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Protein–protein interaction and non-interaction
predictions using gene sequence natural vector
Nan Zhao1, Maji Zhuo1, Kun Tian1 & Xinqi Gong 1,2,3✉

Predicting protein–protein interaction and non-interaction are two important different aspects

of multi-body structure predictions, which provide vital information about protein function.

Some computational methods have recently been developed to complement experimental

methods, but still cannot effectively detect real non-interacting protein pairs. We proposed a

gene sequence-based method, named NVDT (Natural Vector combine with Dinucleotide and

Triplet nucleotide), for the prediction of interaction and non-interaction. For protein–protein

non-interactions (PPNIs), the proposed method obtained accuracies of 86.23% for Homo

sapiens and 85.34% for Mus musculus, and it performed well on three types of non-interaction

networks. For protein-protein interactions (PPIs), we obtained accuracies of 99.20, 94.94,

98.56, 95.41, and 94.83% for Saccharomyces cerevisiae, Drosophila melanogaster, Helicobacter

pylori, Homo sapiens, and Mus musculus, respectively. Furthermore, NVDT outperformed

established sequence-based methods and demonstrated high prediction results for cross-

species interactions. NVDT is expected to be an effective approach for predicting PPIs

and PPNIs.
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Most vital life activities are related to protein interactions,
including physiological and pathological processes1.
Proteins with similar functions are more likely to

interact with each other to form protein complexes that partici-
pate in complex and diverse biochemical activities. Detecting and
characterizing PPIs provides insight into the functions of unan-
notated proteins and the mechanisms underlying cellular bio-
chemical processes and complex diseases, and can provide a basis
for protein engineering and drug design2. The vast majority of
proteins do not form interactions in physiological conditions. The
number of non-interacting protein pairs vastly exceeds that of
interacting pairs. Although some protein pairs have great struc-
tural similarities with available experimental complexes, interac-
tions between them can be avoided if they are potentially
hazardous to organism3. Identifying PPNIs is critical for under-
standing biological processes and reducing noise in datasets
aimed at determining representative features of protein classifi-
cation. Mastering the biological characteristics of non-interacting
protein pairs helps to better study the three-dimensional structure
and function of multi-body.

Rapid developments of high-throughput experimental tech-
nologies have enabled large-scale discovery and identification of
PPIs, but they remain some disadvantages of time-consuming,
labor-intensive, and high levels of false-positive and false-negative
predictions4,5. Therefore, many computational methods have
emerged as an alternative for the experimental prediction of PPIs
based on different data types, such as genomic information6,
evolutionary information7,8, structural information9,10, network
information11, and sequence information12,13. Since protein
sequences are easily obtained and sequence-based schemes do not
need prior knowledge, various sequence-based computational
models are favored by researchers. For example, Bock and Gough
utilized amino acid physicochemical properties to predict inter-
actions based solely on primary sequences14. Shen et al. char-
acterized protein sequence by conjoint triad (CT), where CT
considers the properties of adjacent amino acids15. Guo et al.
expressed protein sequence by auto covariance (AC), which
considered interactions between residues separated by a certain
distance16. Yang et al. employed local descriptors (LD, including
composition, transition, and distribution) to evaluate the effect of
discontinuous amino acids, but the extracted features ignore
global information17. Yin et al. numerically represented protein
sequences using biochemical properties of amino acids and
conducted coevolution analysis based on Fourier transform to
detect interacting protein pairs18. Due to the difficulty in accu-
rately characterizing protein sequence information by these single
feature extraction methods, researchers have proposed many
computational methods integrating multiple features for
prediction19,20. For instance, Zhang et al. used AC, LD, and
multi-scale continuous and discontinuous (MCD) local descriptor
to extract features information of protein sequence21. Chen et al.
exploited pseudo amino acid composition, Moreau-Broto, Moran
and Geary autocorrelation descriptor, position-specific scoring
matrix, and LD to encode biologically relevant features22. These
feature vectors generally summarize physicochemical properties
and position distribution of amino acids, but their large dimen-
sions greatly increase the computational complexity.

