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Paddy-upland rotation is an effective agricultural management practice for alleviating
soil sickness. However, the effect of varying degrees of flooding on the soil microbial
community and crop performance remains unclear. We conducted a pot experiment to
determine the effects of two soil water content (SWC) and two flooding durations on
the soil microbial community attributes and yield in cucumber. In the pot experiment,
cucumber was rotated with cress single (45 days) or double (90 days) under 100
or 80% SWC. Then, the soil microbial were inoculated into sterilized soil to verified
the relationship between cucumber growth and microorganisms. The results indicated
single cress rotation resulted in a higher cucumber yield than double cress rotation and
control. Cress rotation under 80% SWC had higher soil microbial diversity than cress
rotation under 100% SWC and control. Flooding duration and SWC led to differences
in the structure of soil microbial communities. Under 80% SWC, single cress rotation
increased the relative abundance of potentially beneficial microorganisms, including
Roseiflexus and Pseudallescheria spp., in cucumber rhizosphere. Under 100% SWC,
single cress rotation increased the relative abundance of potentially beneficial bacteria,
such as Haliangium spp., and decreased potential pathogenic fungi, such as Fusarium
and Monographella spp., compared with double cress rotation and control. Varying
degrees of flooding were causing the difference in diversity, structure and composition
of soil microbial communities in the cucumber rhizosphere, which have a positive effect
on cucumber growth and development.

Keywords: cucumber, rhizosphere soil microbial community, cress rotation, plant–soil feedback, plant–soil
microbial interaction

INTRODUCTION

Soil sickness caused by continuous monocropping, which often manifests as decreased yields,
is mainly the result of soil deterioration from a reduction in the number of key taxa and an
accumulation of pathogens in the crop rhizosphere (Banerjee et al., 2019). The structures of
microbial communities in the rhizosphere are greatly affected by both fluctuating biotic (e.g.,
rhizosphere protists) and abiotic (e.g., phenolic acids) factors (Wu et al., 2020; Jin et al., 2020).
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The application of biocontrol agent (Kohl et al., 2019), chemical
induction (Bai et al., 2020), green manuring (Jin et al., 2019) and
etc. were used to prevent soil sickness. However, crop rotation
is considered the easiest to implement and proven beneficial for
alleviating soil sickness (Tiemann et al., 2015).

Paddy-upland rotation is a popular agricultural management
practice that involves the sowing of other crops in the gaps
between rice plants in an appropriate growing season and reduces
the sharing of diseases and pests between the rice and upland
crops (Zheng et al., 2016). The rotation system can reduce the
amount of greenhouse gas emissions (Xu et al., 2016) and soil
pollution (Ni et al., 2021), and more concerns about it are
focused on fertilization measures (Alam et al., 2020). Drylands are
especially sensitive to the changes in hydrology because flooding
drastically affects both above – and underground ecosystem
processes (Hou et al., 2017; Feng et al., 2020), such as the changes
in the redox potential of the soil following flooding can eliminate
toxic substances and soil pathogens (Lee et al., 2020). However,
we lack a deep understanding of soil water strategy on dryland.
This study will reveal the significance of soil water and its possible
impact, and help agriculture predict the possible impact of soil
water changes on soil microbial and crop performance.

Water and its availability are important factors affecting the
spatial distribution of soil microorganisms (Bahram et al., 2018;
Zhou et al., 2018a). The diversity of soil microbial communities
increases with increasing soil water content (SWC) in arid and
semi-arid ecosystems, but SWC has no major effect on the
diversity of soil microbial communities in wetland ecosystems
(Cregger et al., 2012; Manzoni et al., 2012). Increasing evidences
have fulfilled the gap between the short- and long-term flooding
effects on soil microbial communities (Peluola et al., 2013).
In environmental ecology, it is observed that flooding has
important effects on the underground microbial environment
(Shen et al., 2021), but the impact of varying degrees of
flooding in agriculture ecology on the crop performance and
microbial characteristics is still little known. Understanding
the relationships between varying degrees of flooding and soil
communities can provide insight into the effects of soil water
management strategies on aboveground plant performance and
underground microbial communities.

Rhizosphere microbial communities can both sense and
affect the health of plants. An important factor affecting plant
rhizosphere health is the order of colonization of microorganisms
in the rhizosphere; this “priority” effect directly affects plant
performance (Toju et al., 2018). The presence of beneficial soil
microbial colonies increases plant biomass and interferes with
pathogens located on the host through information sensing
mechanisms (Turra et al., 2015). Paddy-upland rotation can
alter assembly characteristics of microorganisms in the plant
rhizosphere, but what these changes affect plants remains unclear.

The continuous cropping of cucumber (Cucumis sativus L.)
decreases yields (Liu et al., 2020a). Cress [Oenanthe javanica
(Blume) DC.] can be rotated with cucumber under different
water regimes (Chuan and Li, 2019). In this study, we investigated
how varying degrees of flooding of cress affected the microbial
community in the cucumber rhizosphere. We propose the
following hypotheses: (1) soil microbial community attributes

will be differentiated according to varying degrees of flooding (2)
a longer flooding duration (90 days) and higher water content
(100%) have a stronger effect on soil microbial communities
in the cucumber rhizosphere; and (3) cress rotation induces
changes in the soil microbial community that improve cucumber
rhizosphere health and crop growth.

