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1  |  INTRODUC TION

Multicellular eukaryotic lifeforms are inevitably exposed to inter-
actions with microorganisms, including bacteria, throughout their 
phylogeny and ontogeny (McFall-Ngai et al., 2013). In animals, the 

quantity of associated bacterial cells represents a significant fraction 
of all cells forming the host's body (Sender et al.,  2016). A similar 
situation applies for the total gene count of the bacterial commu-
nity, which outnumbers the host's gene count by a factor of approx. 
100 (Qin et al.,  2010). The most abundant and functionally rich 
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Abstract
Gut microbiota (GM) often exhibit variation between different host species and co-
divergence with hosts' phylogeny. Identifying these patterns is a key for understand-
ing the mechanisms that shaped symbiosis between GM and its hosts. Therefore, 
both GM-host species specificity and GM-host co-divergence have been investigated 
by numerous studies. However, most of them neglected a possibility that different 
groups of bacteria within GM can vary in the tightness of their association with the 
host. Consequently, unlike most of these studies, we aimed to directly address how 
the strength of GM-host species specificity and GM-host co-divergence vary across 
different GM clades. We decomposed GM communities of 52 passerine species (394 
individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into 
monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of 
host species specificity and correlation with host phylogeny separately for resulting 
BTUs. We found that most BTUs exhibited significant host-species specificity in their 
composition. Notably, BTUs exhibiting high host-species specificity comprised bac-
terial taxa known to impact host's physiology and immune system. However, BTUs 
rarely displayed significant co-divergence with host phylogeny, suggesting that pas-
serine GM evolution is not shaped primarily through a shared evolutionary history 
between the host and its gut microbes.
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host-associated bacterial community is found in the gut (gut mi-
crobiota, GM) (Marietta et al., 2015; Suau et al., 1999). As the gut 
wall represents one of the largest body surfaces in total area, it is 
broadly assumed that the GM possesses great potential to influ-
ence the host's physiology, immune system, or cognitive function 
(Bäckhed et al., 2005; Eckburg et al., 2005; Hedblom et al., 2018; 
Heijtz et al.,  2011). Empowered by increased availability of high-
throughput sequencing, a plethora of findings over past de-
cades have shown GM to be a crucial factor affecting host fitness 
(Bordenstein & Theis, 2015; Brucker & Bordenstein, 2013; Hooper 
et al., 2012; Sharon et al., 2010).

During both early life and adulthood, individuals are continu-
ously colonized by bacteria of different origins. The most obvious 
GM sources are pools of environmental bacteria present in the 
host's physical surroundings (Sullam et al., 2012). Alternatively, GM 
can be transferred via social contacts with conspecifics (Colston & 
Jackson, 2016). At the same time, animal hosts are capable of reg-
ulating microbiota by various means, for example, by immune sys-
tem utilities, making host genetic background an important factor 
shaping GM diversity (Marietta et al., 2015; Spor et al., 2011). This 
commonly results in variation in GM composition among different 
host species, that is, GM-host species specificity.

It has been suggested that a host benefits from harboring a tax-
onomically and functionally stable GM community, and conserv-
ing such an association (Bäckhed et al.,  2005; Knutie et al.,  2017; 
Sanders et al., 2014), as it leads to a reduction in mutually harmful 
interactions and the emergence of commensal/mutualistic associ-
ations (Parker et al., 2017). At the proximal level, such a tight and 
stable association can be mediated either by the stable transfer of 
microbes from the environment or by trans-generational transfer 
among members of a given host species. A stable host versus micro-
biota association, persisting over multiple generations and speciation 
events, often results in co-divergence between hosts' phylogeny 
and their GM (Bordenstein & Theis, 2015). However, co-divergence 
can also arise as an epiphenomenon of host traits that are linked to 
its phylogeny and that selectively filter for environmental microbes. 
GM-host co-divergence has been demonstrated in mammals, where 
host phylogeny, along with diet, significantly influences GM com-
position and diversity (Davenport, 2016; Ley et al., 2008; Moeller 
et al., 2016). Persuasive evidence of trans-generation transfer and 
co-divergence with hosts comes from obligatory bacterial symbi-
onts of some insect groups (Weiss et al.,  2012). These symbionts 
are unable to persist outside their hosts and some insect species 
have even developed specialized organs to harbor such microbes 
(Baumann,  2005). Symbiotic microbes are suspected of playing a 
direct role in speciation processes, such as assortative mating and 
fitness decrease in interspecific hybrids due to disruption of host 
versus microbiota co-adaptations (Brucker & Bordenstein, 2013). At 
the same time, however, it is important to denote that co-divergence 
does not necessarily imply co-evolution between host and its GM. 
Although many GM bacteria evolved adaptation to specific hosts that 
enables them to follow its phylogeny, well-supported cases when 

host developed specific adaptations to specific bacterial symbiont 
are rather unique (Douglas & Werren, 2016; Moran & Sloan, 2015).

One of the potential bottlenecks associated with research on 
GM variation arises from the complexity of GM structure. Insights 
into GM variation are usually gained through analyses at the beta 
diversity level of all detected bacteria, that is, the “whole GM com-
munity” (Bodawatta et al.,  2021; Brooks et al.,  2016; Capunitan 
et al., 2020; Hird et al., 2015; Trevelline et al., 2020). However, such 
an approach may prevent a more realistic insight into the complex-
ity of host versus GM interactions. Indeed, different phylogenetic 
clades of GM bacteria may exhibit distinct modes of interactions 
with their hosts (Davenport et al., 2015; Douglas & Werren, 2016; 
Youngblut et al., 2019). To overcome potential problems associated 
with the fact that different GM components exhibit a heteroge-
neous response to a tested variable (e.g., host phylogeny and diet), 
some previous studies have decomposed GM into subsets usually 
defined by the taxonomic identity of the bacteria they contain. 
Then, for each of these subsets, the strength of association between 
the variable tested and the variation in composition within each of 
the GM the subsets was examined. This allowed the identification of 
GM subsets that respond strongly (or weakly) to the tested variable 
(Dewar et al., 2013; Houtz et al., 2021; Youngblut et al., 2019). We 
believe that similar approaches can provide novel insight into pat-
terns of GM diversity and will be particularly valuable for research 
on GM-host co-divergence and specificity.

