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1  |  INTRODUC TION

Multicellular eukaryotic lifeforms are inevitably exposed to inter-
actions with microorganisms, including bacteria, throughout their 
phylogeny and ontogeny (McFall- Ngai et al., 2013). In animals, the 

quantity of associated bacterial cells represents a significant fraction 
of all cells forming the host's body (Sender et al., 2016). A similar 
situation applies for the total gene count of the bacterial commu-
nity, which outnumbers the host's gene count by a factor of approx. 
100 (Qin et al., 2010). The most abundant and functionally rich 
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Abstract
Gut microbiota (GM) often exhibit variation between different host species and co- 
divergence with hosts' phylogeny. Identifying these patterns is a key for understand-
ing the mechanisms that shaped symbiosis between GM and its hosts. Therefore, 
both GM- host species specificity and GM- host co- divergence have been investigated 
by numerous studies. However, most of them neglected a possibility that different 
groups of bacteria within GM can vary in the tightness of their association with the 
host. Consequently, unlike most of these studies, we aimed to directly address how 
the strength of GM- host species specificity and GM- host co- divergence vary across 
different	GM	clades.	We	decomposed	GM	communities	of	52	passerine	species	(394	
individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into 
monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of 
host species specificity and correlation with host phylogeny separately for resulting 
BTUs.	We	found	that	most	BTUs	exhibited	significant	host-	species	specificity	in	their	
composition. Notably, BTUs exhibiting high host- species specificity comprised bac-
terial taxa known to impact host's physiology and immune system. However, BTUs 
rarely displayed significant co- divergence with host phylogeny, suggesting that pas-
serine GM evolution is not shaped primarily through a shared evolutionary history 
between the host and its gut microbes.
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host- associated bacterial community is found in the gut (gut mi-
crobiota, GM) (Marietta et al., 2015; Suau et al., 1999). As the gut 
wall represents one of the largest body surfaces in total area, it is 
broadly assumed that the GM possesses great potential to influ-
ence the host's physiology, immune system, or cognitive function 
(Bäckhed et al., 2005; Eckburg et al., 2005; Hedblom et al., 2018; 
Heijtz et al., 2011). Empowered by increased availability of high- 
throughput sequencing, a plethora of findings over past de-
cades have shown GM to be a crucial factor affecting host fitness 
(Bordenstein	&	Theis,	2015;	Brucker	&	Bordenstein,	2013; Hooper 
et al., 2012; Sharon et al., 2010).

During both early life and adulthood, individuals are continu-
ously colonized by bacteria of different origins. The most obvious 
GM sources are pools of environmental bacteria present in the 
host's physical surroundings (Sullam et al., 2012). Alternatively, GM 
can	be	transferred	via	social	contacts	with	conspecifics	(Colston	&	
Jackson,	2016). At the same time, animal hosts are capable of reg-
ulating microbiota by various means, for example, by immune sys-
tem utilities, making host genetic background an important factor 
shaping GM diversity (Marietta et al., 2015; Spor et al., 2011). This 
commonly results in variation in GM composition among different 
host species, that is, GM- host species specificity.

It has been suggested that a host benefits from harboring a tax-
onomically and functionally stable GM community, and conserv-
ing such an association (Bäckhed et al., 2005;	Knutie	 et	 al.,	2017; 
Sanders et al., 2014), as it leads to a reduction in mutually harmful 
interactions and the emergence of commensal/mutualistic associ-
ations (Parker et al., 2017). At the proximal level, such a tight and 
stable association can be mediated either by the stable transfer of 
microbes from the environment or by trans- generational transfer 
among members of a given host species. A stable host versus micro-
biota association, persisting over multiple generations and speciation 
events, often results in co- divergence between hosts' phylogeny 
and	their	GM	(Bordenstein	&	Theis,	2015). However, co- divergence 
can also arise as an epiphenomenon of host traits that are linked to 
its phylogeny and that selectively filter for environmental microbes. 
GM- host co- divergence has been demonstrated in mammals, where 
host phylogeny, along with diet, significantly influences GM com-
position and diversity (Davenport, 2016; Ley et al., 2008; Moeller 
et al., 2016). Persuasive evidence of trans- generation transfer and 
co- divergence with hosts comes from obligatory bacterial symbi-
onts	 of	 some	 insect	 groups	 (Weiss	 et	 al.,	2012). These symbionts 
are unable to persist outside their hosts and some insect species 
have even developed specialized organs to harbor such microbes 
(Baumann, 2005). Symbiotic microbes are suspected of playing a 
direct role in speciation processes, such as assortative mating and 
fitness decrease in interspecific hybrids due to disruption of host 
versus	microbiota	co-	adaptations	(Brucker	&	Bordenstein,	2013). At 
the same time, however, it is important to denote that co- divergence 
does not necessarily imply co- evolution between host and its GM. 
Although many GM bacteria evolved adaptation to specific hosts that 
enables them to follow its phylogeny, well- supported cases when 

host developed specific adaptations to specific bacterial symbiont 
are	rather	unique	(Douglas	&	Werren,	2016;	Moran	&	Sloan,	2015).