MATERIALS AND METHODS

Cress Rotation Experiment
Soil and Plant Preparation
An experiment was conducted in a greenhouse located at
the Facilities Horticultural Engineering Center of Northeast
Agricultural University, Harbin, China (45◦41′N, 126◦37′E) in
November, 2017. Soil was collected from the upper soil layer (0–
20 cm) and sieved (2 mm); cucumber has been planted in the
greenhouse since 2006. The soil was sandy loam and contained
NH+4 -N 25.37 mg·kg−1, NO−3 -N 30.82 mg·kg−1, available P
109.31 mg·kg−1, available K 173.54 mg·kg−1, organic carbon
29.89 g·kg−1, pH 6.78 (1:2.5, w/v), and electrical conductivity
(EC) 0.54 mS·cm−1 (1:2.5, w/v).

Cress [Oenanthe javanica (Blume) DC, United States.] seeds
were provided by Yangzhou University. Before sowing, the seeds
were processed by the university to ensure normal germination.
The seeds were then evenly spread in a seedling tray. When the
cress seedlings reached a height of 10 cm, they were transplanted
into pots. Cucumber (Cucumis sativus L. cv. Jinzao 1) seeds were
soaked in water at 55◦C for 30 min and then germinated in a
growth incubator at 28◦C. Four days later, cucumber seedlings
with two cotyledons were used for transplanting.

Experimental Design
The experiment was conducted in a pot (upper inner diameter:
23 cm; lower inner diameter: 17 cm; height: 19.5 cm) placed at the
same height as the ground and simulating the same environment.
Each pot contained 5 kg of soil in which five cress seedlings were
cultivated under 100 or 80% SWC. The pots were sealed at the
bottom. Rotation with cress was cultivated single (40 days) and
double (2 × 40 days: 80 days) until harvest. Three holes were
made in the pots with a hole punch when and cucumber was
cultivated maintained an SWC of 65%. SWC was detected every
3 days using soil moisture tester (MEET-1000+ soil moisture
equipment) provided by Dalian Qifeng Technology Co., Ltd.
There were five treatments (two flooding duration, two different
SWCs, and one control) in total: (i) cress (80% SWC) – cucumber
(SH8); (ii) cress (80% SWC) – cress (80% SWC) – cucumber
(SSH8); (iii) cress (100% SWC) – cucumber (SH1); (iv) cress
(100% SWC) – cress (100% SWC) – cucumber (SSH1); and
(v) continuous cucumber cropping (CK). The experiment was
randomly designed with three replicates per treatment and five
pots per replication. In total, there were 75 pots (5 treatments× 5
pots× 3 replications).

Cucumber Yield and Rhizosphere Collection
Cucumber yield was measured throughout the growing season.
After 62 days of cucumber growth.
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The cucumber rhizosphere soil from five cucumber plants was
mixed into one sample for each replicate and collected using a 2-
mm sieve. There were three cucumber rhizosphere soil samples
for each treatment. One part of samples was stored at−80◦C and
used for DNA extraction and used in another experiment aimed
at monitoring the effect of changes in the cucumber rhizosphere
microbial communities on cucumber seedling growth.

DNA Extract, Illumina Miseq Sequencing, and Data
Processing
Total soil DNA was extracted from 0.25 g of soil using a Power
Soil R©DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad,
CA, United States) per the manufacturer’s instructions. Each
replicate soil sample was extracted in triplicate and the extracted
DNA solutions were pooled.

Soil bacterial and fungal community compositions were
analyzed using high-throughput amplicon sequencing. Primer
sets F338/R806 (Bokulich and Mills, 2013) and ITS1F/ITS2
(Schöler et al., 2017) were used to amplify the V3–V4
regions of the bacterial 16S rRNA gene and the ITS1 regions
of the fungal rRNA gene, respectively. Each composite soil
sample was independently amplified and the products of the
triplicate polymerase chain reaction (PCR) were pooled and
purified using 2% agarose gel electrophoresis and an agarose
gel DNA purification kit (Agarose Gel DNA Purification Kit,
TaKaRa, Mountain View, CA, United States). Next, Tris–
HCl precipitation and 2% agarose electrophoresis detection
with QuantiFluorTM – ST (Promega Corp., Madison, WI,
United States) were used for detection and quantification. The
purified amplified fragments were constructed according to the
Illumina MiSeq platform (Illumina, San Diego, United States)
standard operating procedures to construct PE2 ∗ 300 libraries,
including (i) connecting the “Y”-shaped connector, (ii) screening
to remove linker self-ligated fragments, (iii) enrichment of library
templates using PCR amplification, and (iv) sodium hydroxide
deformation to produce single-stranded DNA fragments.