In our current contribution, we focused on GM vs host species 
co-divergence in passerine birds that represent a promising model 
system for such research. Being evolutionary and ecologically the 
most diversified avian group, they span a wide spectrum of habi-
tats, resulting in differing demands on host-microbiome interactions. 
Despite recent radiation (approx. 22 million years ago), their phy-
logeny is mostly well resolved (Jetz et al., 2012; Moyle et al., 2016) 
and a plethora of life history traits have been documented, providing 
a strong background for the proposed analysis. So far, there is an 
agreement that host species identity is a considerable factor shaping 
GM of birds, but to lesser extent than in other vertebrate clades, 
such as mammals (Song et al., 2020; Trevelline et al., 2020; Youngblut 
et al., 2019, but see Cho & Lee, 2020; Lewis et al., 2017). Similarly, 
host ecology seems to play less important role in birds compared to 
mammals (Song et al., 2020). Such peculiarity may have arisen due 
to adaptations of avian digestive system to flight, constraining rela-
tive size of individual internals (Bodawatta et al., 2021). Specifically, 
caeca and other parts of the digestive system are typically re-
duced in passerines, resulting in lesser potential for physiologically 
significant and stable host–microbiota interactions (Bodawatta 
et al.,  2022; Caviedes-Vidal et al.,  2007). Major differences be-
tween GM of mammals and birds are found also in representation 
of major bacterial phyla. There is higher proportion of Proteobacteria 
and Actinobacteria in GM of birds (Capunitan et al.,  2020; Grond 
et al.,  2018) including passerines (Kropáčková et al.,  2017), while 
Bacteroidetes and Firmicutes typically dominate mammalian GM (Ley 
et al., 2008).
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In our previous contribution, we found that passerine GM 
composition exhibited only mild interspecific differences that 
were, to a large extent, correlated with hosts phylogeny but, 
surprisingly, not with their ecology (Kropáčková et al.,  2017). 
However, the basis of these patterns has yet to be uncovered. 
Specifically, the observed interspecific differences in GM, as well 
as GM vs. host phylogeny correlations, could be driven by just 
a few bacterial clades, while the rest of the GM community has 
no dependence on host species. Here, we aimed to address how 
different bacterial clades contribute to interspecific variance of 
the host and co-divergence at the whole GM community level. To 
achieve this goal, we analyzed passerine GM profiles in three sub-
sequent steps: First we applied precise clustering-free approach 
(Callahan et al.,  2016) to identify distinct 16S rRNA haplotypes 
(hereafter ASVs, i.e., Amplicon Sequence Variants) and to quan-
tify their relative abundances in each sample. Next, motivated by 
previous studies that have performed analyses separately for indi-
vidual subgroups of the entire GM (e.g., Dewar et al., 2013; Houtz 
et al.,  2021; Youngblut et al.,  2019), we decomposed the entire 
GM community into presumably monophyletic ASVs subunits and 
hereafter referred to these as Binned Taxonomic Units (BTUs). We 
considered two approaches of BTU definition, (1) the “reference-
based,” where we binned individual ASVs according to their genus-
level taxonomic assignment and (2) the “reference-free,” where 
we binned ASVs based on their 16S rRNA sequence similarity 
(see Methods section for more details). Finally, we quantified the 
strength of GM-host species specificity and GM-host species co-
divergence independently for each of these BTUs. This approach 
allows us to draw conclusions at the level of particular groups of 
bacteria (represented by individual BTUs), which is useful for iden-
tifying BTUs that drive host species specificity or co-divergence at 
the level of the entire GM.

2  |  MATERIAL AND METHODS

2.1  |  Field sampling and microbiota genotyping

In this study, we analyzed data on passerine GM that were already 
published in Kropáčková et al. (2017). We collected 480 fecal sam-
ples from 57 species during the breeding season (April–July 2014) 
across various sites in the Czech Republic. But due to unsuccessful 
polymerase chain reaction (PCR) or low number of reads (detailed 
below), only 394 GM profiles from different individuals covering 52 
passerine species (51% of all passerine species breeding in the Czech 
Republic) were included in the final dataset and subsequent analy-
ses (see Table S1). Birds were caught using mist nets and placed in 
a single-use disposable paper bag for approx. 5–10 min. Fecal sam-
ples were harvested from the bag using sterile microbiological swabs 
(minitip FLOQSwabs, Copan, Italy) and transferred to sterile cryo-
tubes (Simport, Canada) which were then filled with an in-house pre-
pared DNA/RNA stabilizing solution. The samples were then cooled 
to −80°C within 5 days and stored until further analysis.

Fecal metagenomic DNA was extracted in a laminar flow cab-
inet using the PowerSoil DNA isolation kit (MO BIO Laboratories 
Inc., USA). Following the recommendations of Klindworth 
et al.  (2013), primers covering the V3–V4 variable region of bac-
terial 16S rRNA were used during the PCR step. Both forward and 
reverse primers were tagged with 10-bp barcodes for subsequent 
sample demultiplexing during bioinformatic processing. The sam-
ples were then pooled at equimolar concentration and run on 1.5% 
agarose gel, with bands of appropriate size excised from the gel 
and purified using the High Pure PCR product Purification Kit 
(Roche, Switzerland), according to the manufacturer's instruc-
tions. Sequencing adaptors were ligated using TruSeq nano DNA 
library preparation kits (Illumina, USA) and the resulting amplicon 
libraries sequenced in a single MiSeq run (Illumina, USA) using 
v3 chemistry and 2  × 300 nt paired-end configuration. For more 
detailed protocols on field sampling, wet lab procedures and se-
quencing methods, see Kropáčková et al. (2017).

2.2  |  Computational procedures

Our aim was to decompose the GM community to putatively mono-
phyletic bacterial subunits (hereafter BTU, i.e., Binned Taxonomic 
Unit), and subsequently to quantify the strength of GM versus host 
species co-divergence for each of these subunits. To address these 
objectives, computational procedures comprised three major stages: 
1. GM profiling that constituted identification and quantification of 
ASVs, 2. BTUs definition, and 3. quantification of GM-host species 
specificity and co-divergence at the BTUs level based on ASVs vari-
ation within each BTU (for an overview of the computational proce-
dure design, see Figure 1).

2.2.1  |  GM profiling

We used the DADA2 program (Callahan et al., 2016) for read qual-
ity filtering (per paired-end read expected error rate <1), read 
pair merging and ASV identification. This approach outperforms 
methods relying on similarity-based clustering into Operational 
Taxonomic Units (OTUs) through its use of a real variant inference 
algorithm. Unlike clustering approaches, DADA2 rather corrects se-
quencing errors, resulting in the formation of more reliable biological 
units (ASVs). Importantly, DADA2 can detect variation up to single 
base pair differences, which far exceeds the resolution provided by 
standard clustering algorithms. USEARCH (Edgar, 2010), alongside 
the gold.fna database (available at http://sourc​eforge.net/proje​cts/
micro​biome​util), was subsequently used for the detection and elimi-
nation of chimeric ASVs. The resulting ASV abundance matrices, 
along with sample data, were then merged into PHYLOSEQ-class 
objects in R for further analysis (McMurdie & Holmes, 2013; R Core 
Team, 2015).

ASV taxonomy was assigned using the RDP classifier (Wang 
et al., 2007) and the Silva Reference Database version 123 (Quast 

http://sourceforge.net/projects/microbiomeutil
http://sourceforge.net/projects/microbiomeutil
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et al.,  2013), using a default minimum bootstrap confidence value 
of 50 for assigning up to a given taxonomic level. All ASVs unas-
signed to at least phylum level, or those assigned as Chloroplasts, 
Archea or mitochondria, were discarded from further analysis, as 
were samples with <1000 reads in total. The final filtered dataset 
included samples for 394 individuals from 52 species (median = 8 
samples per species), represented by 2,353,438 high-quality reads 
assigned to 10,583 ASVs. Average number of reads per sample was 
5973.2 ± 242.9 SE.

2.2.2  |  Reference-based and reference-free 
BTUs definition

We applied two distinct approaches for defining putatively mono-
phyletic BTUs. In the case of reference-based approach, we grouped 
ASVs based on genus-level assignment, resulting in 70.7% of ASVs 
being assigned to 862 known genera (i.e., reference-based BTUs). 
However, bacterial taxonomy undergoes rapid evolution and thus 
there are inconsistencies between different taxonomic databases 
(Balvočiūtė & Huson, 2017). Also, ASVs with no genus-level assign-
ment cannot be used. Moreover, there is pronounced variation in 
sequence similarity between genus-level bins.

