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Abstract: Soccer-related ocular injuries, especially retinal injuries, have attracted increasing attention.
The mechanics of a flying soccer ball have induced abnormally higher retinal stresses and strains,
and their correlation with retinal injuries has been characterized using the finite element (FE) method.
However, FE simulations demand solid mechanical expertise and extensive computational time, both
of which are difficult to adopt in clinical settings. This study proposes a framework that combines FE
analysis with a machine learning (ML) approach for the fast prediction of retina mechanics. Different
impact scenarios were simulated using the FE method to obtain the von Mises stress map and the
maximum principal strain map in the posterior retina. These stress and strain patterns, along with
their input parameters, were used to train and test a partial least squares regression (PLSR) model to
predict the soccer-induced retina stress and strain in terms of distributions and peak magnitudes.
The peak von Mises stress and maximum principal strain prediction errors were 3.03% and 9.94%
for the frontal impact and were 9.08% and 16.40% for the diagonal impact, respectively. The average
prediction error of von Mises stress and the maximum principal strain were 15.62% and 21.15% for
frontal impacts and were 10.77% and 21.78% for diagonal impacts, respectively. This work provides
a surrogate model of FE analysis for the fast prediction of the dynamic mechanics of the retina in
response to the soccer impact, which could be further utilized for developing a diagnostic tool for
soccer-related ocular trauma.

Keywords: soccer-related ocular injuries; finite element analysis; retinal stress; retinal strain; machine
learning; partial least squares regression

1. Introduction

Soccer is the fastest growing youth sport, and soccer-related ocular injuries in young
players have attracted increasing attention [1]. A fast-moving soccer ball hitting the eye
could cause hyphemia, corneal abrasions, traumatic retinal edema, retinal hemorrhage,
retinal detachment, macular hole, choroidal hemorrhages, and even impaired vision [2-12].
Horn et al. [11] reported thirteen soccer-related retinal injury cases, with half of these cases
requiring surgical intervention. Filipe et al. [5] reported severe ocular injuries in soccer
players at all skill levels, sometimes without early symptoms. Retinal hemorrhages on the
posterior segment of the eye are a common ocular injury in youth soccer players [13]. It is
critical to quantify the flying soccer ball-induced forces on the eyeball to better understand
the mechanism of soccer-related ocular injuries.

The finite element (FE) method has been a popular tool for quantifying the physics
and mechanics of lesions and providing insights into injuries. Weaver et al. characterized
the ocular lesion’s stresses, energy, and pressures associated with the risk of injury [14].
Stress and strain distributions were also obtained from FE models in abuse head trauma
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(AHT) [15-20]. Clemente et al. validated the FE simulation through in vitro experiments of
bullet impacts on porcine eyeballs. They demonstrated that retinal injuries were caused by
the tension resulting from the reflection of pressure waves [21]. Liu et al. performed an
FE analysis of the impact of plastic pellets on the eyeball. They showed that the pressure
wave propagation in the retina caused the retina to tear, and negative pressure contributed
to the retina’s detachment [22]. Our group has also developed FE models to capture the
pressure wave propagation in the vitreous and the impact on the retina to understand
the mechanism of soccer-related retinal injuries [23]. These quantitative analyses have
enhanced the mechanistic understanding of soccer-related retinal injuries. However, the
computational cost hinders the direct application of FE analysis in clinical settings.

The machine learning (ML) method, integrated with the FE method, could solve the
problem of computational cost and instantly predict the FE results. The ML methods have
been applied in biomedical research focusing on image processing and disease diagnosis,
whereas the integration of FE and ML methods is still in its early stage. Gharaibeh et al.
developed a deep learning approach for segmenting calcified coronary plaque from optical
coherence tomography images [24]. ML has also been utilized to categorize glaucoma,
diabetes, etc., based on fundus images [25,26]. FE data has been used to provide enriched
datasets for ML models for predicting the Young’s Modulus and Poisson’s ratio of com-
posite materials [27-29]. Our group also developed simulation-driven ML models for
predicting the lumen area following the implantation of a medical device, stent. Our earlier
work showed that the mechanistic understanding of the FE method could enhance the
feature selection and prediction accuracy of ML models [30]. Liang et al. developed a
deep learning approach to estimate the stress distribution in the thoracic aorta based on FE
datasets [31]. This has demonstrated that the ML method could serve as a fast and reliable
surrogate for the FE method. However, the application of this approach to retinal injuries
is lacking.