One of the potential bottlenecks associated with research on 
GM variation arises from the complexity of GM structure. Insights 
into GM variation are usually gained through analyses at the beta 
diversity level of all detected bacteria, that is, the “whole GM com-
munity” (Bodawatta et al., 2021; Brooks et al., 2016; Capunitan 
et al., 2020; Hird et al., 2015; Trevelline et al., 2020). However, such 
an approach may prevent a more realistic insight into the complex-
ity of host versus GM interactions. Indeed, different phylogenetic 
clades of GM bacteria may exhibit distinct modes of interactions 
with their hosts (Davenport et al., 2015;	Douglas	&	Werren,	2016; 
Youngblut et al., 2019). To overcome potential problems associated 
with the fact that different GM components exhibit a heteroge-
neous response to a tested variable (e.g., host phylogeny and diet), 
some previous studies have decomposed GM into subsets usually 
defined by the taxonomic identity of the bacteria they contain. 
Then, for each of these subsets, the strength of association between 
the variable tested and the variation in composition within each of 
the GM the subsets was examined. This allowed the identification of 
GM subsets that respond strongly (or weakly) to the tested variable 
(Dewar et al., 2013; Houtz et al., 2021; Youngblut et al., 2019).	We	
believe that similar approaches can provide novel insight into pat-
terns of GM diversity and will be particularly valuable for research 
on GM- host co- divergence and specificity.

In our current contribution, we focused on GM vs host species 
co- divergence in passerine birds that represent a promising model 
system for such research. Being evolutionary and ecologically the 
most diversified avian group, they span a wide spectrum of habi-
tats, resulting in differing demands on host- microbiome interactions. 
Despite recent radiation (approx. 22 million years ago), their phy-
logeny	is	mostly	well	resolved	(Jetz	et	al.,	2012; Moyle et al., 2016) 
and a plethora of life history traits have been documented, providing 
a strong background for the proposed analysis. So far, there is an 
agreement that host species identity is a considerable factor shaping 
GM of birds, but to lesser extent than in other vertebrate clades, 
such as mammals (Song et al., 2020; Trevelline et al., 2020; Youngblut 
et al., 2019,	but	see	Cho	&	Lee,	2020; Lewis et al., 2017). Similarly, 
host ecology seems to play less important role in birds compared to 
mammals (Song et al., 2020). Such peculiarity may have arisen due 
to adaptations of avian digestive system to flight, constraining rela-
tive size of individual internals (Bodawatta et al., 2021). Specifically, 
caeca and other parts of the digestive system are typically re-
duced in passerines, resulting in lesser potential for physiologically 
significant and stable host– microbiota interactions (Bodawatta 
et al., 2022; Caviedes- Vidal et al., 2007). Major differences be-
tween GM of mammals and birds are found also in representation 
of major bacterial phyla. There is higher proportion of Proteobacteria 
and Actinobacteria in GM of birds (Capunitan et al., 2020; Grond 
et al., 2018)	 including	 passerines	 (Kropáčková	 et	 al.,	 2017), while 
Bacteroidetes and Firmicutes typically dominate mammalian GM (Ley 
et al., 2008).
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In our previous contribution, we found that passerine GM 
composition exhibited only mild interspecific differences that 
were, to a large extent, correlated with hosts phylogeny but, 
surprisingly,	 not	 with	 their	 ecology	 (Kropáčková	 et	 al.,	 2017). 
However, the basis of these patterns has yet to be uncovered. 
Specifically, the observed interspecific differences in GM, as well 
as GM vs. host phylogeny correlations, could be driven by just 
a few bacterial clades, while the rest of the GM community has 
no dependence on host species. Here, we aimed to address how 
different bacterial clades contribute to interspecific variance of 
the host and co- divergence at the whole GM community level. To 
achieve this goal, we analyzed passerine GM profiles in three sub-
sequent steps: First we applied precise clustering- free approach 
(Callahan et al., 2016) to identify distinct 16S rRNA haplotypes 
(hereafter ASVs, i.e., Amplicon Sequence Variants) and to quan-
tify their relative abundances in each sample. Next, motivated by 
previous studies that have performed analyses separately for indi-
vidual subgroups of the entire GM (e.g., Dewar et al., 2013; Houtz 
et al., 2021; Youngblut et al., 2019), we decomposed the entire 
GM community into presumably monophyletic ASVs subunits and 
hereafter	referred	to	these	as	Binned	Taxonomic	Units	(BTUs).	We	
considered two approaches of BTU definition, (1) the “reference- 
based,” where we binned individual ASVs according to their genus- 
level taxonomic assignment and (2) the “reference- free,” where 
we binned ASVs based on their 16S rRNA sequence similarity 
(see Methods section for more details). Finally, we quantified the 
strength of GM- host species specificity and GM- host species co- 
divergence independently for each of these BTUs. This approach 
allows us to draw conclusions at the level of particular groups of 
bacteria (represented by individual BTUs), which is useful for iden-
tifying BTUs that drive host species specificity or co- divergence at 
the level of the entire GM.

2  |  MATERIAL AND METHODS

2.1  |  Field sampling and microbiota genotyping

In this study, we analyzed data on passerine GM that were already 
published	in	Kropáčková	et	al.	(2017).	We	collected	480	fecal	sam-
ples	 from	57	species	during	the	breeding	season	 (April–	July	2014)	
across various sites in the Czech Republic. But due to unsuccessful 
polymerase chain reaction (PCR) or low number of reads (detailed 
below),	only	394	GM	profiles	from	different	individuals	covering	52	
passerine	species	(51%	of	all	passerine	species	breeding	in	the	Czech	
Republic) were included in the final dataset and subsequent analy-
ses (see Table S1). Birds were caught using mist nets and placed in 
a	single-	use	disposable	paper	bag	for	approx.	5–	10 min.	Fecal	sam-
ples were harvested from the bag using sterile microbiological swabs 
(minitip FLOQSwabs, Copan, Italy) and transferred to sterile cryo-
tubes (Simport, Canada) which were then filled with an in- house pre-
pared DNA/RNA stabilizing solution. The samples were then cooled 
to	−80°C	within	5 days	and	stored	until	further	analysis.