The sequenced data were analyzed using Quantitative Insights
Into Microbial Ecology (QIIME), Version 1.9.0 software. Before
using FLASH software for processing following the methods
of Zhou et al. (2017), the original sequence reads were
demultiplexed, and quality filtering was carried out to remove
low-quality fragments. Finally, FLASH software was used for
stitching, and the Cluster Database at High Identity with
Tolerance (CD-HIT) was used to perform operational taxonomic
unit (OTU) clustering at a similarity level of 97% (Edgar,
2013). Identification and removal of chimeric sequences were
carried out using USEARCH 6.1 in QIIME (Zhou et al., 2017).
The sequence was normalized effort according to the samples
that having minimum sequence number. The bacterial and
fungal data sets were deposited in the NCBI-Sequence Read
Archive with the submission Accession Numbers SRP269321 and
SRP270425, respectively.

Growth Responses of Cucumber
Seedlings to Soil Biota
The experiment was conducted in a sterilized airtight artificial
climate chamber. The chamber was maintained at 28◦C during

the day for 16 h and at 18◦C during the night for 8 h, with
a light intensity of 21,000 lux. To avoid cross-infection by soil
organisms, the environment, cultivated pots, trays, tools, and
seeds were all sterilized. Trays were placed under the pots (16 cm
diameter, 14 cm height) contained 650 g soils.

Soil and Cucumber Seedling Preparation
The field soil was collected from an open field (0–20 cm in depth)
of planted wheat using a 1-cm sieve, and called “background soil”
as described by Zhou et al. (2017). The “background soil” was
autoclaved three times at 121◦C and 103 kPa pressure for 30 min
(Inderjit, 2006).

Cucumber seeds (cv. Jinzao 1) were sterilized with 2.5%
sodium hypochlorite (NaClO) solution for 10 min and then
washed thoroughly with distilled water. The seeds were
germinated in the dark at 28◦C. Fourteen hours later, the
germinated cucumber seeds were transferred to sterilized sand.
Seven days later, cucumber seedlings with two cotyledons
were transplanted. The same sterilization method was used to
handle rhizosphere soils from the above rotation experiment
(Ndoye et al., 2013). Each pot was used to cultivate one
cucumber seedling.

Experiment 1: Effects of Soil Sterilization on
Cucumber Seedling Growth
The effect of soil microbes on the growth of cucumber seedlings
was explored by eliminating soil microbial activity. There were
a total of ten treatments: each of the five treatments (CK, SH8,
SSH8, SH1, and SSH1) from the above cress rotation experiment
was divided into non-sterilized (NS) and sterilized (S) soil
treatments. There were three replicates of each treatment and
ten pots for each replication. In total, there were 300 pots (10
treatments× 3 replicates× 10 pots).

Experiment 2: Effects of Inoculated Soil Biota on
Cucumber Seedling Growth
Differently treated soil (6% w/w) (CK, SH8, SSH8, SH1, and
SSH1) was mixed with sterilized (S) or not sterilized (NS)
background soil (94% w/w) and incubated in the dark for 3 days
before transplant the cucumber seedlings (van de Voorde et al.,
2012). There were three replicates of each treatment and 10
pots for each replication. In total, there were 300 pots (10
treatments× 3 replicates× 10 pots).

Cucumber Seedling Dry Weight Determination
The cucumber seedlings were irrigated with sterile water during
the entire cultivation period, and each pot was kept at 50% SWC.
The potting position was changed every 3 days. The dry weights
of the cucumber seedlings were measured at 10 and 20 days
following drying in an oven at 70◦C.

Statistical Analysis
Bacterial and fungal OTUs were compared using the Silva
(Release138.21) and Unite 7.2 (Release 8.22) databases. The

1http://www.arb-silva.de
2http://unite.ut.ee/index.php
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threshold used was 0.7. We used UCHIME3 to identify and
delete chimeric sequences. For the Illumina MiSeq sequencing
data, alpha diversity was calculated using QIIME (Zhou et al.,
2012). For beta diversity, microbial community composition
(bacterial and fungal number of OTUs) was analyzed using
principal coordinates analysis (PCoA) based on the Bray–Curtis
distance dissimilarity, and analysis of similarity (ANOSIM) and
multi-response permutation procedure (MRPP) were used to
compare microbial community differences between the five
treatments (three samples per treatment) with the Bray-Curtis
distance and 999 permutations, which were performed in R
using the vegan package (Oksanen et al., 2014). The relative
abundances of the taxonomic levels of bacterial and fungal phyla
and genera between treatments used the “ALDEx2” program
package in R to compare and select bacterial and fungal genera
(with relative abundances >1% and 0.5% as dominant phyla
and genera, respectively) (Fernandes et al., 2014) and analyze
differences between rotations with the same/different stubble
cress cultivation and the different/same SWCs. The OTUs
shared and unique among treatments were counted, and their
distributions were illustrated in a Venn diagram with the “Venn
Diagram” package in “R” (Yu et al., 2019). Fungal OTUs were
assigned to ecological guilds using FUNGuild at the genus and
species level (Nguyen et al., 2013). The soil bacterial functional
was predicted by PICRUSt from 16S rRNA markers gene
sequences on the Galaxy platform, and the biological functions
were annotated in the KEGG database (Langille et al., 2013;
Kanehisa et al., 2012).