In this work, we develop a surrogate model of FE analysis of soccer ball-induced retinal
mechanics by combining the ML method with FE analysis. We construct a streamlined,
three-dimensional eye model, including its essential components (i.e., the sclera, vitreous,
retina, and retinal vessels), anatomically located in a rigid human skull, which is then
subjected to impacts from a deformable soccer ball at six different velocities (30 mph,
32 mph, 34 mph, 38 mph, 50 mph, and 60 mph) along two different impact orientations
(frontal and diagonal). FE analysis of 12 different impact scenarios are performed. The
maximum principal strain and von Mises stress distributions in the posterior retina is
extracted from the FE analysis as ML outputs. The FE input parameters (impact velocity
and orientation) and outputs (distribution and values of von Mises stresses and maximum
principal strains) were used to train the ML models and then predict/visualize the FE
outputs in another three cases.

2. Materials and Methods

The overall workflow of our framework, which integrates FE analysis with ML model
for rapid prediction of soccer-related retinal injuries, is illustrated in Figure 1. There are
two major steps: (1) FE analysis of soccer-related ocular injuries with streamlined models;
(2) statistical model training with results from FE analysis for rapid prediction of ocular
injury patterns.

2.1. FE Analysis

A streamlined eye model of a young athlete was developed retaining the sclera, vit-
reous, retina, and retinal vessels, which was applied in our previous studies of retinal
injuries [23,32,33]. The eyeball, located in the skull, was subjected to a deformable soc-
cer ball (Figure 2a). The sclera and retina were simulated as hollow spheres with outer
diameters of 26 mm and 24.5 mm, and thicknesses of 0.8 mm and 0.25 mm, respectively.
The retina was filled with the vitreous [17-19]. Retina vessels were incorporated along
the posterior retina and vitreous were highlighted in the posterior of the retina based on



Diagnostics 2022, 12, 1530

3of11

Inputs
Soccer ball velocity
Impact location

the standard fundus photograph [17,20], as shown in Figure 2b. A rigid human skull
model was used from the library of Grab cad [34]. The eyeball position in the skull was
16 mm [35,36] between the corneal apex and the lateral orbital rim. A spherical shell with
an outer diameter of 220 mm and a thickness of 0.8 mm [12] was considered as a standard
soccer ball. We simulated both frontal and diagonal (45-degree angle) impacts. The soccer
ball had an initial location of 15 mm in both frontal and diagonal to the apex of the eyeball
and had six different velocities (30 mph, 32 mph, 34 mph, 38 mph, 50 mph, and 60 mph).
The results from these 12 different impact scenarios were input into the statistical model
training, as described in the next section.
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Figure 1. Overall framework to combine FE analysis with an ML method for rapidly predicting
soccer-induced posterior retina stress/strain patterns.
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Figure 2. Finite element model of soccer ocular injuries. (a) Initial setup of a flying soccer ball hitting
the face, including the eyeball; (b) retinal vessels in the posterior retina (frontal view).

Material properties of the eye model are summarized in Table 1. Sclera, vitreous, and
retina were considered incompressible materials with a Poisson’s ratio of 0.49. The sclera
was modeled as a hyperelastic material based on the published uniaxial test data [16].
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Vitreous, composed of mostly water (>90%), was considered as a viscoelastic material,
described by a Prony series expansion of the dimensionless relaxation modulus as:

gr() =1-Y " gF+(1—et/T) )

where material constants g,” and 7 are 0.97 and 0.07, respectively. Retina was modeled
as an elastic material with Young’s modulus of 20 KPa [37] and Poisson’s ratio of 0.49. The
skull was considered a rigid body.

Table 1. Material parameters of the FE model and the number of elements.

