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Abstract
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of 
rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of 
the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with 
the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitone-
ally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. 
Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 
activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased 
in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 
MAPK pathway. 

Key Words: nerve regeneration; spinal cord injury; rutin; oxidative stress; antioxidant; anti-inflammation; p38 mitogen activated protein 
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Graphical Abstract

Why can rutin repair spinal cord injury?

Introduction
Spinal cord injury (SCI) is associated with high morbidity 
and severe complications. Effective treatments are lacking, 
resulting in an enormous financial and social burden on 
patients, their families and society (Phillips et al., 2015). SCI 
leads to severe neurological impairments, including motor, 
sensory and autonomic dysfunction. The secondary injury 
results in lesions extending out from the primary focus of 
damage, greatly worsening the damage caused by the initial 
trauma (Aslan et al., 2009; Elamin et al., 2013). The second-
ary injury includes oxidative stress and inflammatory re-
sponse. Oxidative stress, which occurs when the production 

of reactive oxygen species exceeds the capacity of the antiox-
idant system, plays a major role in secondary SCI (Paterniti 
et al., 2009; Khayrullina et al., 2015). Along with an increase 
in the production of inflammatory factors (Didangelos et al., 
2014), this results in a strong inflammatory response (Geno-
vese et al., 2009; Ni et al., 2014). Inhibiting inflammation 
influences recovery from SCI (Ji, 2014; Machova et al., 2015; 
Chen and Jin, 2016). 

Mitogen-activated protein kinase (MAPK) is involved in 
signal transduction for apoptosis (Pereira et al., 2013), and 
its levels predict whether the cell survives or dies, as they 
reflect damage to the cell (Yamaoka et al., 2012; Nafees et al., 
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2015). The expression of MAPK is upregulated during the 
apoptotic process in neurons and glial cells after SCI (Lee et 
al., 2010; Ha et al., 2011). Besides, the expression of MAPK 
could mediate the inflammatory response (Breton-Romero 
and Lamas, 2013).

Currently, there is no treatment for SCI that results in 
complete neurological or functional recovery (Varma et al., 
2013). Rutin is a flavonoid of the flavonol type found widely 
in plants, including foods; it has a wide range of biological 
activities, and has a protective effect on experimental acute 
pancreatitis, and also inhibits cell proliferation and induces 
apoptosis (Zhang et al., 2015). 

Rutin protects against liver and lung injury through an-
tioxidative and anti-inflammatory actions and by modulat-
ing the MAPK pathway (Pan et al., 2014; Yeh et al., 2014). 
However, there is no report regarding the neuroprotective 
effects of rutin on SCI. In our study, we first investigated the 
neuroprotective effects of rutin in a rat model of SCI and ex-
amined the underlying mechanisms.

Materials and Methods
Animals
Totally 40 male Sprague-Dawley rats, at 8 weeks of age, 
weighing 200–230 g, were provided by the Animal Center of 
Shandong University of China (SCXK (Lu) 2013 0009). The 
rats were housed in individual cages under controlled condi-
tions (22–24°C, relative humidity of 40–60%, with a 12-hour 
light-dark cycle and free access to food and water).  

The experimental procedure followed the United States 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals (NIH Publication No. 85-23, revised 
1985). The study protocol was approved by the Animal Eth-
ics Committee of Jinan Central Hospital Affiliated to Shan-
dong University of China (2014-30). 

Chemicals and reagents
Rutin (powder, purity > 98%) was purchased from Nanjing 
University of Traditional Chinese Medicine, Institute of Chi-
nese Materia Medica (Nanjing, China), and prepared into 
solution 6 g/L with double distilled water, and its chemical 
structure is shown in Figure 1. 