The recent advancements in machine learning techniques have
been greatly applied in the bioinformatics field, including RNA-
binding site identification23, drugs’ efficacy24, drug–target binding
recognition25, medical diagnosis26, protein complex structure
prediction27, and protein–protein/peptide/ligand predictions28–30.
Traditional machine learning algorithms are often combined with
feature engineering to detect PPIs, such as amino acid physico-
chemical properties, co-occurrence frequency13, CT15, AC16,31, LD17,
signature product32, sequence order, and dipeptide information33

were performed with support vector machine (SVM), Gabor
feature34, chaos game representation and wavelet transform35 were
performed with random forest (RF). In addition, deep learning
algorithms are also widely used in PPIs detection, such as Siamese-
like convolutional neural network (CNN) in DPPI36 and deep resi-
dual recurrent CNN in PIPR37. However, deep learning algorithms
remain challenging as follows: (i) Lack of interpretability. The deep
network is similar to a “black box” in which the physical meaning of
features cannot be explained. But traditional machine learning
algorithms involve feature engineering, which makes the model easy
to interpret and understand. Previous successful methods show that
the model generated by the combination of clear sequence features
and traditional machine learning performs well. (ii) Complexity and
time-consuming. The “inside” of deep learning is difficult to fully
understand, which makes hyper-parametric and network design still
a considerable challenge. But now that we have a more compre-
hensive understanding of traditional machine learning underlying
algorithms, it is easier to adjust parameters and change model
designs. Our lab had effectively captured amino acid sequence
information using traditional machine learning algorithms to model
and validate PPIs, and had many applications in other biological and
medical problems. Yu et al. used SVM with heterogeneous kernels
from a specific kernel set, including the Hadamard, RBF, and linear
kernels, to perform the breast cancer outcome evaluation and the
results proved to be effective38. Lyu et al. developed a two-layer SVM
ensemble-classifier to predict interface residue pairs of protein trimers
and showed its effectiveness and reliability39. Wang et al. employed
linear SVM, RF, logistic regression with lasso penalty, and logistic
regression with hierarchy interaction to predict interface residue pairs
respectively, and showed that diverse machine learning methods tend
to predict different protein–protein interface patterns40. As a result,
we select the appropriate feature engineering combined with tradi-
tional machine learning algorithms to predict protein–protein
interaction and non-interaction.

Plenty of computational models are proposed under the para-
digm of supervised learning, so the quality of training data is a key
issue to determine the prediction performance. For the training of
learning algorithms, interacting protein pairs (i.e., positive sam-
ples) and non-interacting protein pairs (i.e., negative samples) are
equally important to computational biologists. However, biologists
generally focus on interacting protein pairs, extensively collecting
experimentally or computationally validated interacting protein
pairs into public databases, while ignoring or discarding non-
interacting protein pairs41. Negative samples in the computational
methods are almost constructed by pairing proteins located in
different subcellular positions, but these samples restrict the dis-
tribution of non-interacting protein pairs and lead to biased
estimates of prediction accuracy42. Srivastava et al. introduced a
triple-layer validation method to collect reliable non-interacting
protein pairs and then characterized the most relevant protein
correlation features to train the PPIs identification model, which
showed excellent predictive capabilities43. The training and per-
formance evaluation of models are affected by strong bias in
negative samples44,45, so high-quality and practical negative
samples are needed to train less biased models. Smialowski et al.
developed the Negatome database, a set of protein pairs unlikely to
show direct physical interactions, in 2009 by manually collating
the literatures and analyzing three-dimensional protein complex
structures46. Blohm et al. proposed the second version of this
database using a new advanced text-mining process to guide the
manual annotation process47. High-quality non-interacting sam-
ples are important to capture the interaction and non-interaction
information from sequences, so Negatome samples are currently
used in many studies as an alternative to pairing proteins located
in different subcellular. Bryant et al. used negative samples col-
lected in the Negatome database, combined with AlphaFold2, and
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optimized multi-sequence alignment to predict heterodimeric
protein complexes48. Das et al. used a negative dataset from the
Negatome database when utilizing interface properties and SVM
to classify and differentiate native and non-native complexes49.
Consequently, the non-interacting protein pairs in the Negatome
database can facilitate the training of highly generalizing models to
predict PPIs and PPNIs.