Model Component

Element Type Material Model Number of Elements  Density (kg/m®)  Material Parameters

Skull R3D3 Rigid Body 18,103 - -
Sclera C3D8R Hyperelastic 28,032 1243 [16]
. . 17,856 (8322 located at E =20 KPa,
Retina C3D8R Elastic the posterior retina) 1000 v =0.49 [37]
E =43Pa, v =049,
Vitreous C3D8R Viscoelastic 103,968 1009 gip =0.97,
¢ = 0.07 [19]
E =48 MPa, v = 049,
Elastic shell A =2897 g.mol_l,
Rubber soccer ball S4R (isotropy and 5001 1160 B =29.19 g.molfl,
homogeneity) C=09bar,
T = 0.8 mm [38]

3" and = = Prony series coefficients; A = ideal gas molecular weight; B = molar heat capacity; C = fluid cavity
pressure; T = thickness, three-node; R3D3 = three-dimensional rigid triangular facet; C3D8R = an eight-node
linear brick, reduced integration, hourglass control; S4R = a four-node doubly curved thin or thick shell, reduced
integration, finite membrane strains.

The surface-based fluid cavity technique was used to simulate the air pressurization
of the soccer ball [38]. The pressure in the cavity of the soccer ball was filled with air. A
cavity reference node with a single degree of freedom was chosen at the soccer ball’s center
of gravity to represent the pressure inside the cavity [39].

Following the mesh convergence study, the number of elements for each component
is shown in Table 1. The rigid skull was fixed [40]. Four points on the frontal plane of the
sclera, which was 7.8 mm in front of the equator of the eyeball, were fixed to mimic the
constraints of extraocular rectus muscles, which stabilize and control the movement of the
eye in humans [17,20]. A penalty method with a friction coefficient of 0.3 was implemented
among the soccer ball and eyeball. Frictionless contact was enforced between the retina and
vitreous. Tie constraints were prescribed between the retinal vessel area and vitreous and
between the retina and sclera. We used the final von Mises stress and maximum principal
strain value at the end of the simulation in these 12 impact scenarios. The solutions were
obtained using the dynamic explicit solver of a commercial Abaqus/Explicit software
version 2019 (Dassault Systemes Simulia Corporation, Providence, RI, USA).

2.2. Partial Least Squares Regression (PLSR) Model Training

A PLSR model was trained using the data acquired from FE simulations of 12 different
eye impact scenarios. The goal was to illustrate the effectiveness of our framework. The
impact velocities and location were required inputs. Specifically, we used six different impact
velocities from 30 mph to 60 mph and two different impact locations (frontal and diagonal).

PLSR is a multivariate technique that predicts response variables from predictor
variables. The two fundamental equations in PLSR are the predictor matrix (X) and the
response matrix (Y), given by [41]

Xum = PyRL, +E 2)
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where P and Q are the projection matrices, R and S are the transposed orthogonal loading
matrices, where the rows are created from eigenvectors or principal components, and E
and F are the error terms. X and Y are estimated using linear regression through

Y = XB +§0 4)

where B is the least squares regression estimate and B ¢ is the prediction error. The input
variables are the initial velocity and the impact location. The response variables are the
von Mises stress and maximum principal strain within the elements of the posterior retina.
The model prediction accuracy was tested by performing a ‘leave-one-out’ analysis, in
which one simulation out of 12 was left out as the testing case of the PLSR model and then
repeated for each scenario. The average errors between PLSR predictions and FE model
results were estimated by comparing the von Mises stress values from PLSR and FE models
at every element (total of 8322 elements) within the posterior retina. We used the PLSR
plugins from the Python SciPy (www.scipy.org accessed on 1 December 2021) and scikit
learn (machine learning) modules for the model training. We used python script in the
Abaqus to extract stress and strain values from all the elements and automatically write
the predicted stress and strain results in the Abaqus ODB file to compare visualization of
the FE simulation results and predicted PLSR results. We used MySQL (www.mysql.org
accessed on 1 December 2021) database connected to the PyCharm as an IDE for python
programming to store all data,

3. Results

The distributions of von Mises stress and maximum principal strain in the posterior
retina in different impact scenarios are shown in Figures 3 and 4. Different stress/strain
distribution patterns caused by frontal and diagonal impact indicate that the impact di-
rection plays an essential role in the stress/strain distribution following impact. In both
frontal and diagonal impact scenarios, as the soccer ball velocity increased to 60 mph, the
maximum value of von Mises stress and maximum principal strain in the posterior retina
reached 50 KPa and 2.5, respectively. The frontal impact caused higher stress and strain in
the posterior retina than the diagonal impact did, especially at the retinal vessel bifurcation.

