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Accumulating evidence showed that Interleukin (IL) level is associated with Osteoporosis.

Whereas, most of these associations are based on observational studies. Thus, their

causality was still unclear. Mendelian randomization (MR) is a widely used statistical

framework that uses genetic instrumental variables (IVs) to explore the causality of

intermediate phenotype with disease. To classify their causality, we conducted a MR

analysis to investigate the effect of IL-18 level on the risk of Osteoporosis. First, based on

summarized genome-wide association study (GWAS) data, 8 independent IL-18 SNPs

reaching genome-wide significance were deemed as IVs. Next, Simple median method

was used to calculate the pooled odds ratio (OR) of these 8 SNPs for the assessment

of IL-8 on the risk of Osteoporosis. Then, MR-Egger regression was utilized to detect

potential bias due to the horizontal pleiotropy of these IVs. As a result of simple median

method, we get the SE (−0.001; 95%CI−0.002 to 0; P= 0.042), whichmeans low IL-18

level could increases the risk of the development of Osteoporosis. The low intercept (0;

95% CI −0.001 to 0; P = 0.59) shows there is no bias due to the horizontal pleiotropy

of the IVs.

Keywords: genome-wide association studies, Interleukin-18, Osteoporosis, casual effect, Mendelian

randomization

INTRODUCTION

Osteoporosis is a chronic disease with a variety of causals to bone mineral density and bone loss of
quality (Sambrook, 2006). Since the bone weakening inOsteoporosis patients, it increases the risk of
a broken bone and other diseases among the elderly (Tu et al., 2018). Bone is a type of living tissue,
which is constantly being broken down and replaced. When the creation of new bone doesn’t keep
up with the loss of old one, Osteoporosis occurs (Seo et al., 2018; Papaleontiou et al., 2019; Wang
et al., 2019). Osteoporosis affects all the countries including men and women. For example, about
90,000,000 Osteoporosis patients in china, which covers the 7.1% of the total population. Since lots
of complications affected by Osteoporosis and its incurability, it is very important for preventing
the Osteoporosis. Whereas, there are no typical symptoms in the early stages of bone loss according
to the current knowledge (Hennemann, 2002). This raises the difficulties for prevention. To solve
this problem, it is urgent to expose the causal clinical phenotypes of Osteoporosis.
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Interleukin (IL) is a class of cytokines, which is produced by
a variety of cells and also functions on a variety of cells (Kato
and Perl, 2018; Zhang et al., 2018). Current, about forty types
of IL was discoveries in human body. IL-18 is one of them,
which locates at 11q22.2-22.3. IL-18 is powerful inflammatory
cytokines, the most characteristic feature of which is the
regulation of cellular proliferation and differentiation (Weiss
et al., 2018; Youssef et al., 2018; Prencipe et al., 2019; Valero
et al., 2019). Recent studies show that IL-18 plays important roles
in immune regulation, resistance to infection and anti-tumor.
Furthermore, IL-18 has been identified as the causal of multiple
chronic diseases, such as type 2 diabetes (Zou et al., 2018).

The relationship between IL and Osteoporosis has been
investigated in observational studies decades of years. Early
in 1993, Lewis et al. investigated a transgenic mice with
disorder in bone homeostasis that inappropriately express the
cytokine IL-4 (Lewis et al., 1993). And then they observed that
Osteoporosis was associated with the IL-4. In 2005, Rusinska
et al. evaluated the relationship between multiple ILs and the
etiopathogenesis of idiopathic osteoporosis in children (Rusinska
and Chlebnasokół, 2005). In 2010, Edwards et al. exposed the
relationship between IL-6 and rheumatoid arthritis-associated
osteoporosis (Edwards and Williams, 2010).