Feature selection is a major determinant of the generalizability
of predictive models. Common sequence-based computational
methods extract features from the amino acid sequence, but
nucleotide-related information is missing in the amino acid
sequence since multiple codons encode the same amino acid.
Triplet nucleotides (i.e., codons) are associated with various dis-
eases, and their repeats may lead to toxic proteins, alter
RNA function, and control transcription and translation50–52.
Moratorio et al.53 and Carrau et al.54 found that codon usage may
be selected to maintain mutational robustness. Some triple
nucleotides often encode the same amino acid, which is called
synonymous codons. Codon usage bias, where certain codons are
used more frequently than their synonymous codons, is influ-
enced by mutation, selection, and genetic drift. Zhuo et al. found
that some interface codons had the obvious propensity to inter-
face residues and the genetic codon affected the interaction
interface between proteins55. Because codons carry very impor-
tant information about proteins, some methods consider
extracting features from gene sequences. Zhou et al. used the
codon pair frequency difference to predict protein interactions
with comparable performance to those of other sequence-based
methods56. Najafabadi et al. utilized the relative codon frequency
differences combined with a naive Bayesian classifier to validate
PPIs, the approach showed good performance on Saccharomyces
cerevisiae (S. cerevisiae), Escherichia coli, and Plasmodium falci-
parum datasets57. Consequently, extracting additional biological
information from gene sequences, like codon frequencies, may
further improve the prediction ability. Deng et al. proposed
natural vector based on the distributions of nucleotides in each
DNA sequence to analyze the virus genome58. Later, many
methods improved on the natural vector. For example, Dong et al.
proposed an improved natural vector method called Accumulated
Natural Vector to analyze sequences, genomes, and their phylo-
genetic relationships59. Zhao et al. added the covariances of amino
acids to natural vector and used it to classify proteins and detect
the evolutionary relationships among species60. In addition, cer-
tain dinucleotides have connections with the regulation of meta-
bolism, aging, and neurodegeneration61. Atkinson et al. provided
that dinucleotide bias was related to evading cell defense
mechanisms62. Takata et al. developed that codon and dinucleo-
tide usage biases may be associated with the need to maintain the
RNA secondary structure involved in splicing and gene
expression63. Kokate et al. studied codon and dinucleotide pre-
ferences of 29 Drosophila species and observed their association

with speciation64. Simón et al. analyzed dinucleotide and codon
usage in all available non-redundant viral sequences and dis-
covered that four dinucleotides (TG, GT, CA, and AC) were self-
complementary and codon usage bias was mainly determined by
the genomic composition65. Therefore, we hypothesized that the
distribution of contextual nucleotides in a gene sequence could be
helpful for sequence classification prediction, so dinucleotide and
triplet nucleotide information was added to the natural vector.

In this study, we developed a sequence-based approach for
PPIs and PPNIs predictions called NVDT. NVDT firstly
employed the distribution of nucleotides, dinucleotides, and tri-
plet nucleotides to extract protein information from gene
sequences, where the correspondence between a protein gene
sequence and its feature vector was one-to-one. Second, we
combined all pairs of corresponding natural vectors into a single
feature vector describing a protein pair and then normalized
feature vectors using the Z-score method. Finally, these features
were fed into the classifier to obtain the final prediction results.
NVDT not only combined the advantages of local and global
protein information but also had high computational speed with
low dimensions, making it a robust and efficient prediction
method. We applied our approach to Homo sapiens (H. sapiens),
Mus musculus (M. musculus), S. cerevisiae, Drosophila melano-
gaster (D. melanogaster), and Helicobacter pylori (H. pylori)
datasets, and obtained high prediction results. We harnessed
NVDT to produce network visualizations for three types of PPNI
networks, including the one-core, multiple-core and crossing
network, to further evaluate the capabilities of this approach. In
addition, model evaluations indicated that NVDT improved PPIs
prediction accuracies over state-of-the-art methods. Our PPNIs
prediction results showed that our method was robust and would
help to improve multi-body complex structure predictions.