Microsoft Excel (MS Office 2016) was used to organize the
raw data. Comparison of the data means between treatments
was performed based on the Tukey’s honest significant difference
(HSD) test at the 0.05 probability level with IBM SPSS Statistics
27.0 (IBM, Armonk, NY, United States). The drawing of the
column charts was carried out using Origin Pro8.5 software.

RESULTS

Effect of Rotation With Cress on
Cucumber Yield
Cress rotation under 80% SWC and single cress rotation under
100% SWC increased the cucumber yield significantly compared
with the control (P < 0.05). Single cress rotation also increased
the yield significantly compared with double cress rotation
(Figure 1) (P < 0.05).

Alpha and Beta Diversities of Bacterial
and Fungal Communities in Cucumber
Rhizosphere
The α-diversities of bacteria and fungi community were
significantly higher in cress rotation under 80% SWC than in
the control and cress rotation under 100% SWC (P < 0.05)
(Figure 2A and Supplementary Table 1). However, there is no
difference between the control and double cress rotation under
100% SWC (Figure 2A and Supplementary Table 1).

3https://www.drive5.com/uchime/uchime_download.html

FIGURE 1 | Effect of rotation with cress on cucumber yield. CK represent
cucumber continuous cropping, SH8, SSH8, SH1, and SSH1 represent single
or double cress rotation under 80% or 100% soil water content. Different
letters are significantly different (P < 0.05, Tukey’s HSD test).

For both the bacterial and fungal communities, PCoA revealed
that samples from the same treatment were grouped together, and
samples from the five treatments could be clearly distinguished
(Figure 2B). Non-parametric multivariate statistical test analyses
demonstrated that the compositions of the bacterial and fungal
communities in the cucumber rhizosphere differed among
treatments (bacterial community: ANOSIM, R = 0.68, P = 0.001;
MRPP, Delta = 0.21, P = 0.003; fungal community: ANOSIM,
R = 0.69, P = 0.001; MRPP, Delta = 0.21, P = 0.001).

Compositions of Bacterial and Fungal
Communities in Cucumber Rhizosphere
Miseq sequencing data was classified at the 97% similarity level
included forty bacterial phyla and five fungal phyla.

For the bacterial phylum community, double cress rotation
under 80% SWC showed a lower relative abundance of
Actinobacteria and a higher relative abundance of Firmicutes
than single cress rotation under 80% SWC, and double
cress rotation had a significantly lower relative abundance of
Actinobacteria than the control. Single cress rotation under
80% SWC had a significantly lower relative abundance of
Bacteroidetes than the other rotation treatments. Single rotation
with cress had a higher relative abundance of Gemmatimonadetes
than the control and cress rotation under 80% SWC had a
lower relative abundance of Cyanobacteria than the control
(P < 0.05) (Figure 3A).

For the fungal phylum community, single cress rotation
under 80% SWC had a lower relative abundance of Ascomycota
than double rotation with cress under 80% SWC and single
rotation with cress under 100% SWC, and the control had the
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FIGURE 2 | Alpha (A) and beta diversities (B) of cucumber rhizosphere bacterial and fungal communities. Beta diversities based on the Bray-Curtis distance
dissimilarity were visualized by principal component analyses. OTUs were delineated at 97% sequence similarity. Different letters indicate statistically significant
differences among treatments (P < 0.05, Tukey’s HSD test). CK represent cucumber continuous cropping, SH8, SSH8, SH1, and SSH1 represent single or double
cress rotation under 80 or 100% soil water content.

highest relative abundance. Basidiomycota had a higher relative
abundance in single cress rotation than in double under 100%
SWC. Cress rotation under 80% SWC had a higher relative
abundance of Zygomycota compared with cress rotation under
100% SWC and the control (P < 0.05) (Figure 3B).

Among all samples, single cress rotation under 100% had the
highest number of unique OTUs (225) and the control had the
lowest number of unique OTUs (193) in bacterial (Figure 3C).
Double cress rotation under 80% had the highest number of
unique OTUs (45) and the double cress rotation under 100% had
the lowest number of unique OTUs (33) in fungal (Figure 3D).

Both single and double cress rotation under 80% SWC had
lower relative abundances of Kribbella and Mycobacterium
spp. than the control, and both single and double rotation
with cress had higher relative abundances of Roseiflexus and
Nitrospira spp., respectively, under 80% SWC. Moreover,
single cress rotation under 100% SWC had higher relative
abundances of Pseudoduganella spp. than the control. The
relative abundance of Streptomyces, Niastella, Cellvibrio,

Fluviicola and Clostridium-sensu-stricto-1 spp. were higher in
80% SWC than in 100% SWC (P < 0.05) (Table 1).

At the genus level, 243 fungal taxa were detected. Ilyonectria
spp. was higher in both the single and double cress rotation
under 80% and 100% SWC than in the control. Pseudallescheria,
Mortierella, Pseudaleuria, Cryptococcus, and Mycothermus spp.
were higher under 80% SWC than in the control. Fusarium and
Monographella spp. were lower in the singly rotated cress under
100% SWC than in the control. Pseudallescheria spp. had the
highest relative abundance in single cress rotation than in other
treatments (P < 0.05) (Table 2).