Fecal metagenomic DNA was extracted in a laminar flow cab-
inet using the PowerSoil DNA isolation kit (MO BIO Laboratories 
Inc.,	 USA).	 Following	 the	 recommendations	 of	 Klindworth	
et al. (2013),	primers	covering	the	V3–	V4	variable	region	of	bac-
terial 16S rRNA were used during the PCR step. Both forward and 
reverse primers were tagged with 10- bp barcodes for subsequent 
sample demultiplexing during bioinformatic processing. The sam-
ples	were	then	pooled	at	equimolar	concentration	and	run	on	1.5%	
agarose gel, with bands of appropriate size excised from the gel 
and	 purified	 using	 the	 High	 Pure	 PCR	 product	 Purification	 Kit	
(Roche, Switzerland), according to the manufacturer's instruc-
tions. Sequencing adaptors were ligated using TruSeq nano DNA 
library preparation kits (Illumina, USA) and the resulting amplicon 
libraries sequenced in a single MiSeq run (Illumina, USA) using 
v3 chemistry and 2 × 300 nt	 paired-	end	 configuration.	 For	more	
detailed protocols on field sampling, wet lab procedures and se-
quencing	methods,	see	Kropáčková	et	al.	(2017).

2.2  |  Computational procedures

Our aim was to decompose the GM community to putatively mono-
phyletic bacterial subunits (hereafter BTU, i.e., Binned Taxonomic 
Unit), and subsequently to quantify the strength of GM versus host 
species co- divergence for each of these subunits. To address these 
objectives, computational procedures comprised three major stages: 
1. GM profiling that constituted identification and quantification of 
ASVs, 2. BTUs definition, and 3. quantification of GM- host species 
specificity and co- divergence at the BTUs level based on ASVs vari-
ation within each BTU (for an overview of the computational proce-
dure design, see Figure 1).

2.2.1  |  GM	profiling

We	used	the	DADA2	program	(Callahan	et	al.,	2016) for read qual-
ity	 filtering	 (per	 paired-	end	 read	 expected	 error	 rate <1), read 
pair merging and ASV identification. This approach outperforms 
methods relying on similarity- based clustering into Operational 
Taxonomic Units (OTUs) through its use of a real variant inference 
algorithm. Unlike clustering approaches, DADA2 rather corrects se-
quencing errors, resulting in the formation of more reliable biological 
units (ASVs). Importantly, DADA2 can detect variation up to single 
base pair differences, which far exceeds the resolution provided by 
standard clustering algorithms. USEARCH (Edgar, 2010), alongside 
the gold.fna database (available at http://sourc eforge.net/proje cts/
micro biome util), was subsequently used for the detection and elimi-
nation of chimeric ASVs. The resulting ASV abundance matrices, 
along with sample data, were then merged into PHYLOSEQ- class 
objects	in	R	for	further	analysis	(McMurdie	&	Holmes,	2013; R Core 
Team, 2015).

ASV	 taxonomy	 was	 assigned	 using	 the	 RDP	 classifier	 (Wang	
et al., 2007) and the Silva Reference Database version 123 (Quast 

http://sourceforge.net/projects/microbiomeutil
http://sourceforge.net/projects/microbiomeutil
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et al., 2013), using a default minimum bootstrap confidence value 
of	 50	 for	 assigning	 up	 to	 a	 given	 taxonomic	 level.	 All	 ASVs	 unas-
signed to at least phylum level, or those assigned as Chloroplasts, 
Archea or mitochondria, were discarded from further analysis, as 
were samples with <1000 reads in total. The final filtered dataset 
included	samples	 for	394	 individuals	 from	52	species	 (median	=	8	
samples	per	species),	 represented	by	2,353,438	high-	quality	reads	
assigned	to	10,583	ASVs.	Average	number	of	reads	per	sample	was	
5973.2	± 242.9	SE.

2.2.2  |  Reference-	based	and	reference-	free	
BTUs definition

We	applied	two	distinct	approaches	for	defining	putatively	mono-
phyletic BTUs. In the case of reference- based approach, we grouped 
ASVs	based	on	genus-	level	assignment,	resulting	in	70.7%	of	ASVs	
being	 assigned	 to	 862	 known	genera	 (i.e.,	 reference-	based	BTUs).	
However, bacterial taxonomy undergoes rapid evolution and thus 
there are inconsistencies between different taxonomic databases 
(Balvočiūtė	&	Huson,	2017). Also, ASVs with no genus- level assign-
ment cannot be used. Moreover, there is pronounced variation in 
sequence similarity between genus- level bins.

To circumvent these issues, we also applied reference- free 
BTUs definition based on ASVs clustering into putatively mono-
phyletic subunits according to their 16S rRNA marker sequence 
similarity.	While	there	is	no	universal	16S	rRNA	similarity	thresh-
old for bacterial clade delimitation, a sequence similarity of 
97–	98.65%	has	been	suggested	as	an	approximate	threshold	de-
limiting	 bacterial	 species	 (Kim	 et	 al.,	 2014). Hence, we grouped 
ASVs exhibiting >97%	 sequence	 similarity	 in	 order	 to	 acquire	
biologically	meaningful	 clusters	 (i.e.,	 97%	 similarity-	based	BTUs,	

see Figure 1).	Finally,	ASVs	were	clustered	using	a	95%	similarity	
threshold	(i.e.,	95%	similarity-	based	BTUs)	to	explore	GM	diversity	
patterns at a higher taxonomic level corresponding approximately 
to bacterial genera (Yarza et al., 2014, but see Beye et al., 2018; 
Rossi- Tamisier et al., 2015).