Velocity = 30 mph Velocity = 38 mph Velocity = 60 mph

Figure 3. The distribution of von Mises stress in the posterior retina in frontal and diagonal impact
scenarios at three different velocities.
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Figure 4. The distribution of maximum principal strain in the posterior retina in frontal and diagonal
impact scenarios at three different velocities.

The distribution of the von Mises stress predicted by our PLSR-trained model was
compared with the FE simulation (Figures 5 and 6) in the scenarios of diagonal impact with
a soccer ball velocity of 35 mph and frontal impact with a soccer ball velocity of 65 mph,
respectively. Qualitative comparisons of the front, side, and back views showed that the
PLSR-trained model captured the overall von Mises stress distribution pattern, including
the locations of the greatest values. The prediction error and relative prediction error of
the von Mises stress at each element in the retina are also shown in Figure 6. Only a small
portion (less than 5%) of the elements had a relative prediction error larger than 30% due to
the low-stress value from FE analysis (nearly 0 value). In addition, our PLSR prediction
also captured the von Mises stress distribution for a 30-degree impact (Figure 7), an angle
which was not included in the training dataset. This illustrates that our model can predict
the stress with a new velocity and impact location which had never been seen before by
our trained model.

Front view Side view Back view

Figure 5. Comparison of FE simulated von Mises stress pattern and PLSR-predicted von Mises stress
(soccer ball velocity was 35 mph with diagonal impact location). General agreements can be seen in
the location and magnitude of maximum stress.
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Figure 6. Comparison of FE simulated von Mises stress pattern and PLSR-predicted von Mises stress
(soccer ball velocity was 65 mph and frontal impact location). General agreements can be seen in the
location and magnitude of maximum stress.
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Figure 7. Comparison of FE simulated von Mises stress pattern, and PLSR-predicted von Mises stress
(soccer ball velocity was 40 mph and 30-degree angle impact location). General agreements can be
seen in the location and magnitude of maximum stress.
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The accuracy of our PLSR model predictions was evaluated by two different measures
(Figure 8). First, we averaged the absolute difference of von Mises stress (or maximum
principal strain) between FE and PLSR results in all elements, as the average error. Second,
we compared the peak von Mises stress (or maximum principal strain) between FE and
PLSR results for all cases, because the peak stress or strain have been associated with
retinal injuries. The average error of von Mises stress between PLSR and FE models was
15.62% for frontal impact and 10.77% for diagonal impact. The average error of maximum
principal strain between PLSR and FE models was 21.15% for frontal impact and 21.78% for
diagonal impact. The error of peak von Mises stress were 3.03% and 9.08% for the frontal
and diagonal impact, respectively. The error of peak maximum principal strain were 9.94%
and 16.40% in frontal and diagonal impact, respectively. These results indicate that the
stress and strain distributions, especially the peak stress and strain magnitudes, could be
well predicted by our PLSR model.

253 MFrontal @Diagonal
T T

20 - \7&
S 15 1 N \ /
5 \ \
510 1 7

5 - \

0 N 7. N é >

Average Stress Prediction Error Average Strain Prediction Error
(a)
30 2
M Frontal @ Diagonal

25 -

20 -
S
515 - 7
=

10 -

% N
5 - \ /
N\ N /
0 NNNAN / N 7

v

Maximum Stress Maximum Strain

(b)

Figure 8. (a) Comparison of average stress and strain error between FE results and PLSR prediction
results. (b) Comparison of maximum stress and strain predicted error.