Microbial Ecological Guilds in the Cucumber
Rhizosphere
There are six types of primary functional layers, including
metabolism, environmental information processing, genetic
information processing, cellular processes, human diseases, and
organismal systems (Figure 4), and 19 secondary functional
layers (Supplementary Table 2).
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FIGURE 3 | Relative abundances of main bacterial (A) and fungal (B) phyla and Venn diagram analyses of bacterial (C) and fungal (D) in cucumber rhizosphere soils
treated with different treatments. Bacterial and fungal phyla with average relative abundance>1% were shown and does not contain unclassified taxa. Data are
represented as the means of three independent replicates. Venn diagram (C,D) demonstrated the numbers of shared and unique observed OTUs at 97% similarity
among treatments.

In the primary metabolic pathway, the relative abundance
of metabolism was significantly lower in the single cress
rotation under 100% SWC and the double cress rotation cress
than in the control (P < 0.05) (Figure 4). Metabolism of
terpenoids and polyketides and lipid metabolism were lower
in the double cress rotation than in the control. Nucleotide
metabolism and metabolism of cofactors and vitamins were
lower in the single cress rotation than in the control (P < 0.05)
(Supplementary Table 2).

A total of 251 out of 300 fungal OTUs (83%) were used for
function prediction. Cress rotation changed the fungal ecological
function in the cucumber rhizosphere. Most taxa were classified
as plant pathogens, and plant pathogens were lower in cress
rotation under 80% SWC than under 100% SWC and the control
(P < 0.05) (Figure 5).

Effects of Total Soil Biota on Cucumber
Seedling Growth
Cucumber seedlings grown in the NS soil cress rotation under
80% SWC had a significantly higher dry biomass than in the S soil
cress rotation under 80% SWC at 10 and 20 days, and the NS soil

single cress rotation under 100% SWC had higher dry biomass
compared with the S soil of the single cress rotation at 20 days
(P < 0.05) (Figures 6A,B). Single cress rotation and cress rotation
under 80% SWC had higher dry biomass than the control in NS
soil (P < 0.05) (Figures 6A,B).

Cucumber seedlings grown in soil inoculated with the NS soil
(6%) of the single cress rotation and cress rotation under 80%
SWC had higher dry biomass than in the control and in soil
inoculated with the S soil (6%) at 10 d and 20 d (P < 0.05)
(Figures 6C,D).

DISCUSSION

Controlled SWC can enhance water use efficiency and increase
crop yield (Song et al., 2021). As well as rotation can increase
“temporary” plant diversity over short periods of time and
reassemble the soil microbial community in the crop rhizosphere,
which is also conducive to rhizosphere health and increase
crop yields (Zhou et al., 2017, 2018b). Our study found that a
single cress rotation and rotation under 80% SWC increased the
cucumber yield. Research indicated that increasing precipitation
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TABLE 1 | Relative abundances of main bacterial genus in cucumber rhizosphere soils.

CK SH8 SSH8 SH1 SSH1

Sphingomonas 2.88 ± 0.19a 3.25 ± 0.13a 3.00 ± 0.08a 2.85 ± 0.3a 3.26 ± 0.25a

Streptomyces 2.92 ± 0.18a 2.04 ± 0.03b 1.61 ± 0.15c 2.74 ± 0.15a 2.82 ± 0.10a

Rhizobium 2.22 ± 0.03b 1.74 ± 0.14d 2.15 ± 0.12b,c 1.80 ± 0.20c,d 2.63 ± 0.14a

Bacillus 1.34 ± 0.09a,b 1.03 ± 0.08c 1.53 ± 0.03a 0.93 ± 0.09c 1.29 ± 0.07b

Niastella 1.09 ± 0.04b,c 0.95 ± 0.01c 0.98 ± 0.07c 1.20 ± 0.06b 1.46 ± 0.08a

Ensifer 1.08 ± 0.06a,b 0.83 ± 0.08c 1.07 ± 0.02a,b 0.92 ± 0.11b,c 1.23 ± 0.11a

Gaiella 1.03 ± 0.04a 1.10 ± 0.17a 0.86 ± 0.05a 1.08 ± 0.13a 0.89 ± 0.03a

Lysobacter 1.04 ± 0.04a,b 0.88 ± 0.06b 1.05 ± 0.08a,b 1.12 ± 0.15a 0.86 ± 0.04b

Devosia 0.97 ± 0.08b 0.81 ± 0.02b 0.85 ± 0.02b 0.98 ± 0.14a,b 1.24 ± 0.15a

Nocardioides 0.92 ± 0.03a 1.16 ± 0.10a 0.66 ± 0.02a 1.14 ± 0.51a 0.90 ± 0.02a

Kribbella 1.07 ± 0.02a 0.91 ± 0.04b 0.73 ± 0.05c 0.70 ± 0.10c 1.01 ± 0.06a,b

Clostridium_sensu_stricto_1 0.92 ± 0.09a 0.91 ± 0.06a,b 0.92 ± 0.03a 0.71 ± 0.07c 0.73 ± 0.07b,c

Amycolatopsis 1.10 ± 0.15a 0.92 ± 0.02a,b 0.65 ± 0.05c 0.79 ± 0.08b,c 0.70 ± 0.03b,c