Although current advantages on investigating the relationship
between IL-18 and Osteoporosis, it is still not clear whether
IL-18 is the consequent or causal effect of the Osteoporosis.
This is the common problem for many associations between
phenotypes and diseases. With the development of Genome-
Wide Association Studies (GWAS) and identification of
molecular mechanism in recent years (Li et al., 2015; Zhou
et al., 2017a,b; Tang et al., 2018; Tan et al., 2019), Mendelian
randomization (MR) analysis is widely used to expose the
causal effect of phenotypes on the development of diseases. For
example, body mass index and C-reaction protein are identified
as the causal effect of the development of type 2 diabetes (Cheng
et al., 2018b, 2019c). Meanwhile, some negative associations
are also exposed, such as associations between infant length
and type 2 diabetes (Zhuang et al., 2019a). As other statistical
analysis and machine learning methods (Du et al., 2018; Liao
et al., 2018; Wang B. et al., 2018; Wang L. et al., 2018; Cheng
et al., 2019b; Han et al., 2019; Lv et al., 2019; Yang et al., 2019;
Zeng et al., 2019; Zou and Ma, 2019; Zhao et al., 2020), MR
is an instrumental variable (IV) based method for inferring
associations between phenotypes and diseases. As shown in
Figure 1, genetic variants as SNPs are often used as IVs. This is
because that SNPs are genetic characterize and occurred before
phenotypes and diseases, which can avoid reverse causality. Here
Z (e.g., SNPs) represents IVs, X is phenotype (e.g., IL-18), and
Y is the disease (Osteoporosis). To conduct MR analysis, the
IVs should meet two assumptions. One is that SNPs should be
robustly associated with phenotype (IL-18), and the other is that
SNPs can influence the disease only through the phenotype.

To explore the causal effect of IL-18 on the development of
Osteoporosis, we conducted a MR analysis in this study. First,
we defined a framework for processing data to establish IVs
for MR analysis. Next, simple median method was used for
calculating the pooled result based on IVs. Then, to avoid bias

and analysis the limitation of our method, MR Egger analysis and
leave-one-out validation was conducted.

MATERIALS AND METHODS

Summary-level data of GWAS dataset was the fundamental for
MR analysis. IVs should be extracted from IL-8 related GWAS
dataset. And the further analysis need Osteoporosis related
GWAS dataset. To meet the MR assumptions and reduce the
bias, the summarized GWAS data was processed. Subsequently,
MR analysis involving simple median method, leave-one-out
validation,MR-Egger analysis was conducted to comprehensively
assess the causal effect of IL-8 on the risk of the development
of Osteoporosis.

Summarized GWAS Data for IL-18
In 2014, Matteini et al. (2014) performed a genome-wide
association study (GWAS) on Cardiovascular Health Study
and InCHIANTI cohorts. Totally, it contains 1200 InCHIANTI
cohorts and 3200 CHS population. After genotyping, they used
GWAPower software to assess the difference in power of the
combined InCHIANTI-CHS meta-analysis compared to single
study analyses. Then, significant SNPs of IL-18 were identified
and used for analyzing causal relationship of IL-18 on the risk
of Type 2 Diabetes (Zhuang et al., 2019a). Here, we extracted
SNPs, effect allele (EA), allele frequencies, beta coefficients, and
standard errors (SEs) as summarized data.

Summarized GWAS Data for Osteoporosis
In 2018, Bycroft et al. published their prospective cohort study
(Bycroft et al., 2018), which contains approximately 500,000
individuals from across the United Kingdom, aged between 40
and 69 at recruitment. It also provided detailed description
and summarized data of deep genetic and phenotypic data. We
downloaded summarized GWAS data of Osteoporosis from UK
Biobank, which involves susceptibility loci together with other
SNPs, beta coefficient, EA, SEs and their P-values, and etc.
Totally, it contains 933 cases and 360,261 controls.