In order to cluster ASVs in the reference- free way, we used the 
approach	proposed	in	the	R	package	DECIPHER	(Wright,	2015) and 
VSEARCH (Rognes et al., 2016) clustering, that is widely used for 
16S rRNA amplicon sequencing data. Both these methods showed 
comparable results, though DECIPHER resulted in less taxonom-
ically ambiguous and more significant BTUs (Table S4). Moreover, 
DECIPHER, but not VSEARCH (and other traditional greedy clus-
tering algorithms as well), implicitly accounts for phylogenetic re-
latedness	of	16 s	rRNA	sequences.	Therefore,	we	based	our	results	
on DECIPHER clustering. In the case of DECIPHER approach, ASV 
marker sequences were aligned using the ALIGNSEQS function. 
Next, a distance matrix based on Hamming distances between 
aligned	ASVs	was	 computed	 assuming	 the	 Jukes–	Cantor	 substitu-
tion model. Finally, ASVs were clustered into monophyletic units 
based on the distance matrix using the IDCLUSTERS function, 
using the complete- linkage criterion. In this way, all ASVs in a given 
BTU	shared	at	least	the	pre-	defined	sequence	similarity	value.	We	
identified	 total	of	2664	95%	similarity-	based	BTUs	and	3932	97%	
similarity- based BTUs. For all subsequent analyses, we only selected 
BTUs	 represented	 by	 at	 least	 5000	 reads	 and	 10	 bacterial	 ASVs,	
BTUs not meeting these criteria being omitted in order to avoid spu-
rious results. These thresholds were defined based on a pilot analysis 
showing that variation in the strength of interspecific signal and co- 
divergence was inordinate in the case of low diversity (consisting of 
<10 ASVs) and/or rare BTUs (< 5000	reads).	The	filtering	criteria	ap-
plied	resulted	in	selection	of	49	reference-	based	BTUs	(median	=	40	
ASVs),	representing	71%	of	all	reads;	58	95%	similarity-	based	BTUs	

F I G U R E  1 Analytical	approach	used	in	our	study.	1.	GM	profiling:	Raw	paired-	end	reads	were	merged	and	sequencing	errors	were	
corrected by DADA2 to obtain amplicon sequence variants (ASVs). 2. BTUs definition: ASVs were grouped to BTUs using three methods in 
parallel, namely a) reference based taxonomic assignment of ASVs to genus level and reference free methods defining BTUs sharing at least 
b)	95%	or	c)	97%	ASVs	sequence	similarity,	based	on	distance	matrix.	3.	Quantification	of	GM-	host	species	specificity	and	co-	divergence	at	
the BTU level: Several tests for different aspects of GM diversity were conducted on ASVs distribution within individual BTUs, namely a) 
GM-	host	species	specificity	test	based	on	permutational	MANOVA	of	inter-	sample	GM	composition	distances	(Bray–	Curtis	and	Jaccard),	
b) compositional GM- host co- divergence test based on PACo analyses of inter- sample GM composition distances and host phylogeny, c) 
phylogenetical GM- host co- divergence test based on PACo analyses of ASVs phylogeny within individual BTUs and hosts phylogeny
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BTUs (median =	28.5	ASVs),	representing	70%	of	all	reads;	and	57	
97%	similarity-	based	BTUs	 (median	=	20	ASVs),	 representing	57%	
of all reads.

2.2.3  |  Quantification	of	GM-	host	species	
specificity and co- divergence at the BTUs level

We	calculated	dissimilarities	in	ASVs	composition	among	samples	
separately for each BTU using two methods, Bray– Curtis and the 
binary	version	of	Jaccard	distance.	The	Bray–	Curtis	method	quan-
tifies the compositional dissimilarity between samples while con-
sidering the quantity of ASVs in individual samples. Binary version 
of	 Jaccard	 distance	 (Jaccard	method	 applied	 to	 presence	 or	 ab-
sence scaled ASV abundances), on the other hand, only evaluates 
ASV presence and absence, which makes it more sensitive to the 
appearance of rare bacterial groups. ASV abundance was trans-
formed to the proportion of total library sizes for each sample 
prior	to	dissimilarity	computation.	In	parallel	with	the	Jaccard	and	
Bray– Curtis dissimilarities, we also performed GM- host species 
specificity analyses using weighted and unweighted UniFrac dis-
similarities that account for bacterial phylogeny by downweighting 
the divergence caused by related bacterial ASVs. The strength of 
GM- host species specificity analyses at the BTU level for UniFrac 
dissimilarities was comparable to those for their phylogenetically 
naive	 counterparts	 (Jaccard	 and	 Bray–	Curtis)	 and	 thus	 we	 do	
not report these results further. On the other hand, we did not 
use UniFrac for co- divergence analyses because the reduction in 
importance of closely related ASVs makes interpretation of the 
corresponding results problematic, except in certain cases (e.g., 
Kropáčková	et	al.,	2017; Sanders et al., 2014).