Pseudarthrobacter 0.83 ± 0.08a 1.13 ± 0.32a 0.83 ± 0.04a 0.60 ± 0.20a 0.78 ± 0.21a

Chitinophaga 1.05 ± 0.13a 0.67 ± 0.04b 0.72 ± 0.02b 0.94 ± 0.05a 0.74 ± 0.04b

Chryseolinea 0.62 ± 0.05a 0.90 ± 0.06a 0.77 ± 0.07a 0.98 ± 0.50a 0.72 ± 0.05a

Flavobacterium 1.04 ± 0.21a 0.43 ± 0.05c 0.87 ± 0.02a,b 0.85 ± 0.02a,b 0.71 ± 0.04b

Steroidobacter 0.72 ± 0.06a 0.77 ± 0.11a 0.81 ± 0.05a 0.76 ± 0.09a 0.80 ± 0.05a

Mycobacterium 0.81 ± 0.01a 0.65 ± 0.07b,c 0.64 ± 0.06b,c 0.57 ± 0.04c 0.77 ± 0.04ab

Pseudoxanthomonas 0.49 ± 0.05b 0.52 ± 0.07b 0.79 ± 0.06a 0.76 ± 0.07a 0.87 ± 0.05a

Aeromicrobium 0.74 ± 0.03a 0.75 ± 0.12a 0.49 ± 0.08b 0.59 ± 0.02a,b 0.58 ± 0.06a,b

Roseiflexus 0.63 ± 0.04b 0.75 ± 0.07a 0.62 ± 0.01b 0.59 ± 0.04b 0.58 ± 0.03b

Taibaiella 0.50 ± 0.04c 0.34 ± 0.02d 0.55 ± 0.05c 0.78 ± 0.04b 0.92 ± 0.05a

Haliangium 0.49 ± 0.05d 0.53 ± 0.03c,d 0.67 ± 0.02a,b 0.77 ± 0.05a 0.59 ± 0.04b,c

Pseudomonas 0.58 ± 0.08b 0.36 ± 0.02c 0.83 ± 0.04a 0.56 ± 0.04b 0.68 ± 0.07a,b

Nitrospira 0.54 ± 0.07b,c 0.57 ± 0.03b,c 0.72 ± 0.07a 0.64 ± 0.02a,b 0.47 ± 0.05c

Cellvibrio 0.62 ± 0.07 ab 0.40 ± 0.08b 0.42 ± 0.07b 0.68 ± 0.07a 0.70 ± 0.11a

Actinoplanes 0.45 ± 0.03b 0.49 ± 0.03b 0.48 ± 0.03b 0.57 ± 0.08b 0.72 ± 0.03a

Pseudoduganella 0.54 ± 0.03b 0.39 ± 0.06c 0.45 ± 0.04b,c 0.70 ± 0.06a 0.47 ± 0.04b,c

Ohtaekwangia 0.62 ± 0.04a 0.33 ± 0.04a 0.42 ± 0.10a 0.68 ± 0.33a 0.45 ± 0.03a

Fluviicola 0.41 ± 0.06c 0.22 ± 0.03d 0.35 ± 0.05c,d 0.66 ± 0.01b 0.84 ± 0.07a

Values (mean ± standard error) in the same row followed by different letters are significantly different at the 0.05 probability level according to Tukey’s HSD test. Bacterial
genus with average relative abundance >0.5% were shown and does not contain unclassified taxa. Different letters are significantly different (P < 0.05, Tukey’s HSD test).

and soil water availability can increase crop performance and
the increase is related to the pattern of crop rotation (Wei
et al., 2021; Xuan et al., 2012). Therefore, cress cultivated with
varying degrees of flooding was rotated with cucumber could
affect cucumber development.

Soil water management strategies can affect SWC as well as
oxygenation levels, which in turn can mediate microbial diversity
is likely to be different (Wang et al., 2014). Appropriated soil
water management can balance both aerobic and anaerobic taxa
and lead to the higher microbial diversity in the cucumber
rhizosphere, as indicated by the higher microbial diversity in
cress rotation under 80% SWC compare with cress rotation under
100% SWC and the control. Heterogeneity of the soil habitat can
also increase microbial diversity (Shen et al., 2021), as well as
SWC is the main factor affecting the diversity of microorganisms
in the cucumber rhizosphere. These results had similar trends
observed in most previous studies (Jiao et al., 2019). Higher
diversity usually shapes more ecological functions (Nazaries
et al., 2021), we can speculate that cress rotation under 80%
SWC renders soil microorganisms and crop performance more

“plastic.” The bacteria diversity in the cucumber rhizosphere was
higher in single cress rotation than in double under 80% SWC,
the opposite in fungi. This observation may be related to the
abiotic factors, such as anaerobia degree of soil environment
affects the difference of microorganism taxa (Kogel-Knabner
et al., 2010). Bacteria and fungi in cucumber rhizosphere were
respond differently to the degree of flooding.