To circumvent these issues, we also applied reference-free 
BTUs definition based on ASVs clustering into putatively mono-
phyletic subunits according to their 16S rRNA marker sequence 
similarity. While there is no universal 16S rRNA similarity thresh-
old for bacterial clade delimitation, a sequence similarity of 
97–98.65% has been suggested as an approximate threshold de-
limiting bacterial species (Kim et al.,  2014). Hence, we grouped 
ASVs exhibiting >97% sequence similarity in order to acquire 
biologically meaningful clusters (i.e., 97% similarity-based BTUs, 

see Figure 1). Finally, ASVs were clustered using a 95% similarity 
threshold (i.e., 95% similarity-based BTUs) to explore GM diversity 
patterns at a higher taxonomic level corresponding approximately 
to bacterial genera (Yarza et al., 2014, but see Beye et al., 2018; 
Rossi-Tamisier et al., 2015).

In order to cluster ASVs in the reference-free way, we used the 
approach proposed in the R package DECIPHER (Wright, 2015) and 
VSEARCH (Rognes et al.,  2016) clustering, that is widely used for 
16S rRNA amplicon sequencing data. Both these methods showed 
comparable results, though DECIPHER resulted in less taxonom-
ically ambiguous and more significant BTUs (Table  S4). Moreover, 
DECIPHER, but not VSEARCH (and other traditional greedy clus-
tering algorithms as well), implicitly accounts for phylogenetic re-
latedness of 16 s rRNA sequences. Therefore, we based our results 
on DECIPHER clustering. In the case of DECIPHER approach, ASV 
marker sequences were aligned using the ALIGNSEQS function. 
Next, a distance matrix based on Hamming distances between 
aligned ASVs was computed assuming the Jukes–Cantor substitu-
tion model. Finally, ASVs were clustered into monophyletic units 
based on the distance matrix using the IDCLUSTERS function, 
using the complete-linkage criterion. In this way, all ASVs in a given 
BTU shared at least the pre-defined sequence similarity value. We 
identified total of 2664 95% similarity-based BTUs and 3932 97% 
similarity-based BTUs. For all subsequent analyses, we only selected 
BTUs represented by at least 5000 reads and 10 bacterial ASVs, 
BTUs not meeting these criteria being omitted in order to avoid spu-
rious results. These thresholds were defined based on a pilot analysis 
showing that variation in the strength of interspecific signal and co-
divergence was inordinate in the case of low diversity (consisting of 
<10 ASVs) and/or rare BTUs (< 5000 reads). The filtering criteria ap-
plied resulted in selection of 49 reference-based BTUs (median = 40 
ASVs), representing 71% of all reads; 58 95% similarity-based BTUs 

F I G U R E  1 Analytical approach used in our study. 1. GM profiling: Raw paired-end reads were merged and sequencing errors were 
corrected by DADA2 to obtain amplicon sequence variants (ASVs). 2. BTUs definition: ASVs were grouped to BTUs using three methods in 
parallel, namely a) reference based taxonomic assignment of ASVs to genus level and reference free methods defining BTUs sharing at least 
b) 95% or c) 97% ASVs sequence similarity, based on distance matrix. 3. Quantification of GM-host species specificity and co-divergence at 
the BTU level: Several tests for different aspects of GM diversity were conducted on ASVs distribution within individual BTUs, namely a) 
GM-host species specificity test based on permutational MANOVA of inter-sample GM composition distances (Bray–Curtis and Jaccard), 
b) compositional GM-host co-divergence test based on PACo analyses of inter-sample GM composition distances and host phylogeny, c) 
phylogenetical GM-host co-divergence test based on PACo analyses of ASVs phylogeny within individual BTUs and hosts phylogeny
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BTUs (median = 28.5 ASVs), representing 70% of all reads; and 57 
97% similarity-based BTUs (median = 20 ASVs), representing 57% 
of all reads.

2.2.3  |  Quantification of GM-host species 
specificity and co-divergence at the BTUs level

We calculated dissimilarities in ASVs composition among samples 
separately for each BTU using two methods, Bray–Curtis and the 
binary version of Jaccard distance. The Bray–Curtis method quan-
tifies the compositional dissimilarity between samples while con-
sidering the quantity of ASVs in individual samples. Binary version 
of Jaccard distance (Jaccard method applied to presence or ab-
sence scaled ASV abundances), on the other hand, only evaluates 
ASV presence and absence, which makes it more sensitive to the 
appearance of rare bacterial groups. ASV abundance was trans-
formed to the proportion of total library sizes for each sample 
prior to dissimilarity computation. In parallel with the Jaccard and 
Bray–Curtis dissimilarities, we also performed GM-host species 
specificity analyses using weighted and unweighted UniFrac dis-
similarities that account for bacterial phylogeny by downweighting 
the divergence caused by related bacterial ASVs. The strength of 
GM-host species specificity analyses at the BTU level for UniFrac 
dissimilarities was comparable to those for their phylogenetically 
naive counterparts (Jaccard and Bray–Curtis) and thus we do 
not report these results further. On the other hand, we did not 
use UniFrac for co-divergence analyses because the reduction in 
importance of closely related ASVs makes interpretation of the 
corresponding results problematic, except in certain cases (e.g., 
Kropáčková et al., 2017; Sanders et al., 2014).

To assess the strength of GM-host species specificity for each 
BTU, PERMANOVA (i.e., Permutational Multivariate Analysis 
of Variance for distance matrices; R package VEGAN, Oksanen 
et al., 2016) was applied. To test whether phylogenetic divergence 
between species was correlated with community divergence at 
the level of each BTU, we used PACo (Procrustean Approach to 
Cophylogeny) analysis (Balbuena et al., 2013) that was originally de-
veloped for the assessment of host versus parasite cophylogeny.

In the case of PERMANOVA analysis, we included host species 
identity as an explanatory variable and the dissimilarity matrix for 
each BTU (scaled using both distance methods) as a response. We 
did not include host species life histories traits or other ecological 
features as explanatory variable, as they have little effect on GM 
in this dataset (Kropáčková et al.,  2017) and PERMANOVA is not 
suitable for these types of analyses, as it cannot account for the 
dependence of ecological traits on host phylogeny. Statistical sig-
nificance was assessed using 10,000 permutation rounds. To allow 
direct comparisons between BTUs, adjusted R2 coefficients (R2adj), 
that is, the proportion of variance explained by species identity cor-
rected for different degrees of freedom and number of observations 
in species/individuals hosting a given BTUs, were calculated for 
each BTU analyzed (Legendre et al., 2011). In effect, therefore, R2adj 

represents the strength of GM-host species specificity of ASVs 
within each BTU.

As an explanatory variable for PACo analysis, we used cophe-
netic distances between host species that were extracted from 
consensual phylogeny calculated based on a set of 1000 Bayesian 
trees with Hackett backbone (obtained from http://birdt​ree.org/; 
Jetz et al.,  2012). In order to quantify compositional GM-host co-
divergence strength (PCOMP), a PACo response was considered 
as either the Bray–Curtis or Jaccard GM dissimilarities for ASVs 
within individual BTUs. Though this approach has been commonly 
used in many previous studies on host versus GM co-divergence 
(Capunitan et al., 2020; Hird et al., 2015; Song et al., 2020; Youngblut 
et al., 2019), it completely ignores bacterial phylogeny, that can be 
crucial in this particular context. Therefore, in parallel to traditionally 
used community dissimilarities associated with PCOMP, we also ana-
lyzed phylogenetic GM-host co-divergence (PPHYLO), which is based 
on the genetic distance among ASVs within a given BTU. Genetic 
distances were calculated with DIST.DNA function from R package 
APE (Paradis et al.,  2004) after their marker sequence alignment 
(using the same algorithm described above). A suitable substitution 
model for the distance calculation was selected separately for each 
BTU based on the lowest AICc using the MODELTEST function from 
the R package PHANGORN (Schliep, 2011). Both explanatory (host 
species phylogeny) and response (phylogeny or diversity of ASVs) 
distance matrices were scaled using Principal Coordinate Analysis 
(PCoA) prior to PACo fitting and the resulting PCoA score matrices 
were used as PACo inputs. As a result, we obtained Procrustes cor-
relation coefficients expressing strength of co-divergence in each 
BTU. Significance testing was based on a comparison of observed 
versus permuted Procrustes sum of squares (n = 10,000 permuta-
tions). To account for the fact that we typically analyzed multiple 
samples for each species, species identity was reshuffled across 
blocks of species-specific samples during the permutation routine, 
as described in Kropáčková et al. (2017).