To assess the strength of GM- host species specificity for each 
BTU, PERMANOVA (i.e., Permutational Multivariate Analysis 
of Variance for distance matrices; R package VEGAN, Oksanen 
et al., 2016) was applied. To test whether phylogenetic divergence 
between species was correlated with community divergence at 
the level of each BTU, we used PACo (Procrustean Approach to 
Cophylogeny) analysis (Balbuena et al., 2013) that was originally de-
veloped for the assessment of host versus parasite cophylogeny.

In the case of PERMANOVA analysis, we included host species 
identity as an explanatory variable and the dissimilarity matrix for 
each	BTU	(scaled	using	both	distance	methods)	as	a	response.	We	
did not include host species life histories traits or other ecological 
features as explanatory variable, as they have little effect on GM 
in	 this	 dataset	 (Kropáčková	 et	 al.,	2017) and PERMANOVA is not 
suitable for these types of analyses, as it cannot account for the 
dependence of ecological traits on host phylogeny. Statistical sig-
nificance was assessed using 10,000 permutation rounds. To allow 
direct comparisons between BTUs, adjusted R2 coefficients (R2adj), 
that is, the proportion of variance explained by species identity cor-
rected for different degrees of freedom and number of observations 
in species/individuals hosting a given BTUs, were calculated for 
each BTU analyzed (Legendre et al., 2011). In effect, therefore, R2adj 

represents the strength of GM- host species specificity of ASVs 
within each BTU.

As an explanatory variable for PACo analysis, we used cophe-
netic distances between host species that were extracted from 
consensual phylogeny calculated based on a set of 1000 Bayesian 
trees with Hackett backbone (obtained from http://birdt ree.org/; 
Jetz	et	 al.,	2012). In order to quantify compositional GM- host co- 
divergence strength (PCOMP), a PACo response was considered 
as	 either	 the	 Bray–	Curtis	 or	 Jaccard	 GM	 dissimilarities	 for	 ASVs	
within individual BTUs. Though this approach has been commonly 
used in many previous studies on host versus GM co- divergence 
(Capunitan et al., 2020; Hird et al., 2015; Song et al., 2020; Youngblut 
et al., 2019), it completely ignores bacterial phylogeny, that can be 
crucial in this particular context. Therefore, in parallel to traditionally 
used community dissimilarities associated with PCOMP, we also ana-
lyzed phylogenetic GM- host co- divergence (PPHYLO), which is based 
on the genetic distance among ASVs within a given BTU. Genetic 
distances were calculated with DIST.DNA function from R package 
APE (Paradis et al., 2004) after their marker sequence alignment 
(using the same algorithm described above). A suitable substitution 
model for the distance calculation was selected separately for each 
BTU based on the lowest AICc using the MODELTEST function from 
the R package PHANGORN (Schliep, 2011). Both explanatory (host 
species phylogeny) and response (phylogeny or diversity of ASVs) 
distance matrices were scaled using Principal Coordinate Analysis 
(PCoA) prior to PACo fitting and the resulting PCoA score matrices 
were used as PACo inputs. As a result, we obtained Procrustes cor-
relation coefficients expressing strength of co- divergence in each 
BTU. Significance testing was based on a comparison of observed 
versus permuted Procrustes sum of squares (n = 10,000 permuta-
tions). To account for the fact that we typically analyzed multiple 
samples for each species, species identity was reshuffled across 
blocks of species- specific samples during the permutation routine, 
as	described	in	Kropáčková	et	al.	(2017).

In addition, we also used the Mantel test to quantify the cor-
relation of host phylogeny and GM composition divergence at the 
level	of	 individual	BTUs.	We	compared	Bray–	Curtis	GM	dissimilar-
ities based on GM profiles averaged per host species against host 
cophenetic	 distances	 (the	 same	 as	 in	 PACo	 analysis).	 We	 found	
out that Mantel test exhibited uniformly insignificant results for all 
BTUs, while the respective effect sizes (Mantel's r) correlated tightly 
with the PACo correlation coefficients. Because of the known con-
cerns with using Mantel tests in different contexts, including phylo-
genetic	comparative	methods	 (Guillot	&	Rousset,	2013;	Harmon	&	
Glor, 2010), we decided to base our analyses on the PACo approach.

For both PERMANOVA and PACo, False Discovery Rates (FDR; 
Benjamini	&	Hochberg,	1995) were applied in order to reduce false 
positives due to multiple testing.

Finally, we also analyzed overall GM- host species specificity (rep-
resented by R2) and overall compositional GM- host co- divergence 
(PCOMP) for the full dataset unpartitioned to BTUs (the non- binned 
raw ASV data, i.e., whole GM community analysis) and compared 
these results with patterns obtained for individual BTUs.

http://birdtree.org/
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3  |  RESULTS

3.1  |  Whole GM community analysis summary

Using the full dataset unpartitioned to BTUs, we observed signifi-
cant GM- host species specificity (R2 = 0.21,	p < .001	for	Bray–	Curtis	
and R2 = 0.18,	 p < .001	 for	 Jaccard)	 and	 significant	 compositional	
GM- host co- divergence (PCOMP =	0.35,	p = .015	for	Bray–	Curtis	and	
PCOMP =	0.34,	p = .018	for	Jaccard).