4. Discussion

This study illustrated a framework that used an FE analysis of soccer ball impacts
onto the eyeball to train ML models, which can serve as surrogate models for the rapid
prediction of posterior retina mechanics following a soccer ball impact. Specifically, a
PLSR model was trained and tested using the stress and strain datasets extracted from FE
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results. Then, we were able to very quickly estimate the stress and strain distributions,
along with the peak stresses and strains, which is required for implementations in a clinical
setting. The impact velocity and orientation were used to predict the retinal stress and
strain distributions, including the location and magnitude of the peak von Mises stress and
the maximum principal strain. The prediction error of the peak retinal von Mises stress was
approximately 3.03% for frontal impact and 9.08% for diagonal impact. The corresponding
prediction errors of the peak principal strain were 9.94% and 16.40%, respectively. To the
best of our knowledge, this was the first study investigating the fast prediction of soccer
ball-induced retinal injuries. The contribution of this work was the development of the
combined FE and ML model to rapidly predict posterior retinal injuries following soccer
ball impacts.

Our FE results demonstrated that the von Mises stresses in the posterior retina were
noticeably increased, especially with larger impact velocities and in regions interfaced with
retina vessels and retina vessel bifurcations. In addition, the retinal stress and strain were
aggregated by increasing the angle of impact from 45° (i.e., diagonal) to 0° (i.e., frontal).
This agrees with observations by Karimi et al. [42]. We observed a peak von Mises stress of
50 kPa and an average von Mises stress over the posterior retina of 7.5 kPa for a soccer ball
flying at 50 mph at an impact angle of 0°. Abnormally high von Mises stress and maximum
principal strain have been linked with an elevated risk of ocular injuries [37,41]. Wollensak
et al. [37] reported porcine retina fracture thresholds in terms of an engineering stress of
10 kPa and a strain of 42% based on 30 enucleated porcine eyes. We observed higher stress
and strain values than the reported threshold values. The advantage of our approach lies
in the fact that we extracted stress and strain values from all discretized elements of the
posterior retina. This allowed us to utilize the stresses and strains of every element as
training for the ML model, map all ML-predicted stresses and strains back to the posterior
retina, and then examine the prediction errors in any element, individually or on average.

To overcome the major drawback of FE analysis (i.e., the computational cost), we
utilized sophisticated FE models of various soccer-related eye impact scenarios to train the
ML-based models. We then used the ML models to rapidly predict the retinal von Mises
stress and maximum principal strain distributions. Specifically, we adopted a PLSR method
for training and prediction. The average accuracy for predicting the stress locations and
magnitudes for all elements in the front and diagonal impact were 84.38% and 89.23%,
respectively. The average accuracy for predicting the strain locations and magnitudes
for all elements in the front and diagonal impact were 78.85% and 78.22%, respectively.
Furthermore, the accuracies of the maximum stress and strain predictions were, respectively,
96.97% and 90.06% for frontal impact and 90.92% and 83.6% for diagonal impact. The
reason that we obtained better accuracies in the predictions of stress than of strain is related
to the deviation of the strain values (most of which were less than 0.1). There were higher
fluctuations in the strain values than in the stress values, so we obtained better accuracy
predicting stress than strain. This study provides a reasonable basis for developing an
objective diagnostic tool for eye injuries that incorporates stress and strain markers for
predicting retina damage.

Although our PLSR model predicted the stress and strain with satisfactory accuracy,
the major limitation of this work is the relatively small number of FE simulations used for
the training. The generalizability of our model could be enhanced with additional training
datasets (i.e., FE simulations) that consider anatomical variations [43], such as different
facial shapes and sizes, ages, genders, lesion properties, and impact orientations. A compli-
cated eye model that considers the anterior chamber structures, such as the cornea, the iris,
the lens, and the orbital fat (intraconal and extraconal), could mitigate the stress magnitude
in the retina. The skull was simulated as a rigid body; a deformable skull might lead
to smaller retinal stresses. Despite these simplifications, the present work demonstrated
that a method integrating the FE and ML approaches can quickly predict posterior retina
stress and strain patterns, which could be correlated with retinal hemorrhages and retinal
detachment [23]. The fast prediction of stress and strain patterns with ML could also be
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expanded to other ocular components and improve the understanding of a variety of ocular
injuries, such as those resulting from accidents or abusive head trauma. This work has the
potential to assist clinicians in discerning the pathology of ocular injuries and promote a
confident diagnosis.
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