Generation of the rat SCI model
The SCI model was generated as described previously (Ra-
vikumar et al., 2005). The rats were anesthetized with an 
intraperitoneal injection of sodium pentobarbital (50 mg/
kg; Sigma-Aldrich, St. Louis, MO, USA) and a mixture of 
ketamine (44 mg/kg; Sangon Biotech, Shanghai, China), 
atropine (0.02633 mg/kg; Sintong Chemical Industrial Co., 
Taoyuan, Taiwan, China) and xylazine (5 mg/kg; Sangon 
Biotech, Shanghai, China). The T8 and T9 vertebral pedun-
cles were removed by laminectomy. After that, the moder-
ate contusion injury was performed by a modified Allen’s 
weight drop apparatus (10 g weight at 50 mm, 10 g × 50 mm) 
on the exposed spinal cord. For the control rats, the same 
laminectomy was performed, but without SCI. The success of 
the compression can be confirmed by the spasm of the tail, 

the retraction-like flutter of legs and delayed paralysis. 

Drug treatment
The rats were randomly divided into the following four 
groups: (1) control (n = 10), consisting of normal rats per-
formed with laminectomy without spinal cord compression 
and treated with PBS; (2) SCI model (SCI, n = 10), consist-
ing of rats with SCI treated with PBS; (3) methylpredniso-
lone (MP, n = 10), consisting of rats with SCI treated with 
100 mg/kg methylprednisolone once a day for 3 day. (intra-
peritoneally; Jinan Central Hospital Affiliated to Shandong 
University, China); (4) rutin (rutin, n = 10), consisting of 
rats with SCI treated with rutin 30 mg/kg, intraperitoneally) 
once a day for 3 days. All the treatments were performed at 6 
hours after the injury happened.

Assessment of locomotor function
Locomotor function was evaluated using the Basso, Beattie 
and Bresnahan (BBB) score. A lower BBB score indicates 
more severe motor impairment. The rating scale ranges 
from 0 (no observable hindlimb movement) to 21 (normal 
locomotion) (Basso et al., 1996). BBB scores were assessed 
by four experienced experimenters who were blinded to the 
treatment conditions. BBB score was observed for 24, 48, 72 
hours, 7 days after surgery.

Determination of spinal cord water content
After treatment with rutin for 3 days, the water content of 
the spinal cord was evaluated. All rats were killed by excess 
chloral hydrate, and the spinal cord samples were dried for 
48 hours at 80°C for the determination of the dry weights. 
The water content of the spinal cord was calculated as fol-
lows: (wet weight − dry weight)/wet weight × 100%.

Measurement of oxidative stress
After treatment with rutin for 3 days, the peripheral 
blood was carefully collected from heart in each group. 
The blood samples were centrifuged at 12,000 × g for 10 
minutes at 4°C. The supernatant was collected, and the 
concentrations of malon dialdehyde (MDA), superoxide 
dismutase (SOD) and catalase (CAT), as well as glutathi-
one peroxidase (GSH-Px) activity were analyzed using 
commercial kits, following the manufacturer’s protocols 
(Beyotime, Nanjing, China). 

Assessment of inflammation
After treatment with rutin for 3 days, approximately 5 mL pe-
ripheral blood was collected from heart directly of each group. 
The blood samples collected from heart were centrifuged at 
12,000 × g for 10 minutes at 4°C. The supernatant was col-
lected, and the serum levels of nuclear factor-κB (NF-κB) p65 
unit, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β 
and IL-6 were measured using commercial kits, following the 
manufacturer’s protocols (Beyotime, Nanjing, China). 

Western blot assay of p38MAPK protein expression
After treatment with rutin for 3 days, rats were scarified and 
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Figure 1 Chemical structure of rutin.

Figure 2 BBB scores for evaluating locomotor recovery 24, 48, 72 
hours and 7 days after operations.
*P < 0.01, vs. Con group; #P < 0.01, vs. SCI group. Data are presented 
as the mean ± SD (n = 10, one-way analysis of variance followed 
by Dunnett’s post hoc test). Con group was performed with 
laminectomy without compression, and treated with PBS; SCI group 
was performed with laminectomy with compression and treated with 
PBS. MP group was performed with laminectomy with compression 
and treated with MP (100 mg/kg/perday for 3 days). Rutin group 
was performed with laminectomy with compression and treated with 
Rutin (30 mg/kg/per day for 3 days). Con: Control; SCI: spinal cord 
injury; MP: methylprednisolone; BBB: Basso, Beattie and Bresnahan. 