In addition, we also used the Mantel test to quantify the cor-
relation of host phylogeny and GM composition divergence at the 
level of individual BTUs. We compared Bray–Curtis GM dissimilar-
ities based on GM profiles averaged per host species against host 
cophenetic distances (the same as in PACo analysis). We found 
out that Mantel test exhibited uniformly insignificant results for all 
BTUs, while the respective effect sizes (Mantel's r) correlated tightly 
with the PACo correlation coefficients. Because of the known con-
cerns with using Mantel tests in different contexts, including phylo-
genetic comparative methods (Guillot & Rousset, 2013; Harmon & 
Glor, 2010), we decided to base our analyses on the PACo approach.

For both PERMANOVA and PACo, False Discovery Rates (FDR; 
Benjamini & Hochberg, 1995) were applied in order to reduce false 
positives due to multiple testing.

Finally, we also analyzed overall GM-host species specificity (rep-
resented by R2) and overall compositional GM-host co-divergence 
(PCOMP) for the full dataset unpartitioned to BTUs (the non-binned 
raw ASV data, i.e., whole GM community analysis) and compared 
these results with patterns obtained for individual BTUs.

http://birdtree.org/
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3  |  RESULTS

3.1  |  Whole GM community analysis summary

Using the full dataset unpartitioned to BTUs, we observed signifi-
cant GM-host species specificity (R2 = 0.21, p < .001 for Bray–Curtis 
and R2  = 0.18, p  < .001 for Jaccard) and significant compositional 
GM-host co-divergence (PCOMP = 0.35, p = .015 for Bray–Curtis and 
PCOMP = 0.34, p = .018 for Jaccard).

3.2  |  Variation between BTU definition 
methods and co-divergence metrics

Analyses of GM-host species specificity and compositional GM-
host co-divergence running on Bray–Curtis and Jaccard distances 
provided highly congruent result (Kendall's τ > 0.81, p < .001 for all 
comparisons) irrespective of BTU definition method (i.e., reference-
based BTUs, 97% or 95% similarity-based BTUs; Figure S1). As such, 
further discussion is restricted to analysis based on Jaccard distance 
only.

In the case of reference-based BTUs, GM-host species specific-
ity (R2adj) exhibited a significant correlation, though of small effect 
size, with compositional GM-host co-divergence (PCOMP) (Kendall's 
τ = 0.21, p = .03). This was not true for analyses on 95% similarity-
based BTUs (Kendall's τ  =  0.14, p  = .12) and 97% similarity-based 
BTUs (Kendall's τ = 0.1, p = .28; Figure 2). Furthermore, both GM-
host species specificity and compositional GM-host co-divergence 

correlated with phylogenetic GM-host co-divergence (PPHYLO) 
among individual BTUs for all BTU definition methods (Kendall's 
τ > 0.23, p < .011; Figure 2).

3.3  |  Reference-based BTUs analysis

GM-host species specificity was significant (FDR < 0.05) for the 
majority (75%) of the 49 reference-based BTUs examined, though 
overall effect sizes were moderate (R2adj  < 0.2) in most cases 
(Figure 3, Tables S2 and S3). Nevertheless, a subset of 10 reference-
based BTUs, represented by 13% of all reads and 3% of all ASVs 
(Figure 4), exhibited a high degree of GM-host species specificity 
(R2adj ≥0.2, FDR <0.05; Table 1). The strength of GM-host species 
specificity for all ASVs included in these 10 BTUs (286 ASVs in total) 
was markedly higher (R2adj = 0.131, p = .001) than GM-host spe-
cies specificity for all other ASVs not included in this subset (10,297 
ASVs in total; R2adj  =  0.053). These results were supported by 
permutation analysis, which showed that strength of GM-host spe-
cies specificity for the 286 ASVs whose incidence varied strongly 
between host species was significantly higher than GM-host spe-
cies specificity for 286 ASVs randomly picked from the full dataset 
(n = 9999 permutations, permutation-based p = .0002). The most 
abundant BTU exhibiting significant GM-host species specificity 
consisted of ASVs from the genera Candidatus Arthromitus. ASVs 
found in these BTUs are in fact members of the genera Candidatus 
Savagella, which had not been defined in the reference database by 
the time of its release.

F I G U R E  2 Correlations of test effect 
sizes in examined BTUs. Correlation 
of GM-host species specificity versus 
compositional and phylogenetic GM-host 
co-divergence among BTUs (represented 
by points). Only a subset BTUs passing 
filters for testing are shown. Kendall's tau 
was used as the correlation coefficient. 
The blue line and shaded area correspond 
to predictions of linear regression and 
95% confidence intervals, respectively. 
Only results for Jaccard distances are 
shown
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Unlike GM-host species specificity, compositional GM-host 
co-divergence was only significant for three of all the reference-
based BTUs tested, containing namely genera Lactococcus, 
Enterococcus and Clostridium (sensu stricto) 1 (see Figure  S3). 

Analysis of phylogenetic GM-host co-divergence identi-
fied three significantly co-diverging bacterial genera, namely 
Curtobacterium, Lactococcus, and Escherichia/Shigella (FDR < 0.05; 
Table 1, Figure 3).

F I G U R E  3 Heatmap of measured 
effect sizes in tested reference-based 
BTUs. GM-host species specificity (R2adj) 
and compositional GM-host co-divergence 
(PCOMP) are based on Jaccard distances. 
* indicates significant result (FDR < 0.05), 
the dendrogram on the left represents 
phylogeny of the bacterial genera, that is, 
a phylogenetic tree based on 16S rRNA 
sequences extracted from GreenGenes 
database (97% OTUs tree version 12_10) 
formatted for the purpose of QIIME1)
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3.4  |  Reference-free BTUs analysis

Clustering ASVs based on similarity thresholds resulted in more BTUs 
of lower within-BTU ASV richness than BTUs defined by genus iden-
tity (see Table S2). The mean strength of GM-host species specificity 
tended to be higher for 97% and 95% similarity-based BTUs than for 
reference-based BTUs, but the difference lacked significance (ANOVA: 
F[2161]  = 1.154, p  = .318), with similar results obtained for phyloge-
netic GM-host co-divergence calculated for reference-based versus 
reference-free BTUs (ANOVA: F[2161] = 2.370, p = .097; Figure 5).

As with reference-based BTUs analysis, most similarity-based 
GM BTUs provided high support (FDR <0.05) for GM-host species 
specificity in ASV composition (84% of tested BTUs at the 95% sim-
ilarity and 65% at the 97% similarity). However, unlike reference-
based BTUs analysis, analysis on 95% or 97% similarity-based BTUs 
identified additional sets of taxa exhibiting pronounced GM-host 
species specificity. These were assigned to the genera Ureaplasma, 
Mycoplasma, Catellicoccus, Aeromonas, Rickettsiella, and Wolbachia, 
along with few BTUs with ambiguous or any ASV assignment.