Varying degrees of flooding can exert a selective pressure on
the distribution of soil microbial communities, and microbial
structure changes accordingly (Ali et al., 2019). Principal
coordinate analysis demonstrated that the structure of soil
microbial communities was separated in order of flooding
duration and SWC along first and second axes, respectively.
The structure of the soil microbial community produced
different environmental niches due to flooding duration and
SWC, such that microorganisms enriched their own unique
community structure in the cucumber rhizosphere. This provides
additional support for the argument that environmental changes
lead to heterogeneous changes in the distribution of species
in that community.
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TABLE 2 | Relative abundances of main fungal genus in cucumber rhizosphere soils.

CK SH8 SSH8 SH1 SSH1

Monosporascus 45.99 ± 2.06a 17.27 ± 0.72d 21.68 ± 1.30c 43.86 ± 0.97a 35.54 ± 1.46b

Fusarium 14.04 ± 0.44c 17.64 ± 0.76b 13.50 ± 0.80c 10.28 ± 0.43d 24.26 ± 1.63a

Chaetomium 11.66 ± 1.52b,c 17.82 ± 1.11a 13.68 ± 0.91b 11.25 ± 0.09b,c 10.47 ± 0.81c

Pseudallescheria 7.89 ± 0.01c 14.88 ± 1.00a 12.18 ± 0.58b 8.47 ± 0.38c 8.78 ± 0.86c

Mortierella 1.94 ± 0.16b 4.09 ± 0.74a 4.47 ± 0.39a 1.84 ± 0.16b 2.09 ± 0.16b

Humicola 1.99 ± 0.48b 3.54 ± 0.08a 3.63 ± 0.22a 1.73 ± 0.09b 2.15 ± 0.24b

Aspergillus 1.76 ± 0.03b 2.49 ± 0.30a 1.29 ± 0.14c 1.45 ± 0.06b,c 1.28 ± 0.05c

Pseudaleuria 0.54 ± 0.14c 1.77 ± 0.24a 1.06 ± 0.15b 0.57 ± 0.08c 0.50 ± 0.13c

Acremonium 0.57 ± 0.05c 0.95 ± 0.05b 1.32 ± 0.06a 0.60 ± 0.09c 0.90 ± 0.08b

Monographella 0.92 ± 0.09a 0.86 ± 0.002a 0.88 ± 0.07a 0.35 ± 0.02b 0.77 ± 0.18a

Clitopilus 0.01 ± 0.003c 0.13 ± 0.01c 0.78 ± 0.07b 1.51 ± 0.14a 1.33 ± 0.49a,b

Cephaliophora 0.37 ± 0.19bc 0.68 ± 0.14b 1.92 ± 0.17a 0.36 ± 0.06b,c 0.16 ± 0.01c

Cladosporium 0.19 ± 0.04b 0.55 ± 0.11b 1.96 ± 0.36a 0.22 ± 0.03b 0.38 ± 0.07b

Olpidium 0.36 ± 0.16b 0.28 ± 0.08b 0.23 ± 0.02b 1.58 ± 0.37a 0.40 ± 0.24b

Kernia 0.45 ± 0.08a 0.62 ± 0.04a 0.66 ± 0.05a 0.43 ± 0.01b 0.31 ± 0.04b

Gibberella 0.46 ± 0.08a 0.54 ± 0.03a 0.48 ± 0.01a 0.55 ± 0.04a 0.43 ± 0.07a

Penicillium 0.47 ± 0.05b 0.46 ± 0.05b 0.72 ± 0.11a 0.36 ± 0.05b 0.37 ± 0.03b

Conocybe 0.35 ± 0.15b,c 0.15 ± 0.04c 0.65 ± 0.08ab 0.90 ± 0.17a 0.22 ± 0.02c

Thermomyces 0.31 ± 0.01b 0.79 ± 0.04a 0.42 ± 0.07b 0.33 ± 0.02b 0.32 ± 0.06b

Remersonia 0.31 ± 0.03b 0.61 ± 0.03a 0.61 ± 0.04a 0.32 ± 0.02b 0.33 ± 0.01b

Cryptococcus 0.25 ± 0.05b 0.57 ± 0.08a 0.53 ± 0.08a 0.30 ± 0.04b 0.16 ± 0.03b

Thanatephorus 0.30 ± 0.10a,b 0.04 ± 0.01b 0.12 ± 0.02b 0.69 ± 0.13a 0.65 ± 0.33a

Mycothermus 0.27 ± 0.06b,c 0.53 ± 0.02a 0.43 ± 0.02a 0.32 ± 0.03b 0.21 ± 0.04c

Different letters are significantly different (P < 0.05, Tukey’s HSD test).

FIGURE 4 | Soil bacterial function prediction of cucumber rhizosphere in different treatments (Hierarchy level 1).

Interestingly, the diversity of soil microbial communities in
double cress rotation under 100% was no different from control,
and the structure is more similar closer to control. Generally,
large-scale fluctuations in soil microorganism populations
accumulate with extended periods of flooding and eventually
result in changes in the microbial community. Obviously, our

result did not support this argument and was contrary to our
second hypothesis. The possible reason was soil microorganisms
experience greater physiological stress in cress rotation under
100% SWC than in cress rotation under 80% SWC, which
can result in the death of microorganisms or force them to
enter a dormant stat (Che et al., 2020). The longer of flooding
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FIGURE 5 | Effect of cress rotation on the relative abundance of fungal ecological functional in cucumber rhizosphere soil.

duration, the longer it will take for microorganisms to recover
from the hypoxic stress caused by the flooding to achieve a
higher respiratory intensity and activity rate than before (Lucía
and Ana, 2015). This result explained that double cress rotation
under 100% SWC may eliminate the difference in microbial
diversity from dry land.