Figure 3 Rutin treatment for 3 days diminishes the SCI-induced 
increase in water content in the spinal cord.
*P < 0.01, vs. con group; #P < 0.01, vs. SCI group. Data are presented 
as the mean ± SD (n = 4, one-way analysis of variance followed by 
Dunnett’s post hoc test). Con group was performed with laminectomy 
without SCI and treated with PBS; SCI group was treated with PBS 
after SCI; MP group was treated with MP (100 mg/kg per day for 3 
days) after SCI; Rutin group was treated with Rutin (30 mg/kg/per 
day for 3 days) after SCI. Con: Control; SCI: spinal cord injury; MP: 
methylprednisolone.

approximately 15 cm long spinal cord containing T8 and T9 
were taken out for further testing. 10-mg spinal cord tissue 
samples were incubated with 100 μL tissue lysis buffer (Beyo-
time) for 30 minutes on ice. Homogenates were centrifuged at 
12,000 × g for 10 minutes at 4°C. The supernatants were col-
lected, and the protein concentration was determined using 
a bicinchoninic acid kit (KeyGen Biotech). Equal amounts of 
protein were resolved on 12% sodium dodecyl sulfate-poly-
acrylamide gel electropheresis gels and then transferred to 
polyvinylidene fluoride membranes (0.22 μm). Membranes 
were blocked with PBS containing 5% non-fat milk to block 
nonspecific binding. Then, the membranes were incubated 
with anti‑p38 MAPK mouse monoclonal antibody (1:2,000; 
sc-398305, Santa Cruz Biotechnology, Dallas, TX, USA) and 
anti-β-actin rabbit polyclonal antibody (1:500; D110007, 
Sangon Biotech, Shanghai, China) overnight at 4°C, followed 
by incubation with horseradish peroxidase-conjugated an-
ti-mouse IgG (1:1,000; sc-2005 and sc-2004, Santa Cruz 
Biotechnology) for 2 hours at room temperature (24–26°C). 
Signals were quantified using the Gel Doc XR+ Gel Docu-
mentation System (Bio-Rad, Hercules, CA, USA). Grayscale 
value (/internal reference) was detected by the image J soft-
ware (NIH, Bethesda, Maryland, USA).

Measurement of caspase-9 and caspase-3 activities
After treatment with rutin for 3 days, spinal cord protein sam-
ples were obtained as described above, and equal amounts of 
protein were mixed with reaction buffer (Ac-LEHD-pNA for 
caspase-9, Ac-DEVD-pNA for caspase-3) and incubated at 
37°C for 2 hours in the dark. Caspase-9 and caspase-3 activi-
ties were measured at an absorbance of 405 nm on a spectro-
photometer (Thermo Fisher Scientific, Waltham, NJ, USA). 
The results of each treatment groups were compared with the 
control group to obtain relative quantification (absorbance 
value) of the target proteins’ expression. 

Statistical analysis
Data are presented as the mean ± SD. Statistics was per-
formed using SPSS 20.0 software (IBM Corporation, Ar-
monk, NY, USA). Statistical analysis was conducted using 
one-way analysis of variance followed by Dunnett’s post hoc 
test. A P-value of less than 0.05 was considered statistically 
significant.

Results
Evaluation of locomotor recovery
We assessed whether rutin affected locomotor recovery in 
our rat SCI model using the BBB scoring system. As shown 
in Figure 2, BBB scores were reduced at 24, 48 and 72 hours 
post-surgery in the SCI group, compared with the control 
group. Treatment with rutin (30 mg/kg day per for 3 days 
after SCI) and MP resulted in an increase in the BBB score in 
comparison with the SCI group, and both showed significant 
difference compared with SCI group (P < 0.05; Figure 2). 
There was no significant difference between the rutin group 
(30 mg/kg) and MP group (P > 0.05; Figure 2). 

