value, in this case
representing binding potential, of the voxel as well as its
spatial location with respect to the other striatal voxels.
We chose to use the weighted kernel k-means criterion for
the clustering because of its recently established equivalence
to the normalized cuts criterion. The weighted kernel k-
means algorithm can be seen as a fast algorithm to optimize
the multiway normalized cuts criterion. Earlier methods to
optimize this criterion require a solution of eigenvectors of
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a large matrix, which could be computationally difficult.
Indeed, the new algorithm, programmed in MATLAB,
required only few minutes to segment the striatum.

In the algorithm, a few parameter values needed to be set
(see Sections 2.2 and 2.3). All the parameter values were set
in the same way in all the experiments with a single exception
of the connectivity threshold set differently between the
phantom and the real data experiments. The reason for
this was the obvious difference between the phantoms and
real PET studies. The noise model in the phantom studies
was highly simplified and it either ignored or simplified
many aspects that affect the appearance of parametric
BPND images in reality. Also, the spatial resolution of the
simulated phantom images was higher than in the actual
studies because the effects of the image reconstruction were
ignored. Simulating more realistic computer generated PET
images requires advanced computational methods (see, e.g.,
[19]) and these Monte Carlo simulators are not yet directly
available for modeling HRRT-PET images. We do not think
that the setting of the parameter values for the method would
present a major hurdle to the automatic application of the
method to a larger set of HRRT-PET images.

In the experiments with the simulated images, the
numbers of voxels in the substructures in the automatic
segmentations differed from the numbers of voxels in the
anatomical ground truth. In the anterior putamen and cau-
date, the numbers of voxels in the automatic segmentation
were lower than in the ground truth. This is a desired feature
of the segmentation algorithm because otherwise partial
volume effects (PVEs)—here referring to the combined effect
of the tissue fraction effect and the point spread effect in
the terminology of [20]—could compromise the quantitative
accuracy of the regional BPND values (see discussions on this
issue in [3, 4]). While the resolution of PET images acquired
by the HRRT is superior to the resolution of PET images
acquired by earlier PET scanners, the image resolution and
PVEs still continue to be a limiting factors of the accuracy
of the image segmentation. The numbers of voxels in the
ventral striatum and posterior putamen were greater in
the automatic segmentation than in the anatomical ground
truth. We attribute also this to the PVEs although it was not
a desired feature of the segmentation algorithm. In the case
of ventral striatum, the majority of extra voxels were partial
volume voxels near the boundary of caudate and ventral
striatum, thus having lower BPND values than “pure” caudate
voxels. Similarly, the majority of extra voxels assigned to
posterior putamen were partial volume voxels between
the anterior and posterior putamen. Hence, the effects of
these segmentation errors on the accuracy of the regional
BPND values were negligible as it visible in NAS values in
Table 1.

Although the accuracy or regional BPND values—the
computation of which was the reason behind designing
the segmentation algorithm—were accurate it would be
advantageous if the segmentations themselves were more
accurate, especially with respect to ventral striatum. There
are a number of research avenues one could follow while
trying to improve the algorithm. The extraction of striatum
could be improved by taking the PVEs better into account.

This could be achieved by adopting a volume based seg-
mentation strategy based on, for example, Markov Random
Fields, instead of the present edge-based strategy. However,
this is not straight-forward because the BPND values within
the striatum are highly nonuniform due to BPND differences
between striatal substructures, noise, and PVEs. Moreover,
in the case of the HRRT scanner, the PVE is challenging to
model due to gaps between adjacent flat panel detector heads.
The segmentation of striatum could also include modeling
of the PVE and neuroanatomical a priori knowledge could
be better utilized either in the kernel weighted k-means
criterion or in the initialization for the kernel weighted k-
means algorithm.

The ability of the automated method to divide the
putamen into anterior and posterior components was an
originally unexpected result. This ability is truly interesting
as the distribution of D2 dopamine binding within the
putamen has been rarely studied. This is partly due to
the fact that with the earlier generation PET scanners
differences between anterior and posterior putamen are
less evident due to low image resolution. Also, there are
no generally accepted guidelines for dividing the putamen
between anterior and posterior components manually; for
instance, we previously employed a crude division half-way
along the anterior-posterior axis of the putamen [10]. For
this reason, we did not attempt putaminal subdivisions based
on the manual segmentation a priori. Instead, we chose to
evaluate the automatic segmentation results based on visual
inspection, which indicated that the division was indeed
highly reasonable. Moreover, in the studies with simulated
images, the quantitative values obtained for the putamen
subdivisions (anterior and posterior putamen) based on
automatic segmentation were highly similar to the ground
truth. The division to anterior and posterior putamen
is consistent with a decreasing rostrocaudal gradient in
dopamine D1/D2 receptor density in the human striatum
[10], and may be physiologically relevant. For instance, D2
receptors are inhibitory on striatal output neurons, and
differential expression of D2 receptor in functional subdivi-
sions of the putamen may underlie differential dopaminergic
modulation of associative versus motor functions [5, 6]. The
fact that the direction of the contrast was not uniform across
the subjects in this small sample (i.e., some had decreasing
and some had increasing anterior-posterior gradients) might
suggest inter-individual differences in preferential dopamin-
ergic modulation of associate versus motor functions, but
larger samples would be required to confirm this.

This method for automatic extraction of volumes could
be further developed to segmentation of other types of
PET images. Especially, the method is applicable to extract
striatal substructures from PET images acquired using other
radiopharmaceuticals than 11C-raclopride if the images share
the characteristics of the 11C-raclopride images, that is, the
image intensity is the highest in striatum. An example of
such radiopharmaceutical is 18F-SPA-RQ used to study brain
neurokinin NK1 receptors. The automatic segmentation of
low resolution 18F-SPA-RQ PET images was studied in [4].

It would be conceptually straight-forward to modify
the proposed method to work directly with 4-D PET
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images, where each voxel would be represented by a time
activity curve—instead of 3D parametric images where
each voxel is represented by a BPND value computed based
on the time activity curve. Technically, this would entail
replacing the term |I(i) − I( j)|/maxk∈D I(k) in (1) by an
appropriate distance measure between two time activity
curves. The distance measure could be, for example, the
Euclidean distance between the vector representations of
radioactivity measurements in different time intervals or a
more sophisticated L2-norm between the time activity curves
viewed as continuous valued functions in a suitable function
space. However, the specification of the meaningful distance
measure might prove troublesome in practice. In the current
work, our interest was in the segmentation of striatum based
on BPND values, and other information derivable from time
activity curves was therefore not relevant for this application.
We would not rule out the possibility to segment striatum
without BPND computation as a preprocessing step, however,
the development of such a method could be challenging in
practice.
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