Data Processing
We process the summarized GWAS data for constructing IVs
of MR analysis. Here IVs are genetic variants. Each SNP
should be significantly associated with IL-18, and should be
not associated with Osteoporosis. Thus, we extracted SNPs
significant associated with IL-18, and then removed these SNPs
associated with Osteoporosis. We defined P < 5∗10−8 as
significant associated SNPs of IL-18, and we defined P-value
more than 0.05 as not associated SNPs of Osteoporosis. To
avoid over-precise estimates due to genetic pleiotropy, we should
remove these SNPs with potential linkage disequilibrium (LD)
relationships. The analogous method has been used in the MR
analysis of causal effect of phenotype on T2DM (Cheng et al.,
2019c; Zhuang et al., 2019b). To remove SNPs with LDs, we
ranked significant SNPs of IL-18 based on P-values. For each SNP,
we removed those SNPs in LD with it (R2 threshold of 0.001) or
within 10,000 kb physical distance based on a reference dataset
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FIGURE 1 | MR analysis using SNPs as instrumental variables for estimating the influence of IL-18 on the risk of Osteoporosis.

(Devuyst, 2015). This process was iterated for each of significant
SNPs of IL-18.

MR Analysis
MR analysis contains simple median method, leave-one-out
validation, MR-Egger regression analysis (Bowden et al., 2015).
Simple median method was used for assessing the pooled
influence of IL-18 on the risk of Osteoporosis. Leave-one-out
validation was performed for assessing sensitivity of each of IVs.
Egger regression analysis was used to evaluate pleiotropy bias
of IVs.

• Simple median method

Simple median method was described in the previous study
(Burgess et al., 2016) for evaluating the influence of clinical
phenotype on the risk of disease, which is defined as
following equation.

betaXY = betaZY/betaZX , (1)

where X, Y, and Z are IL-18, Osteoporosis, and IVs, respectively,
Wald ratio (betaXY ) of IL-18 to Osteoporosis through specified
IV, betaZY is the per-allele log(OR) of Osteoporosis from
summarized GWAS data of Osteoporosis. betaZX is the per-allele
log(OR) of IL-18 from summarized GWAS data of IL-18. Then,
we calculated SE of association between IL-18 and Osteoporosis
for each Wald ratio, which is defined as Equation 2.

SEXY = SEZY/SEZX , (2)

where SEZY and SEZX represent the SE of the IV-Osteoporosis
and IV-IL-18 associations from corresponding summarized
GWAS data, respectively. Next, we calculated 95% confidence
intervals (CIs) from the SE of each Wald ratio. To get
the pooled influence of these IVs, simple median method
was used as meta-analysis for estimating comprehensive
influence of IVs.

• Leave-one-out validation

We used leave-one-out validation for evaluating the sensitivity of
each of IVs as following. To assess the influence of a SNP of IVs to
the pooled result, we remove this SNP from IVs to get the result
using simple median method. Thus, the corresponding result is

obtained without considering this SNP. The fluctuation of the
pooled results before and after removing the SNP could reflect
the sensitivity of this SNP. This process was iterated on each of
these IVs to get the influence for each of IVs.

• MR-Egger analysis

We conducted a MR-Egger regression analysis about asymmetry
test to measure bias based on potential pleiotropic effect of IVs
(Bowden et al., 2015). The MR-Egger regression is source from
Egger regression, which is designed for detecting bias due to
small study and pleiotropy in meta-analysis. Here, MR-Egger
used intercept as an estimated value for evaluating the average
pleiotropic effect of IVs. For example, the larger or smaller an
intercept, the more of pleiotropy effect should be. All statistical
tests for this study were undertaken using the R Package of
MRBase (Hemani et al., 2018).

RESULTS

Genetic Variants as IVs
Totally, 8 SNPs were extracted as significant associated SNPs
of IL-18. Those SNPs were not associated with Osteoporosis
and have no LD associations. As a result, those 8 significant
SNPs of IL-18 were eventually selected as IVs for the MR
analysis, which were shown in the Table 1. Each line of the
table documents 10 items involving the SNP, EA, chromosome
position, beta coefficients and SE of the SNP on the risk of IL-18
and Osteoporosis, and so on.