The soils in different habitats each have a unique community
composition and OTU number. These unique dominant taxa
shape the unique functions of this group. The relative abundances
of Mycobacterium, Kribbella, Streptomyces, Amycolatopsis, and
Aeromicrobium spp. were lower in double cress rotation under
80% SWC than in the control, and all of these taxa are members
of Actinobacteria and are common in dry alkaline soils (Bhatti
et al., 2017). Blame this on flooding reduces the oxygen flux
in soil are suppressive the survival of Actinomycetes in double
cress rotation, resulting in the reduction of bacterial functional
genes related to metabolism in our result. Cress rotation under

100% SWC had higher relative abundance of Basidiomycota than
the control. Zhao et al. (2018) showed that rainfall increased
the numbers of Basidiomycota which is consistent with our
result. The Zygomycota and Mortierella spp. which is benefits
improve crop performance (Liu et al., 2020b) had higher relative
abundance in cress rotation under 80% SWC than in the control;
however, the Ascomycota and Ilyonectria spp. which is potential
pathogens (Carron et al., 2020) had higher in control than in the
other treatments. Meanwhile, the relative abundance of guilds
related to plant pathogens had no changed in single cress rotation
under 100%, instead, it was reduced in the cress rotation under
80%. This can be explained in the soil with higher diversity
in the cress rotation under 80%. Thus, our study highlights
the fact that differences in the soil environment can increase
the heterogeneity in the spatial distribution of microorganisms
and that ecological effects can be predicted from differences in
soil environments.
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FIGURE 6 | Effect of soil sterilization on cucumber seedling dry weight. (A,B) stand for soil sterilized (S) and non-sterilized (NS), respectively. (C,D) stand for 94%
sterile background soil mix with 6% soil sterilized and 6% non-sterilized (NS). SH8, SSH8, SH1, and SSH1 represent single or double cress rotation under 80 or
100% soil water content.

The relative abundance of bacteria Roseiflexus spp. and fungi
Pseudallescheria spp. were the highest in single cress rotation
under 80% SWC then higher in double than in the control,
that are known to potentially beneficial microbial, both of
which enhance the absorption of nutrients in the rhizosphere by
increasing competition to promote crop growth (Xu et al., 2012;
Li et al., 2020; Shi et al., 2020; Zhu et al., 2020). Besides, the
relative abundance of bacteria Haliangium spp. was higher and
fungi Fusarium and Monographella spp. were lower in single cress
rotation under 100% than in double and control. Haliangium
spp., as biocontrol genera, can produce haliangicin to inhibit the

growth of various fungi (Fudou et al., 2001) and fungi Fusarium
and Monographella spp. were the potentially pathogenic fungi (Li
et al., 2016; Zhu et al., 2019). The mechanism of the increase or
decrease of potential beneficial microbial or pathogens due to
varying degrees of flooding is still unclear, which is worthy of
further discussion in the future.

Soil microorganisms can directly affect plant performance
by forming symbiotic, parasitic or reciprocal relationships with
plants (van der Heijden et al., 2008). The soil microbial
communities induced by flooding were changes, however, what
effect of soil microbial caused by varying degrees of flooding
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on cucumber seedling growth is unknown. We found that dry
biomass of cucumber seedlings was increased in unsterilized
soil of cress rotation under 80%, indicating that the microbial
changes effect cucumber seedling growth. At 20 days, dry
biomass also higher in unsterilized soil of single cress rotation
under 100% than in sterilized soil of single cress rotation
under 100%, may be due to slow-growing organisms such
as Gemmatimonadetes were colonize microcosms lower than
fast-growing organisms such as Firmicutes (Fierer et al.,
2007; Bevivino et al., 2014). Therefore, single cress rotation
under 100% also affects cucumber growth. On the other
hand, dry biomass of cucumber seedlings was increased
when grown in 6% unsterilized soil of cress rotation under
80% and single cress rotation. These results indicated that,
single cress rotation and cress rotation under 80% can
promote cucumber growth through inducing positive plant-soil
microbial interaction.

CONCLUSION

Overall, microbial community characters were significantly
different when varying degrees of flooding were conducted, and
yet only single cress rotation and cress rotation under 80%
SWC increased cucumber yields. Regulating SWC under 80% of
cress cultivation could thus be an efficient way to promote the
colonization of potentially beneficial bacteria such as Roseiflexus
and Pseudallescheria spp. It is also possible to reduce potential
pathogenic fungal such as Fusarium and Monographella spp. in
single cress rotation under 100% SWC. These results indicate
that changing the heterogeneity of the soil-water environment
in dryland is beneficial to increasing crop productivity via
alterations in microorganisms; the mechanism underlying these
effects requires further study. Additional work is needed to

explore changes in plant performance mediated by different
microbial mechanisms under different SWCs.
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