3.2  |  Variation between BTU definition 
methods and co- divergence metrics

Analyses of GM- host species specificity and compositional GM- 
host	 co-	divergence	 running	 on	Bray–	Curtis	 and	 Jaccard	 distances	
provided	highly	congruent	result	(Kendall's	τ > 0.81,	p < .001	for	all	
comparisons) irrespective of BTU definition method (i.e., reference- 
based	BTUs,	97%	or	95%	similarity-	based	BTUs;	Figure	S1). As such, 
further	discussion	is	restricted	to	analysis	based	on	Jaccard	distance	
only.

In the case of reference- based BTUs, GM- host species specific-
ity (R2adj) exhibited a significant correlation, though of small effect 
size, with compositional GM- host co- divergence (PCOMP)	 (Kendall's	
τ = 0.21, p = .03).	This	was	not	true	for	analyses	on	95%	similarity-	
based	BTUs	 (Kendall's	 τ =	 0.14,	p = .12)	 and	 97%	 similarity-	based	
BTUs	(Kendall's	τ = 0.1, p = .28;	Figure 2). Furthermore, both GM- 
host species specificity and compositional GM- host co- divergence 

correlated with phylogenetic GM- host co- divergence (PPHYLO) 
among	 individual	 BTUs	 for	 all	 BTU	 definition	 methods	 (Kendall's	
τ > 0.23,	p < .011;	Figure 2).

3.3  |  Reference- based BTUs analysis

GM-	host	 species	 specificity	 was	 significant	 (FDR < 0.05)	 for	 the	
majority	(75%)	of	the	49	reference-	based	BTUs	examined,	though	
overall effect sizes were moderate (R2adj < 0.2)	 in	 most	 cases	
(Figure 3, Tables S2 and S3). Nevertheless, a subset of 10 reference- 
based	BTUs,	 represented	by	13%	of	 all	 reads	and	3%	of	 all	ASVs	
(Figure 4), exhibited a high degree of GM- host species specificity 
(R2adj	≥0.2,	FDR <0.05;	Table 1). The strength of GM- host species 
specificity	for	all	ASVs	included	in	these	10	BTUs	(286	ASVs	in	total)	
was markedly higher (R2adj = 0.131, p = .001)	 than	GM-	host	spe-
cies specificity for all other ASVs not included in this subset (10,297 
ASVs in total; R2adj =	 0.053).	 These	 results	 were	 supported	 by	
permutation analysis, which showed that strength of GM- host spe-
cies	specificity	for	the	286	ASVs	whose	 incidence	varied	strongly	
between host species was significantly higher than GM- host spe-
cies	specificity	for	286	ASVs	randomly	picked	from	the	full	dataset	
(n = 9999 permutations, permutation- based p = .0002).	The	most	
abundant BTU exhibiting significant GM- host species specificity 
consisted of ASVs from the genera Candidatus Arthromitus. ASVs 
found in these BTUs are in fact members of the genera Candidatus 
Savagella, which had not been defined in the reference database by 
the time of its release.

F I G U R E  2 Correlations	of	test	effect	
sizes in examined BTUs. Correlation 
of GM- host species specificity versus 
compositional and phylogenetic GM- host 
co- divergence among BTUs (represented 
by points). Only a subset BTUs passing 
filters	for	testing	are	shown.	Kendall's	tau	
was used as the correlation coefficient. 
The blue line and shaded area correspond 
to predictions of linear regression and 
95%	confidence	intervals,	respectively.	
Only	results	for	Jaccard	distances	are	
shown
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Unlike GM- host species specificity, compositional GM- host 
co- divergence was only significant for three of all the reference- 
based BTUs tested, containing namely genera Lactococcus, 
Enterococcus and Clostridium (sensu stricto) 1 (see Figure S3). 

Analysis of phylogenetic GM- host co- divergence identi-
fied three significantly co- diverging bacterial genera, namely 
Curtobacterium, Lactococcus, and Escherichia/Shigella	(FDR < 0.05;	
Table 1, Figure 3).

F I G U R E  3 Heatmap	of	measured	
effect sizes in tested reference- based 
BTUs. GM- host species specificity (R2adj) 
and compositional GM- host co- divergence 
(PCOMP)	are	based	on	Jaccard	distances.	
*	indicates	significant	result	(FDR < 0.05),	
the dendrogram on the left represents 
phylogeny of the bacterial genera, that is, 
a phylogenetic tree based on 16S rRNA 
sequences extracted from GreenGenes 
database	(97%	OTUs	tree	version	12_10)	
formatted for the purpose of QIIME1)
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3.4  |  Reference- free BTUs analysis

Clustering ASVs based on similarity thresholds resulted in more BTUs 
of lower within- BTU ASV richness than BTUs defined by genus iden-
tity (see Table S2). The mean strength of GM- host species specificity 
tended	to	be	higher	for	97%	and	95%	similarity-	based	BTUs	than	for	
reference- based BTUs, but the difference lacked significance (ANOVA: 
F[2161] = 1.154,	 p = .318),	 with	 similar	 results	 obtained	 for	 phyloge-
netic GM- host co- divergence calculated for reference- based versus 
reference- free BTUs (ANOVA: F[2161] = 2.370,	p = .097;	Figure 5).

As with reference- based BTUs analysis, most similarity- based 
GM	BTUs	provided	high	support	 (FDR <0.05)	for	GM-	host	species	
specificity	in	ASV	composition	(84%	of	tested	BTUs	at	the	95%	sim-
ilarity	 and	 65%	 at	 the	 97%	 similarity).	However,	 unlike	 reference-	
based	BTUs	analysis,	analysis	on	95%	or	97%	similarity-	based	BTUs	
identified additional sets of taxa exhibiting pronounced GM- host 
species specificity. These were assigned to the genera Ureaplasma, 
Mycoplasma, Catellicoccus, Aeromonas, Rickettsiella, and Wolbachia, 
along with few BTUs with ambiguous or any ASV assignment.