Rutin reduced spinal cord water content in rats with SCI
We examined the water content of the spinal cord after 3-day 
treatment. As shown in Figure 3, spinal cord water content 
was increased in the SCI group compared with the control 
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Figure 4 Antioxidative effects on SCI after 
3 days of treatment with rutin.
Effects of rutin on the peripheral blood 
levels of MDA (A), SOD (B), CAT (C) and 
GSH-Px (D) in the rat SCI model. *P < 0.01, 
vs. Con group; #P < 0.01, vs. SCI group. 
Data are presented as the mean ± SD (n = 
4, one-way analysis of variance followed 
by Dunnett’s post hoc test). Con group was 
performed with laminectomy without SCI 
and treated with PBS; SCI group was treat-
ed with PBS after SCI; MP group was treat-
ed with MP (100 mg/kg per day for 3 days) 
after SCI; Rutin group was treated with ru-
tin (30 mg/kg per day for 3 days) after SCI. 
Con: Control;  SCI: spinal cord injury; MP: 
methylprednisolone; MDA: malondialde-
hyde; SOD: superoxide dismutase; CAT: 
catalase; GSH-Px: glutathione peroxidase; 
PBS: phosphate buffered saline. 

Figure 6 Rutin decreases p38 MAPK 
protein expression after 3-day treatment 
with rutin on SCI. 
Representative western blot bands (A) 
and densitometric analysis of p38 MAPK 
protein (B) in the spinal cord. **P < 0.01, 
vs. Con group; #P < 0.05, vs. SCI group. 
Data are presented as the mean ± SD (n = 
4, one-way analysis of variance followed 
by Dunnett’s post hoc test). Con group 
was performed with laminectomy without 
compression and treated with PBS. SCI 
group was performed with laminectomy 
with compression and treated with PBS. 
MP group was performed with laminec-
tomy with compression and treated with 
MP (100 mg/kg per day for 3 days). Rutin 
group was performed with laminectomy 
with compression and treated with Rutin 
(30 mg/kg per day for 3 days). Con: Con-
trol; SCI: spinal cord injury; MP: methyl-
prednisolone. 

Figure 5 Anti-inflammatory effects of 
3-day treatment with rutin on SCI.
Effects of rutin on the serum levels of NF-
κB p65 (A), TNF-α (B), IL-1β (C) and IL-6 
(D) in the rat models of SCI 72 hours after 
operation. *P < 0.01, vs. Con group; #P < 
0.01, vs. SCI group. Data are presented as 
the mean ± SD (n = 4, one-way analysis 
of variance followed by Dunnett’s post 
hoc test). Con group was performed with 
laminectomy without SCI and treated with 
PBS. SCI group was treated with PBS after 
SCI. MP group was treated with MP (100 
mg/kg per day for 3 days) after SCI. Rutin 
group was treated with Rutin (30 mg/kg 
per day for 3 days) after SCI. Con: Control; 
SCI: spinal cord injury; MP: methylpred-
nisolone; NF-κB: nuclear factor kappa B; 
TNF-α: tumor necrosis factor alpha; IL: 
interleukin. 
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The  effects  of rutin on caspase-9 (A) and 
caspase-3 (B) activities (absorbance value ratio) 
in rats with SCI in T8 and T9 spinal cord 72 hours 
after operation. *P < 0.05, vs. Con group; #P < 
0.05, vs. SCI group. Data are presented as the 
mean ± SD (n = 4, one-way analy-sis of variance 
followed by Dunnett’s post hoc test). Con group 
was performed with laminectomy without com-
pression and treated with PBS. SCI group was 
performed with laminectomy with compression 
and treated with PBS. MP group was performed 
with laminectomy with compression and treated 
with MP (100 mg/kg per day for 3 days). Rutin 
group was performed with laminectomy with 
compression and treated with Rutin (30 mg/kg 
per day for 3 days). Con: Control; SCI: spinal 
cord injury; MP: methylprednisolone.  

group. The water content of the spinal cord decreased in the 
rutin group (30 mg/kg/day for 3 days) compared with the 
SCI group (P < 0.05; Figure 3). Interestingly, the spinal cord 
water content in the rutin group was very similar to that in 
the MP group (P > 0.05; Figure 3).