The Causal Effect of IL-18 on the Risk of
Osteoporosis
After using 8 individual SNPs as IVs for MR analysis based on
two summary-level GWAS data, we used simple median method
for pooled analysis. Figure 2 shows that there is no evidence
of heterogeneity between variants of the summarized data. As
a result, we get the SE (−0.001; 95% CI −0.002 to 0; P =

0.042), which means low IL-18 level could increase the risk of the
development of Osteoporosis.

Sensitivity Analysis for Individual SNPs
Figure 3 shows estimate result of the leave-one-out analysis.
After removing rs6760105, rs6748621, rs7577696, or rs2250417
from 8 IVs, the estimate value shows small fluctuation.
And the result is consistent with using all the IVs. This
means that this four SNPs activate weak influence to the
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TABLE 1 | Associations of genetic variants with IL-18 and Osteoporosis.

SNP EA (frequency) Gene ID/Symbol chr Position IL-18_beta IL-18_SE Beta se p-value

rs7577696 G (0.49381) NA 2 32278782 0.08 0.01 8.71E-05 6.15E-05 1.57E-01

rs6760105 G (0.491214) 6683 (SPAST) 2 32307386 0.06 0.01 8.63E-05 6.15E-05 1.61E-01

rs6748621 C (0.495208) 84661 (DPY30) 2 32262201 0.08 0.01 1.01E-04 6.17E-05 1.03E-01

rs2300702 C (0.545527) 6716 (SRD5A2) 2 31788018 0.07 0.01 −9.89E-05 6.11E-05 1.06E-01

rs2268797 C (0.552716) 6716 (SRD5A2) 2 31783752 0.07 0.01 −9.53E-05 6.11E-05 1.18E-01

rs2250417 T (0.304113) 83875 (BCO2) 2 32412832 0.1 0.01 −3.32E-05 6.01E-05 5.81E-01

rs212745 C (0.480232) 55676 (SLC30A6) 2 32457537 0.07 0.01 −9.38E-05 6.16E-05 1.28E-01

rs212713 C (0.494409) 58484 (NLRC4) 11 112085316 0.06 0.01 −9.82E-05 6.00E-05 1.02E-01

FIGURE 2 | Forest plot of Wald ratios and 95% CIs of IVs.

FIGURE 3 | Scatter plot of the P-values in leave-one-out analysis.

estimate result. In comparison, after removing rs212713,
rs2300702, rs2268797, or rs212745, estimate value shows
large fluctuation. This means that this four SNPs activate
strong influence to the estimate result. The detailed
information about leave-one-out validation result is shown
in Table 2.

Pleiotropic Effect Analysis for IVs
Figure 4 shows the effect estimate based onMR-Egger regression.
The low intercept (0; 95% CI −0.001 to 0; P = 0.59)
shows there is no bias due to the horizontal pleiotropy of
the IVs.

DISCUSSION

Till now, it is not clear that the level of IL-18 is the causal

or consequence of the development of Osteoporosis. To expose

the relationship, we conducted an MR analysis based on two

summarized GWAS datasets in this study. As a result of simple

median method, we get the SE (−0.001; 95% CI−0.002 to 0; P =

0.042). This means that low IL-18 level could increase the risk of

the development of Osteoporosis.
Observational study is a widely used way to reveal the

associations between phenotypes and diseases. Whereas, it
couldn’t be used for exposing the causal effect. With the increase
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of GWAS data and abundance of molecular characterize (Cheng,
2019; Cheng et al., 2019a; Dao et al., 2020; Zhang et al.,
2020), more and more researchers choose MR analysis for this
purpose. MR analysis is an IV-based framework, which requires
summarized GWAS data. In recent years, MR analysis has helped
us to identify lots of causal effects, such as body mass index and
C-reactive protein increase the risk of type 2 diabetes (Cheng
et al., 2019c; Zhuang et al., 2019b). Here, the number of the case
and control for GWAS data is very important for the estimation.
In the previous study, the summarized data of IL-18 GWAS
data has been applied in exposing the relationship between IL-18
and T2DM (Zhuang et al., 2019a). And the number of case and
control is over 5,000. In addition, the UK biobank provided 933
Osteoporosis and 360,261 controls. The number of the samples
for IL-18 and Osteoporosis GWAS data is the baseline for our
MR analysis.