Finally,	 only	 two	 95%	 similarity-	based	 BTUs	 (both	 ambiguously	
assigned on genus level) exhibited significant compositional GM- host 
co- divergence (PCOMP	FDR <0.05)	and	two	other	95%	similarity-	based	
BTUs exhibited significant phylogenetic GM- host co- divergence 
(PPHYLO	 FDR <0.05),	 one	 of	 these	 assigned	 exclusively	 to	 genus	
Escherichia/Shigella, similarly as for the reference- based BTUs analysis.

4  |  DISCUSSION

In	line	with	our	previous	study	(Kropáčková	et	al.,	2017), our current 
analysis of whole GM community versus host co- divergence (based 

on all ASVs unpartitioned to BTUs) confirmed that host phylogeny 
acts as a significant predictor of GM variation between host spe-
cies. Importantly, host's phylogeny better explained GM variation 
than	geographic	effects	or	host's	ecological	divergence	(Kropáčková	
et al., 2017). This finding is also consistent with trends observed in 
studies on phylogenetically broader subsets of birds (Hird et al., 2015; 
Waite	&	Taylor,	2014). Nevertheless, despite being statistically sig-
nificant, the whole GM- host co- divergence explained a relatively 
small fraction of variation between the host species included in our 
study. This is in agreement with comparative GM analyses show-
ing generally weaker GM- host co- divergence in birds compared to 
other vertebrate groups and especially mammals (Song et al., 2020; 
Youngblut et al., 2019), likely due to flight adaptations that constrain 
digestive tract morphology and physiology (Bodawatta et al., 2021). 
Interestingly,	additional	analyses	in	(Kropáčková	et	al.,	2017) based 
on an approach of Sanders et al. (2014), did not support that GM- 
host co- divergence was driven by shared evolution between 
hosts and their microbes mediated by stable trans- generation GM 
transmission. As an alternative explanation, we proposed the co- 
divergence could arise as a by- product of host's traits not included 
in the analyses (e.g., immune system functions) that correlate with 
passerine phylogeny and shape their GM.

Here we focused on GM co- divergence in passerine species in 
more detail by quantifying the strength of GM- host co- divergence 
for individual ASVs grouped within distinct BTUs. Each BTU includes 
phylogenetically related ASVs and thus represents more relevant en-
tity for co- divergence analyses than unpartitioned profiles of all ASVs 
(i.e., whole GM community analyses). Such a decomposition allowed 
us to identify individual bacterial groups exhibiting tight associations 
with host species. If shared evolution between GM and their hosts 
was a dominating factor shaping GM- host co- divergence, one could 

F I G U R E  4 Whole	GM	community	
classified according to outcomes of 
BTU- level analyses. The figure depicts 
GM fractions that were not included in 
BTU- level analyses, where corresponding 
BTU level analysis was nonsignificant, 
significant or significant with high effect- 
size (R2adj/PCOMP/PPHYLO > 0.2).	GM	
fractions are expressed as (a) total number 
of ASVs or (b) proportion of all reads. 
Note that, while modest number of ASVs 
were actually tested, they represented the 
majority of all reads in the dataset
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expect to observe strong co- divergence signal also within individual, 
presumably monophyletic BTUs. However, contrary to this predic-
tion, we showed that just a limited fraction of BTUs exhibited signif-
icant co- divergence with the phylogeny of their hosts. Importantly 
this finding was robust against BTU definition method and the type 
of co- divergence analysis (i.e., PCOMP vs. PPHYLO). Thus, we argue 
that whole GM- host co- divergence is unlikely to be driven by ASVs 
co- divergence within individual BTUs and that host's shared evolu-
tionary history between passerines and their GM is not the major 
force driving interspecific GM divergence in passerines. Therefore, 
the whole GM community co- divergence is probably caused by 
abundance variation of unrelated ASVs that do not co- occur in the 
same	BTU.	In	a	previous	study	by	Kropáčková	et	al.	(2017),	16 s	rRNA	
reads were clustered into Operational Taxonomic Units assuming a 
range	of	 sequence	 similarity	 thresholds	 (91–	99%).	Variation	 in	 the	
relative abundances of these clusters was subsequently used to an-
alyze overall host- GM co- divergence. The resulting strength of the 
co- divergence signal did not increase as the similarity threshold for 
clustering increased. This suggests, in agreement with our study, 
that the whole GM co- divergence is caused by abundance changes 
of relatively unrelated bacteria between host species.

Also, we cannot exclude the possibility that ASVs from some low 
abundance BTUs (i.e. not included in BTU analysis) could have con-
tributed to the total co- divergence pattern.

In recent years, efforts to formalize a tight integration of GM 
into host biology in the evolutionary framework has resulted 
in the proposal of the “holobiont” concept (Zilber- Rosenberg 
&	 Rosenberg,	 2008). The original idea behind this framework 
(Bordenstein	&	Theis,	2015) assumes that the association between 
host and its microbiota exhibit pronounced stability over myriad of 
generations. This causes that host and the microbiota form a joint 
phenotype of evolutionary relevance where both these players un-
dergo similar selection pressures. Shared selection can promote mu-
tual host- GM co- evolution and other microevolutionary processes. 
However, such a radical view has also been a source of criticism 
(Douglas	&	Werren,	2016;	Moran	&	Sloan,	2015). Our study adds 
further piece of empirical evidence to this skepticism by showing 
that divergence of ASVs within individual BTUs rarely follows phy-
logenetic divergence of their passerine hosts and thus that GM- 
host association exhibit only a limited stability over evolutionary 
timescale.