Finally, only two 95% similarity-based BTUs (both ambiguously 
assigned on genus level) exhibited significant compositional GM-host 
co-divergence (PCOMP FDR <0.05) and two other 95% similarity-based 
BTUs exhibited significant phylogenetic GM-host co-divergence 
(PPHYLO FDR <0.05), one of these assigned exclusively to genus 
Escherichia/Shigella, similarly as for the reference-based BTUs analysis.

4  |  DISCUSSION

In line with our previous study (Kropáčková et al., 2017), our current 
analysis of whole GM community versus host co-divergence (based 

on all ASVs unpartitioned to BTUs) confirmed that host phylogeny 
acts as a significant predictor of GM variation between host spe-
cies. Importantly, host's phylogeny better explained GM variation 
than geographic effects or host's ecological divergence (Kropáčková 
et al., 2017). This finding is also consistent with trends observed in 
studies on phylogenetically broader subsets of birds (Hird et al., 2015; 
Waite & Taylor, 2014). Nevertheless, despite being statistically sig-
nificant, the whole GM-host co-divergence explained a relatively 
small fraction of variation between the host species included in our 
study. This is in agreement with comparative GM analyses show-
ing generally weaker GM-host co-divergence in birds compared to 
other vertebrate groups and especially mammals (Song et al., 2020; 
Youngblut et al., 2019), likely due to flight adaptations that constrain 
digestive tract morphology and physiology (Bodawatta et al., 2021). 
Interestingly, additional analyses in (Kropáčková et al., 2017) based 
on an approach of Sanders et al.  (2014), did not support that GM-
host co-divergence was driven by shared evolution between 
hosts and their microbes mediated by stable trans-generation GM 
transmission. As an alternative explanation, we proposed the co-
divergence could arise as a by-product of host's traits not included 
in the analyses (e.g., immune system functions) that correlate with 
passerine phylogeny and shape their GM.

Here we focused on GM co-divergence in passerine species in 
more detail by quantifying the strength of GM-host co-divergence 
for individual ASVs grouped within distinct BTUs. Each BTU includes 
phylogenetically related ASVs and thus represents more relevant en-
tity for co-divergence analyses than unpartitioned profiles of all ASVs 
(i.e., whole GM community analyses). Such a decomposition allowed 
us to identify individual bacterial groups exhibiting tight associations 
with host species. If shared evolution between GM and their hosts 
was a dominating factor shaping GM-host co-divergence, one could 

F I G U R E  4 Whole GM community 
classified according to outcomes of 
BTU-level analyses. The figure depicts 
GM fractions that were not included in 
BTU-level analyses, where corresponding 
BTU level analysis was nonsignificant, 
significant or significant with high effect-
size (R2adj/PCOMP/PPHYLO > 0.2). GM 
fractions are expressed as (a) total number 
of ASVs or (b) proportion of all reads. 
Note that, while modest number of ASVs 
were actually tested, they represented the 
majority of all reads in the dataset
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expect to observe strong co-divergence signal also within individual, 
presumably monophyletic BTUs. However, contrary to this predic-
tion, we showed that just a limited fraction of BTUs exhibited signif-
icant co-divergence with the phylogeny of their hosts. Importantly 
this finding was robust against BTU definition method and the type 
of co-divergence analysis (i.e., PCOMP vs. PPHYLO). Thus, we argue 
that whole GM-host co-divergence is unlikely to be driven by ASVs 
co-divergence within individual BTUs and that host's shared evolu-
tionary history between passerines and their GM is not the major 
force driving interspecific GM divergence in passerines. Therefore, 
the whole GM community co-divergence is probably caused by 
abundance variation of unrelated ASVs that do not co-occur in the 
same BTU. In a previous study by Kropáčková et al. (2017), 16 s rRNA 
reads were clustered into Operational Taxonomic Units assuming a 
range of sequence similarity thresholds (91–99%). Variation in the 
relative abundances of these clusters was subsequently used to an-
alyze overall host-GM co-divergence. The resulting strength of the 
co-divergence signal did not increase as the similarity threshold for 
clustering increased. This suggests, in agreement with our study, 
that the whole GM co-divergence is caused by abundance changes 
of relatively unrelated bacteria between host species.

Also, we cannot exclude the possibility that ASVs from some low 
abundance BTUs (i.e. not included in BTU analysis) could have con-
tributed to the total co-divergence pattern.

In recent years, efforts to formalize a tight integration of GM 
into host biology in the evolutionary framework has resulted 
in the proposal of the “holobiont” concept (Zilber-Rosenberg 
& Rosenberg,  2008). The original idea behind this framework 
(Bordenstein & Theis, 2015) assumes that the association between 
host and its microbiota exhibit pronounced stability over myriad of 
generations. This causes that host and the microbiota form a joint 
phenotype of evolutionary relevance where both these players un-
dergo similar selection pressures. Shared selection can promote mu-
tual host-GM co-evolution and other microevolutionary processes. 
However, such a radical view has also been a source of criticism 
(Douglas & Werren, 2016; Moran & Sloan, 2015). Our study adds 
further piece of empirical evidence to this skepticism by showing 
that divergence of ASVs within individual BTUs rarely follows phy-
logenetic divergence of their passerine hosts and thus that GM-
host association exhibit only a limited stability over evolutionary 
timescale.

Host species specificity analyses revealed that the majority of 
BTUs analyzed exhibited significant variation in the distribution of 
ASVs among host species, but this variation was mostly of moderate 
effect size. However, a few BTUs analyzed showed relatively high 
host species specificity, suggesting that there is a close association 
between host and specific bacterial ASVs within these bacterial 
clades. This could be consequence of several reasons, such as close 
connection of the host with sources of these bacteria (e.g., diet or 
habitat), or a fine-tuned intrinsic mechanism of the host selectively 
regulating the population of symbiotic bacteria. Although our con-
tribution is not directly aimed at testing these mechanisms, we be-
lieve it is useful to subject these BTUs for closer investigation for G
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possible biological function in the host. We point out namely BTU 
derived from genus Candidatus Savagella, which is a member of the 
Segmented Filamentous Bacteria (SFB) group. These commensals 
bind specifically to the intestinal wall in many vertebrate species 
(Thompson et al.,  2012) and play an important role in the devel-
opment of a host's innate and adaptive immune system (Hedblom 
et al., 2018) as well as provide immune system independent protec-
tion against specific pathogens (Shi et al., 2019). SFB host-species 
specificity has previously been demonstrated through experimental 
inoculation of germ-free rats and mice with ileal homogenate mix-
tures of both donor species, resulting in colonization by SFB derived 
from corresponding host species (Tannock et al., 1984). In this case, 
therefore, strong GM-host species specificity can be explained by 
host-GM adaptation through host immune system interaction. The 
genus Helicobacter, which includes several gut pathogens, also ex-
hibited a high level of host species specificity in this study, which 
is consistent with the results of previous studies (e.g., Solnick & 
Schauer,  2001). Some members of the genus exhibit a tight asso-
ciation with their hosts, which is maintained by trans-generational 
transfer. This has been particularly documented in H. pylori, whose ge-
nomic divergence recapitulates historical differentiation and migra-
tion routes of human populations (Falush, 2003; Wirth et al., 2004). 
The shared evolutionary history of a host and its pathogens may also 
induce a high host-specific signal in other genera, including poten-
tially pathogenic species such as Brachyspira, Diplorickettsia, Yersinia, 
Rickettsiella, Ureaplasma, Mycoplasma, Clostridium (sensu stricto), and 
Escherichia/Shigella. Genus Carnobacterium, which showed a strong 
host-specific signal in our BTU analysis, produces a number of bac-
teriocins that inhibit the growth of potential competitors, including 
pathogenic Listeria (Pilchová et al., 2016). Such a feature could be 
favored by the host as it contributes to the maintenance of GM-
community homeostasis. Another group of reference-based BTUs 