To make the MR analysis reliably, the summarized GWAS
data was processed strictly to choose suitable IVs. First,
significant associated SNPs of IL-18 (P < 5∗10−8) was extracted.

TABLE 2 | Results based on leave-one-out validation.

SNP (leave out) Wald ratio 95%CI lower 95%CI upper p-value

rs6760105 −0.001 −0.002 0 0.005

rs6748621 −0.001 −0.002 0 0.005

rs7577696 −0.001 −0.002 0 0.006

rs2250417 −0.001 −0.002 0 0.02

rs212713 0 −0.001 0.001 0.485

rs2300702 0 −0.001 0.001 0.489

rs2268797 0 −0.001 0.001 0.49

rs212745 0 −0.001 0.001 0.491

Then, these Osteoporosis (P < 5∗10−2) associated SNPs were
removed. This process is to make sure the IVs meet the
requirement of MR’s assumption. In addition, to reduce the bias
of IVs due to the pleiotropic effect, SNPs in IVs with LDs were
removed. In actually, the comprehensive effect of IVs are used
for estimating the causal effect. The SNPs with LDs should be
deemed as a SNP to reduce the bias based on the replication.
To detect the potential bias due to the horizontal pleiotropy of
IVs, MR egger method was conducted. As a result, we got the
low intercept (0; 95% CI −0.001 to 0; P = 0.59), which shows
there is no bias due to the horizontal pleiotropy of the IVs. All
the data process of IVs is to reduce the bias, and make the result
more reliably.

Although there is no direct associations between IVs and
Osteoporosis, we also validated their potential linkages. We
downloaded associated genes of Osteoporosis from a widely
used functional annotation database OAHG (Cheng et al., 2016,
2018a), and compared them with genes that IVs located at
(Table 1). Up to 440 genes of Osteoporosis were documented
in OAHG, and no intersection between them and genes of IVs.
This validate further that no potential bias of IVs based on
current knowledge.

Although MR analysis show the advantages in distinguishing
causal effect from general associations. It also has the limitations.

With the incensement of samples, the summarized data of

phenotype and disease should be a little alteration. This could

lead to the changes in fluctuations about summarized data of

GWAS data and even in IVs. This would influence the estimated

result. Thus, to avoid this problem, the huge number of samples

is very important. In this study, we do a leave-one-out analysis

to judge which SNPs could influence our results. As a result,
we find out SNPs rs6760105, rs6748621, rs7577696, or rs2250417
shows a little capability in influencing the result. In comparison,

FIGURE 4 | The estimate of horizontal pleiotropy based on MR-Egger analysis.
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SNPs rs212713, rs2300702, rs2268797, or rs212745 could largely
influence the result, all of which are located at genes SRD5A2,
SLC30A6, and NLRC4. With the increase of the GWAS data, the
impact of these SNPs could be decreased.

In addition to simple medianmethod, IVWmethod is another
frequently used method for MR analysis. As a result of IVW
method, we get SE (0; 95% CI −0.001 to 0.001; P = 0.625),
which is inconsistent with the result of simple median method.
Currently, most of current MR analysis based on different
methods often show inconsistent results. Each method has its
advantages and limitations. In general, the causal effect could
be validated when the relationship is supported by one of
these methods. To provide more reliable validation, it needs
randomized controlled trial (RCT). Whereas, it is very hard to
conduct RCT. Thus, most of current causal effect between clinical
phenotypes and diseases are validated based on MR analysis.
Although current success in applying MR analysis, it couldn’t
substitute for RCT.

In summary, 8 SNPs were used as IVs for estimating the
causal effect of IL-18 on the development of Osteoporosis.
Results show that low IL-18 level could increase the risk of

the development of Osteoporosis based on simple median

method. In considering the limitation of MRmethod and current
samples of GWAS data, further experiment for the conclusion
is expected.
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