Antioxidative effects of rutin in SCI
After 3 days of treatment, MDA concentration was increased 
in the SCI group compared with the control group (Figure 
4A). MDA concentrations were reduced by treatment with 
rutin, compared to the SCI group (Figure 4A). The con-
centrations of SOD and catalase, and GSH-Px activity were 
lower in the SCI group, compared to the control group (Fig-
ure 4B–D). Rutin treatment in rats with SCI increased their 
levels compared with rats in the SCI group (Figure 4B–D; P 
< 0.05). We found no significant difference between the rutin 
and MP groups (P > 0.05; Figure 4A–D).

Anti-inflammatory effects of rutin on SCI
As shown in Figure 5A–D, SCI induced an inflammatory 
reaction and increased the levels of NF-κB p65, TNF-α, IL-
1β and IL-6 in comparison to the control group. However, 
these inflammatory cytokines were reduced in the rutin 
group (30 mg/kg/day for 3 days) compared to the SCI group 
(P < 0.05; Figure 5A–D). No significant differences in NF-
κB p65, TNF-α, IL-1β or IL-6 levels were observed between 
rutin and MP groups (P > 0.05; Figure 5A–D).

Rutin decreased p38MAPK protein expression in the rat 
models of SCI
There is growing evidence that the protective effects of ru-
tin in SCI involve changes in p38 MAPK expression. p38 
MAPK protein expression was substantially increased in 
the SCI group compared with the control group (Figure 
6A, B). Treatment with rutin (30 mg/kg/day for 3 days) 
reduced p38 MAPK expression compared with the SCI 
group (Figure 6A, B). There was no significant difference 
in p38 MAPK protein expression between rutin and MP 
groups (P > 0.05; Figure 6A, B).

Rutin decreased caspase-9 and caspase-3 activities in rats 
with SCI
Caspase-9 and caspase-3 activities were increased in the 

SCI group, compared with the control group (P < 0.05). 
Rutin reduced the activities of these caspases in the ani-
mals with SCI (P < 0.05) (Figure 7A, B). 

Discussion
With the rise in modern transportation, mining and industry, 
SCI has become increasingly common in China. SCI is a de-
bilitating injury that negatively impacts human health and the 
quality of life. In this study, we demonstrate, for the first time, 
that rutin is neuroprotective in SCI. Rutin increased the BBB 
scores and reduced spinal cord water content in rats with SCI.

Oxidative stress after SCI plays a major pathogenetic 
role in secondary injury, and free radical levels are an indi-
cator of the degree of injury (Song et al., 2015; Wang et al., 
2015; Colón and Miranda, 2016). Strategies that prevent or 
reduce oxidative stress have shown therapeutic efficacy for 
SCI (Tian et al., 2016). Indeed, in the present study, rutin 
reduced MDA content and increased the concentrations of 
SOD and catalase and increased the activity of GSH-Px in 
the rat models of SCI, suggesting that the flavonoid pro-
tects cells of the spinal cord by reducing oxidative stress 
(Bhandary et al., 2012; Warford et al., 2014). The rutin 
reduced MDA concentrations and elevated SOD levels (Su 
et al., 2014). Scholars demonstrated that rutin improved 
spatial memory by attenuating oxidative stress and neu-
roinflammation in Alzheimer’s disease transgenic mice (Xu 
et al., 2014; Wu et al., 2016).