exhibiting high host-specific signals, which included the cellulase-
positive genus Cellulomonas and a number of lactic acid bacteria 
(Enterococcus, Lactococcus, and Catellicoccus), was characterized by 
complex carbohydrate utilization, giving them the potential to pro-
vide additional nutrients from compounds not degradable by the 
host (Jami et al., 2013). In the case of Lactococcus and Enterococcus, 
ASV distribution was also correlated with host species phylogeny. 
A very high level of host species specificity has previously been 
demonstrated for Lactococcus in humans, other various mammals 
and poultry (Santagati et al., 2012). In addition to the above men-
tioned groups, Wolbachia and Arsenophonus, which include oblig-
atory insect symbionts (Gherna et al.,  1991; Sharon et al.,  2010) 
were also unevenly distributed among the passerine species sam-
pled, possibly as a consequence of interspecific differences in diet 
composition.

In conclusion, we have shown that using individual BTUs to 
analyze various aspects of GM variability (host species specificity 
and co-divergence with host phylogeny in our particular case) can 
provide valuable insights that cannot be achieved with traditional 
whole-GM community approaches. In particular, based on low 
host versus GM co-divergence at the BTU level, we propose that 
a shared phylogenetic history between the host and its GM is not 
the major force driving passerine GM diversity or co-divergence be-
tween host phylogeny and GM composition. This represents a po-
tentially valuable contribution to the recent debate on the nature 
of coexistence of bacterial communities associated with vertebrate 
host (Bordenstein & Theis, 2015; Douglas & Werren, 2016; Moran 
& Sloan, 2015; Rosenberg & Zilber-Rosenberg, 2011). At the same 
time, however species specificity at the BTU level was commonly 
detected in our dataset. Based on the features of the reference-
based BTUs showing high level of host species specificity, our results 
suggest the existence of a range of mechanisms contributing to this 

F I G U R E  5 Variation in resulting effect 
sizes among BTU definition methods. 
Box-plots showing R2adj values in the 
case of GM-host species specificity and 
Procrustes correlation coefficients in the 
case of PCOMP or PPHYLO using different 
methods of BTU definition. Outliers are 
marked by black points
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variation. At present, however, the proposed explanations for these 
mechanisms are based on putative interactions that require further 
investigation.

AUTHOR CONTRIBUTIONS
Jan Kubovčiak: Conceptualization (equal); formal analysis (lead); 
funding acquisition (equal); investigation (equal); visualization 
(lead); writing – original draft (equal); writing – review and editing 
(equal). Lucie Schmiedova: Formal analysis (equal); methodology 
(equal); writing – review and editing (supporting). Tomas Albrecht: 
Resources (equal). Martin Těšický: Resources (equal). Oldřich 
Tomášek: Resources (equal). Tereza Kauzálová: Resources (equal). 
Jakub Kreisinger: Conceptualization (equal); data curation (lead); 
funding acquisition (equal); investigation (equal); methodology 
(equal); supervision (lead); writing – original draft (equal); writing – 
review and editing (supporting).

ACKNOWLEDG MENTS
Computational resources were supplied by the project “e-
Infrastruktura CZ” (e-INFRA LM2018140) provided within the pro-
gram “Projects of Large Research, Development and Innovations 
Infrastructures.” We are thankful to Jean-Francois Martin for 
managing the sample sequencing and Kevin Roche for manuscript 
corrections.

CONFLIC T OF INTERE S T
All authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The sequencing data are archived in the European Nucleotide Archive 
under the accession number of the entire project PRJEB53462.

ORCID
Jan Kubovčiak   https://orcid.org/0000-0001-6446-9797 
Tomáš Albrecht   https://orcid.org/0000-0002-9213-0034 
Jakub Kreisinger   https://orcid.org/0000-0001-9375-9814 

R E FE R E N C E S
Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. 

(2005). Host-bacterial mutualism in the human intestine. Science, 
307, 1915–1920.

Balbuena, J. A., Míguez-Lozano, R., & Blasco-Costa, I. (2013). PACo: A 
novel Procrustes application to cophylogenetic analysis. PLoS ONE, 
8, e61048.

Balvočiūtė, M., & Huson, D. H. (2017). SILVA, RDP, Greengenes, NCBI 
and OTT - how do these taxonomies compare? BMC Genomics, 18, 
114.

Baumann, P. (2005). Biology of bacteriocyte-associated endosymbionts 
of plant sap-sucking insects. Annual Review of Microbiology, 59, 
155–189.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: 
A practical and powerful approach to multiple testing. Journal of the 
Royal Statistical Society, Series B, 57, 289–300.

Beye, M., Fahsi, N., Raoult, D., & Fournier, P. E. (2018). Careful use of 
16S rRNA gene sequence similarity values for the identification of 
mycobacterium species. New Microbes New Infect, 22, 24–29.

Bodawatta, K. H., Klečková, I., Klečka, J., Pužejová, K., Koane, B., Poulsen, 
M., Jønsson, K. A., & Sam, K. (2022). Specific gut bacterial responses 
to natural diets of tropical birds. Scientific Reports, 12, 713.

Bodawatta, K. H., Koane, B., Maiah, G., Sam, K., Poulsen, M., & Jønsson, 
K. A. (2021). Species-specific but not phylosymbiotic gut microbi-
omes of New Guinean passerine birds are shaped by diet and flight-
associated gut modifications. Proceedings of the Royal Society B: 
Biological Sciences, 288, rspb.2021.0446.

Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the 
microbiome: Ten principles of holobionts and hologenomes. PLoS 
Biology, 13, e1002226.

Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J., & Bordenstein, 
S. R. (2016). Phylosymbiosis: Relationships and functional effects 
of microbial communities across host evolutionary history. PLoS 
Biology, 14, e2000225.

Brucker, R. M., & Bordenstein, S. R. (2013). The hologenomic basis of 
speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. 
Science, 341, 667–669.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., 
& Holmes, S. P. (2016). DADA2: High-resolution sample inference 
from Illumina amplicon data. Nature Methods, 13, 581–583.

Capunitan, D. C., Johnson, O., Terrill, R. S., & Hird, S. M. (2020). 
Evolutionary signal in the gut microbiomes of 74 bird species from 
Equatorial Guinea. Molecular Ecology, 29, 829–847.

Caviedes-Vidal, E., McWhorter, T. J., Lavin, S. R., Chediack, J. G., Tracy, 
C. R., & Karasov, W. H. (2007). The digestive adaptation of flying 
vertebrates: High intestinal paracellular absorption compensates 
for smaller guts. Proceedings of the National Academy of Sciences of 
the United States of America, 104, 19132–19137.

Cho, H., & Lee, W. Y. (2020). Interspecific comparison of the fecal micro-
biota structure in three Arctic migratory bird species. Ecology and 
Evolution, 10, 5582–5594.

Colston, T. J., & Jackson, C. R. (2016). Microbiome evolution along di-
vergent branches of the vertebrate tree of life: What is known and 
unknown. Molecular Ecology, 25, 3776–3800.