Host species specificity analyses revealed that the majority of 
BTUs analyzed exhibited significant variation in the distribution of 
ASVs among host species, but this variation was mostly of moderate 
effect size. However, a few BTUs analyzed showed relatively high 
host species specificity, suggesting that there is a close association 
between host and specific bacterial ASVs within these bacterial 
clades. This could be consequence of several reasons, such as close 
connection of the host with sources of these bacteria (e.g., diet or 
habitat), or a fine- tuned intrinsic mechanism of the host selectively 
regulating the population of symbiotic bacteria. Although our con-
tribution is not directly aimed at testing these mechanisms, we be-
lieve it is useful to subject these BTUs for closer investigation for G
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possible	biological	function	 in	the	host.	We	point	out	namely	BTU	
derived from genus Candidatus Savagella, which is a member of the 
Segmented Filamentous Bacteria (SFB) group. These commensals 
bind specifically to the intestinal wall in many vertebrate species 
(Thompson et al., 2012) and play an important role in the devel-
opment of a host's innate and adaptive immune system (Hedblom 
et al., 2018) as well as provide immune system independent protec-
tion against specific pathogens (Shi et al., 2019). SFB host- species 
specificity has previously been demonstrated through experimental 
inoculation of germ- free rats and mice with ileal homogenate mix-
tures of both donor species, resulting in colonization by SFB derived 
from corresponding host species (Tannock et al., 1984). In this case, 
therefore, strong GM- host species specificity can be explained by 
host- GM adaptation through host immune system interaction. The 
genus Helicobacter, which includes several gut pathogens, also ex-
hibited a high level of host species specificity in this study, which 
is	 consistent	 with	 the	 results	 of	 previous	 studies	 (e.g.,	 Solnick	 &	
Schauer, 2001). Some members of the genus exhibit a tight asso-
ciation with their hosts, which is maintained by trans- generational 
transfer. This has been particularly documented in H. pylori, whose ge-
nomic divergence recapitulates historical differentiation and migra-
tion routes of human populations (Falush, 2003;	Wirth	et	al.,	2004). 
The shared evolutionary history of a host and its pathogens may also 
induce a high host- specific signal in other genera, including poten-
tially pathogenic species such as Brachyspira, Diplorickettsia, Yersinia, 
Rickettsiella, Ureaplasma, Mycoplasma, Clostridium (sensu stricto), and 
Escherichia/Shigella. Genus Carnobacterium, which showed a strong 
host- specific signal in our BTU analysis, produces a number of bac-
teriocins that inhibit the growth of potential competitors, including 
pathogenic Listeria	 (Pilchová	et	al.,	2016). Such a feature could be 
favored by the host as it contributes to the maintenance of GM- 
community homeostasis. Another group of reference- based BTUs 

exhibiting high host- specific signals, which included the cellulase- 
positive genus Cellulomonas and a number of lactic acid bacteria 
(Enterococcus, Lactococcus, and Catellicoccus), was characterized by 
complex carbohydrate utilization, giving them the potential to pro-
vide additional nutrients from compounds not degradable by the 
host	(Jami	et	al.,	2013). In the case of Lactococcus and Enterococcus, 
ASV distribution was also correlated with host species phylogeny. 
A very high level of host species specificity has previously been 
demonstrated for Lactococcus in humans, other various mammals 
and poultry (Santagati et al., 2012). In addition to the above men-
tioned groups, Wolbachia and Arsenophonus, which include oblig-
atory insect symbionts (Gherna et al., 1991; Sharon et al., 2010) 
were also unevenly distributed among the passerine species sam-
pled, possibly as a consequence of interspecific differences in diet 
composition.

In conclusion, we have shown that using individual BTUs to 
analyze various aspects of GM variability (host species specificity 
and co- divergence with host phylogeny in our particular case) can 
provide valuable insights that cannot be achieved with traditional 
whole- GM community approaches. In particular, based on low 
host versus GM co- divergence at the BTU level, we propose that 
a shared phylogenetic history between the host and its GM is not 
the major force driving passerine GM diversity or co- divergence be-
tween host phylogeny and GM composition. This represents a po-
tentially valuable contribution to the recent debate on the nature 
of coexistence of bacterial communities associated with vertebrate 
host	(Bordenstein	&	Theis,	2015;	Douglas	&	Werren,	2016; Moran 
&	Sloan,	2015;	Rosenberg	&	Zilber-	Rosenberg,	2011). At the same 
time, however species specificity at the BTU level was commonly 
detected in our dataset. Based on the features of the reference- 
based BTUs showing high level of host species specificity, our results 
suggest the existence of a range of mechanisms contributing to this 

F I G U R E  5 Variation	in	resulting	effect	
sizes among BTU definition methods. 
Box- plots showing R2adj values in the 
case of GM- host species specificity and 
Procrustes correlation coefficients in the 
case of PCOMP or PPHYLO using different 
methods of BTU definition. Outliers are 
marked by black points
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variation. At present, however, the proposed explanations for these 
mechanisms are based on putative interactions that require further 
investigation.
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