Inflammatory cytokines regulate the immune response 
and participate in cross-talk between immune cells and oth-
er cell types (Miller et al., 2013; Xie et al., 2014). NF-κB is a 
transcription complex that plays a key role in cytokine-me-
diated inflammatory reactions (Chen et al., 2014b; Kang et 
al., 2015; Zhang et al., 2015). NF-κB induces transcription 
of numerous inflammatory cytokines during the early stage, 
including TNF-α, IL-1β and IL-6, thereby increasing the in-
flammatory response (Shin et al., 2011; Du et al., 2013).

In this study, the levels of NF-κB p65, TNF-α, IL-1β and 
IL-6 were reduced by rutin treatment in the rat SCI mod-
el (Paniagua-Torija et al., 2015). This anti-inflammatory 
effect of rutin might contribute to the neuroprotection 
provided by the flavonoid. Our findings are consistent 
with previous studies. Previous studies showed that rutin 
decreased TNF-α and IL-1β generation in microglia (Wang 
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et al., 2012; Zong et al., 2012). Furthermore, Abd-El-Fat-
tah et al. (2010) reported that rutin exerted an anti-inflam-
matory effect in irradiated rats with cerebral ischemia/
reperfusion injury.

Inactive p38 MAPK is mainly distributed in the cytoplasm, 
and translocates to the nucleus upon activation to regulate 
gene expression through phosphorylation of transcription 
factors (Tang et al., 2013; Chen et al., 2014a). Extracellu-
lar stimuli, such as inflammatory cytokines, induce the 
phosphorylation and activation of p38 MAPK via a kinase 
cascade (Zhu et al., 2013; Park et al., 2015). Activated p38 
MAPK induces the expression of enzymes, such as COX and 
iNOS, as well as numerous inflammatory-related molecules, 
which mediate the inflammatory response (Breton-Romero 
and Lamas, 2013).

In this study, we observed that p38 MAPK expression 
in the SCI model was reduced by rutin, suggesting that it 
may, in part, protect cells in the spinal cord by lowering 
the expression of pro-apoptotic proteins. Our results are 
in line with those of other studies. For example, Park et al. 
(2014) observed that rutin protected human dopaminergic 
cells against rotenone-induced injury by inhibiting the 
p38 MAPK signaling pathway. A previous study showed that 
rutin exerted anti-inflammatory effects, which were attrib-
utable to its suppression of p38 MAPK in UVB-irradiated 
mouse skin (Choi et al., 2014). Importantly, we found that 
reduction of caspase-9 and caspase-3 activities are the key to 
the neuroprotective action of rutin on spinal cord cells. This 
observation was in accordance with previous reports show-
ing that rutin alleviated prion peptide-induced cell death by 
inhibiting caspase-3 activity in dopaminergic and hippo-
campal neurons (Na et al., 2014; Song et al., 2014). 

In summary, our findings demonstrate that rutin protects 
spinal cord cells by reducing oxidative stress and inflam-
mation, and by lowering the expression of pro-apoptotic 
proteins via inhibition of the p38 MAPK pathway. Rutin 
plays an important role in the treatment of various disorders, 
and has been applied in health-care system due to its wide 
pharmacological activities, lower cost and high safety mar-
gins which is the most significant preponderance compare 
with the glucocorticoids (Sharma et al., 2013). In contrast, 
glucocorticoids have a wide foreseeable range of side effects; 
for instance, patients receiving high-dose MP after SCI had 
a significantly increased risk of major complications, in par-
ticular, gastrointestinal ulcer/bleeding and pulmonary em-
bolism (Chikuda et al., 2014; Evaniew et al., 2015). However, 
the major problem associated with rutin is its poor solubility 
in aqueous media (0.8 mg/mL) (Lauro et al., 2002), which 
means poor bioavailability. 

In the near future, enhancing its bioavailability using novel 
drug delivery methods and fully elucidating the neuropro-
tective effects and mechanisms of action will add evidence 
for use of traditional Chinese medicine for treatment of SCI. 
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