Davenport, E. R. (2016). Elucidating the role of the host genome in shap-
ing microbiome composition. Gut Microbes, 7, 178–184.

Davenport, E. R., Cusanovich, D. A., Michelini, K., Barreiro, L. B., Ober, C., 
& Gilad, Y. (2015). Genome-wide association studies of the human 
gut microbiota. PLoS One, 10, 1–22.

Dewar, M. L., Arnould, J. P. Y., Dann, P., Trathan, P., Groscolas, R., & Smith, 
S. (2013). Interspecific variations in the gastrointestinal microbiota 
in penguins. Microbiology, 2, 195–204.

Douglas, A. E., & Werren, J. H. (2016). Holes in the hologenome: Why 
host-microbe symbioses are not holobionts. MBio, 7, 1–7.

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, 
L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). 
Diversity of the human intestinal microbial flora. Science, 308, 
1635–1638.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster 
than BLAST. Bioinformatics, 26, 2460–2461.

Falush, D. (2003). Traces of human migrations in helicobacter pylori pop-
ulations. Science, 299, 1582–1585.

Gherna, R. L., Werren, J. H., Weisburg, W., Cote, R., Woese, C. R., 
Mandelco, L., & Brenner, D. J. (1991). Arsenophonus nasoniae gen. 
Nov., sp. nov., the causative agent of the son-killer trait in the par-
asitic wasp Nasonia vitripennis. International Journal of Systematic 
Bacteriology, 41, 563–565.

Grond, K., Sandercock, B. K., Jumpponen, A., & Zeglin, L. H. (2018). The 
avian gut microbiota: Community, physiology and function in wild 
birds. Journal of Avian Biology, 49, 1–19.

Guillot, G., & Rousset, F. (2013). Dismantling the mantel tests. Methods in 
ecology and evolution, 4, 336–344.

Harmon, L. J., & Glor, R. E. (2010). Poor statistical performance of the mantel 
test in phylogenetic comparative analyses. Evolution, 64, 2173–2178.

https://orcid.org/0000-0001-6446-9797
https://orcid.org/0000-0001-6446-9797
https://orcid.org/0000-0002-9213-0034
https://orcid.org/0000-0002-9213-0034
https://orcid.org/0000-0001-9375-9814
https://orcid.org/0000-0001-9375-9814


    |  13 of 14KUBOVČIAK et al.

Hedblom, G. A., Reiland, H. A., Sylte, M. J., Johnson, T. J., & Baumler, 
D. J. (2018). Segmented filamentous bacteria - metabolism meets 
immunity. Frontiers in Microbiology, 9, 1–9.

Heijtz, R. D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., 
Hibberd, M. L., Forssberg, H., & Pettersson, S. (2011). Normal gut 
microbiota modulates brain development and behavior. Proceedings 
of the National Academy of Sciences of the United States of America, 
108, 3047–3052.

Hird, S. M., Sánchez, C., Carstens, B. C., & Brumfield, R. T. (2015). 
Comparative gut microbiota of 59 neotropical bird species. Frontiers 
in Microbiology, 6, 1–15.

Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions 
between the microbiota and the immune system. Science, 336, 
1268–1273.

Houtz, J. L., Sanders, J. G., Denice, A., & Moeller, A. H. (2021). Predictable 
and host-species specific humanization of the gut microbiota in 
captive primates. Molecular Ecology, 30, 3667–3687.

Jami, E., Israel, A., Kotser, A., & Mizrahi, I. (2013). Exploring the bovine 
rumen bacterial community from birth to adulthood. The ISME 
Journal, 7, 1069–1079.

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. 
(2012). The global diversity of birds in space and time. Nature, 491, 
444–448.

Kim, M., Oh, H. S., Park, S. C., & Chun, J. (2014). Towards a taxonomic 
coherence between average nucleotide identity and 16S rRNA 
gene sequence similarity for species demarcation of prokaryotes. 
International Journal of Systematic and Evolutionary Microbiology, 64, 
346–351.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., 
& Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA 
gene PCR primers for classical and next-generation sequencing-
based diversity studies. Nucleic Acids Research, 41, 1–11.

Knutie, S. A., Wilkinson, C. L., Kohl, K. D., & Rohr, J. R. (2017). Early-life 
disruption of amphibian microbiota decreases later-life resistance 
to parasites. Nature Communications, 8, 86.

Kropáčková, L., Těšický, M., Albrecht, T., Kubovčiak, J., Čížková, D., 
Tomášek, O., Martin, J. F., Bobek, L., Králová, T., Procházka, P., & 
Kreisinger, J. (2017). Codiversification of gastrointestinal microbi-
ota and phylogeny in passerines is not explained by ecological di-
vergence. Molecular Ecology, 26, 5292–5304.

Legendre, P., Oksanen, J., & ter Braak, C. J. F. (2011). Testing the signifi-
cance of canonical axes in redundancy analysis. Methods in Ecology 
and Evolution, 2, 269–277.

Lewis, W. B., Moore, F. R., & Wang, S. (2017). Changes in gut microbiota 
of migratory passerines during stopover after crossing an ecologi-
cal barrier. Auk, 134, 137–145.

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., 
Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, 
R., & Gordon, J. I. (2008). Evolution of mammals and their gut mi-
crobes. Science, 320, 1647–1651.

Marietta, E., Rishi, A., & Taneja, V. (2015). Immunogenetic control of the 
intestinal microbiota. Immunology, 145, 313–322.

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-
Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, 
S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, 
N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., … 
Wernegreen, J. J. (2013). Animals in a bacterial world, a new imper-
ative for the life sciences. Proceedings of the National Academy of 
Sciences of the United States of America, 110, 3229–3236.

McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for re-
producible interactive analysis and graphics of microbiome census 
data. PLoS One, 8, e61217.

Moeller, A. H., Caro-Quintero, A., Mjungu, D., Georgiev, A. V., Lonsdorf, 
E. V., Muller, M. N., Pusey, A. E., Peeters, M., Hahn, B. H., & Ochman, 
H. (2016). Cospeciation of gut microbiota with hominids. Science, 
353, 380–382.

Moran, N. A., & Sloan, D. B. (2015). The Hologenome concept: Helpful or 
hollow? PLoS Biology, 13, 1–10.

Moyle, R. G., Oliveros, C. H., Andersen, M. J., Hosner, P. A., Benz, B. W., 
Manthey, J. D., Travers, S. L., Brown, R. M., & Faircloth, B. C. (2016). 
Tectonic collision and uplift of Wallacea triggered the global song-
bird radiation. Nature Communications, 7, 1–7.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, 
B., Simpson, G. L., Solymos, P., Stevens, H., & Wagner, H. H. (2016). 
vegan: Community ecology package.

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylo-
genetics and evolution in R language. Bioinformatics, 20, 289–290.

Parker, B. J., Hrček, J., McLean, A. H. C., & Godfray, A. H. C. J. (2017). 
Genotype specificity among hosts, pathogens, and beneficial mi-
crobes influences the strength of symbiont-mediated protection. 
Evolution, 71, 1222–1231.

Pilchová, T., Pilet, M. F., Cappelier, J. M., Pazlarová, J., & Tresse, O. (2016). 
Protective effect of Carnobacterium spp. against listeria mono-
cytogenes during host cell invasion using in vitro HT29 model. 
Frontiers in Cellular and Infection Microbiology, 6, 1–9.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., 
Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., 
Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., … Wang, J. 
(2010). A human gut microbial gene catalog established by metage-
nomic sequencing. Nature, 464, 59–65.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., 
Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene 
database project: Improved data processing and web-based tools. 
Nucleic Acids Research, 41, 590–596.

R Core Team. (2015). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: 
A versatile open source tool for metagenomics. PeerJ, 2016, 1–22.

Rosenberg, E., & Zilber-Rosenberg, I. (2011). Symbiosis and develop-
ment: The hologenome concept. Birth Defects Research Part C: 
Embryo Today: Reviews, 93, 56–66.

Rossi-Tamisier, M., Benamar, S., Raoult, D., & Fournier, P. E. (2015). 
Cautionary tale of using 16 s rRNA gene sequence similarity values 
in identification of human-associated bacterial species. International 
Journal of Systematic and Evolutionary Microbiology, 65, 1929–1934.

Sanders, J. G., Powell, S., Kronauer, D. J. C., Vasconcelos, H. L., 
Frederickson, M. E., & Pierce, N. E. (2014). Stability and phyloge-
netic correlation in gut microbiota: Lessons from ants and apes. 
Molecular Ecology, 23, 1268–1283.

Santagati, M., Campanile, F., & Stefani, S. (2012). Genomic diversifica-
tion of enterococci in hosts: The role of the mobilome. Frontiers in 
Microbiology, 3, 1–9.

Schliep, K. P. (2011). Phangorn: Phylogenetic analysis in R. Bioinformatics, 
27, 592–593.

Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number 
of human and bacteria cells in the body. PLoS Biology, 14, 1–14.

Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I., & 
Rosenberg, E. (2010). Commensal bacteria play a role in mating 
preference of Drosophila melanogaster. Proceedings of the National 
Academy of Sciences, 107, 20051–20056.

Shi, Z., Zou, J., Zhang, Z., Zhao, X., Noriega, J., Zhang, B., Zhao, C., Ingle, 
H., Bittinger, K., Mattei, L. M., Pruijssers, A. J., Plemper, R. K., Nice, 
T. J., Baldridge, M. T., Dermody, T. S., Chassaing, B., & Gewirtz, A. T. 
(2019). Segmented filamentous bacteria prevent and cure rotavirus 
infection. Cell, 179, 644–658.e13.

Solnick, J. V., & Schauer, D. B. (2001). Emergence of diverse helicobacter 
species in the pathogenesis of gastric and enterohepatic diseases. 
Clinical Microbiology Reviews, 14, 59–97.

Song, S. J., Sanders, J. G., Delsuc, F., Metcalf, J., Amato, K., Taylor, M. 
W., Mazel, F., Lutz, H. L., Winker, K., Graves, G. R., Humphrey, G., 
Gilbert, J. A., Hackett, S. J., White, K. P., Skeen, H. R., Kurtis, S. M., 
Withrow, J., Braile, T., Miller, M., … Knight, R. (2020). Comparative 



14 of 14  |     KUBOVČIAK et al.

analyses of vertebrate gut microbiomes reveal convergence be-
tween birds and bats. MBio, 11, 1–14.

Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the envi-
ronment and host genotype on the gut microbiome. Nature Reviews. 
Microbiology, 9, 279–290.

Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. 
D., & Doré, J. (1999). Direct analysis of genes encoding 16S rRNA 
from complex communities reveals many novel molecular species 
within the human gut. Applied and Environmental Microbiology, 65, 
4799–4807.

Sullam, K. E., Essinger, S. D., Lozupone, C. A., O'Connor, M. P., Rosen, G. 
L., Knight, R., Kilham, S. S., & Russell, J. A. (2012). Environmental 
and ecological factors that shape the gut bacterial communities of 
fish: A meta-analysis. Molecular Ecology, 21, 3363–3378.

Tannock, G. W., Miller, J. R., & Savage, D. C. (1984). Host specificity of fil-
amentous, segmental microorganisms adherent to the small bowel 
epithelium in mice and rats. Applied and Environmental Microbiology, 
47, 441–442.

Thompson, C. L., Vier, R., Mikaelyan, A., Wienemann, T., & Brune, A. 
(2012). “Candidatus Arthromitus” revised: Segmented filamen-
tous bacteria in arthropod guts are members of Lachnospiraceae. 
Environmental Microbiology, 14, 1454–1465.

Trevelline, B. K., Sosa, J., Hartup, B. K., & Kohl, K. D. (2020). A bird's-eye 
view of phylosymbiosis: Weak signatures of phylosymbiosis among 
all 15 species of cranes. Proceedings of the Royal Society B: Biological 
Sciences, 287, 20192988. https://doi.org/10.1098/rspb.2019.2988

Waite, D. W., & Taylor, M. W. (2014). Characterizing the avian gut mi-
crobiota: Membership, driving influences, and potential function. 
Frontiers in Microbiology, 5, 1–12.

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian 
classifier for rapid assignment of rRNA sequences into the new 
bacterial taxonomy. Applied and Environmental Microbiology, 73, 
5261–5267.

Weiss, B. L., Maltz, M., & Aksoy, S. (2012). Obligate symbionts acti-
vate immune system development in the tsetse Fly. Journal of 
Immunology, 188, 3395–3403.

Wirth, T., Wang, X., Linz, B., Novick, R. P., Lum, J. K., Blaser, M., Morelli, 
G., Falush, D., & Achtman, M. (2004). Distinguishing human ethnic 
groups by means of sequences from helicobacter pylori: Lessons 
from Ladakh. Proceedings of the National Academy of Sciences of 
USA, 101, 4746–4751.

Wright, E. S. (2015). DECIPHER: Harnessing local sequence context to 
improve protein multiple sequence alignment. BMC Bioinformatics, 
16, 322.

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, 
K. H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló-Móra, R. 
(2014). Uniting the classification of cultured and uncultured bacte-
ria and archaea using 16S rRNA gene sequences. Nature Reviews. 
Microbiology, 12, 635–645.

Youngblut, N. D., Reischer, G. H., Walters, W., Schuster, N., Walzer, C., 
Stalder, G., Ley, R. E., & Farnleitner, A. H. (2019). Host diet and evo-
lutionary history explain different aspects of gut microbiome di-
versity among vertebrate clades. Nature Communications, 10, 1–15.

Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms 
in the evolution of animals and plants: The hologenome theory of 
evolution. FEMS Microbiology Reviews, 32, 723–735.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Kubovčiak, J., Schmiedová, L., 
Albrecht, T., Těšický, M., Tomášek, O., Kauzálová, T., & 
Kreisinger, J. (2022). Within-community variation of 
interspecific divergence patterns in passerine gut microbiota. 
Ecology and Evolution, 12, e9071. https://doi.org/10.1002/
ece3.9071

https://doi.org/10.1098/rspb.2019.2988
https://doi.org/10.1002/ece3.9071
https://doi.org/10.1002/ece3.9071

	Within-­community variation of interspecific divergence patterns in passerine gut microbiota
	Abstract
	1|INTRODUCTION
	2|MATERIAL AND METHODS
	2.1|Field sampling and microbiota genotyping
	2.2|Computational procedures
	2.2.1|GM profiling
	2.2.2|Reference-­based and reference-­free BTUs definition
	2.2.3|Quantification of GM-­host species specificity and co-­divergence at the BTUs level


	3|RESULTS
	3.1|Whole GM community analysis summary
	3.2|Variation between BTU definition methods and co-­divergence metrics
	3.3|Reference-­based BTUs analysis
	3.4|Reference-­free BTUs analysis

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