Results
Application to H. sapiens and M. musculus datasets. To ensure
the reliability of our approach, five-fold cross-validation was first
used to evaluate model performance and select the optimal
parameters (Supplementary Tables 1–4 and Supplementary
Figs. 1–4). Then we further verified the performance of different
classifiers on the test set. Table 1 showed that the accuracy of the
real dataset could be improved substantially when using RF
compared with SVM, where the accuracy for the H. sapiens
increased from 80.92 to 86.23%, and that for M. musculus
increased from 80.17 to 85.34%. But the differences in accuracy of
the constructed dataset were relatively small.

Network prediction. We extended our proposed method to
predict PPNI networks consisting of non-interaction pairs
(NIPs). The knowledge of PPNI networks is helpful to overcome
the noise in the datasets and find the relevant features that can

Table 1 Prediction results by using two classifiers on H. sapiens and M. musculus datasets.

Test set Classifier Acc. (%) Pre. (%) Sen. (%) MCC (%) F-score (%) AUC

H. sapiens
real dataset SVM 80.92 78.83 84.54 62.00 81.59 0.8707

RF 86.23 84.09 89.37 72.61 86.65 0.8623
constructed dataset SVM 95.41 91.59 100.00 91.21 95.61 0.9283

RF 95.41 91.59 100.00 91.21 95.61 0.9541
M. musculus
real dataset SVM 80.17 75.36 89.66 61.46 81.89 0.8249

RF 85.34 90.20 79.31 71.21 84.40 0.8534
constructed dataset SVM 94.83 96.43 93.10 89.71 94.74 0.9643

RF 94.83 100.00 89.66 90.14 94.55 0.9483
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best represent proteins, so as to better classify and design the
three-dimensional structure of proteins. It can also be used to
identify the proteins with the least interaction in a pathway. As a
potential indispensable factor in the pathological process, these
proteins are likely to be effective targets for drug design. At the
same time, systematic analysis of the non-interaction relationship
between a large number of proteins in biological systems is very
helpful for multi-body complex structure predictions.

We predicted three types of PPNI networks using our
approach. First, a one-core network is the simplest network in
which only one core protein radially does not interact with other
proteins. We found a guanine nucleotide-binding protein,
P62879, which may be a modulator or transducer in various
transmembrane signaling systems. Among 26 NIPs, 23 pairs were
correctly predicted by our method (Fig. 1a and Supplementary
Data 1), supporting the application of our method to predict
PPNIs in one-core networks.

Second, a multiple-core network is essentially composed of
several one-core networks, satisfying the corresponding non-
interaction relationships among these nuclear proteins at the
same time. We found a PPNI network with the pathway
Q8TBX8-O75175-P31150-Q16828-Q8TAU0-Q9H6S3, involving
26 proteins. Of the 82 NIPs in this network, our method correctly
predicted 66 pairs (Fig. 1b and Supplementary Data 1). To test
whether the lack of core protein non-interaction information
leads to low accuracy, we added existing non-interaction
information for 10, 30, and 40% of core proteins. Supplementary
Table 5 showed the frequency distribution of each core protein
that was incorrectly predicted. Using this additional information,
the accuracy could be increased from 80.49 to 85.37%, 92.68%,
and 96.34%, respectively. With the increase in NIPs related to the
six core proteins in the training set, the prediction accuracy of the
test set also gradually improved. Therefore, additional experi-
mental information could improve the ability of our method to
predict NIPs in complex networks.

Third, in biology, most PPNI networks are crossing networks.
We obtained a crossing network involving 73 human proteins
from the Negatome database. Our method could correctly predict
58 pairs among 81 NIPs (Fig. 1c and Supplementary Data 1),
indicating that our approach can be applied to general PPNI
networks.

Five-fold cross-validation on the constructed dataset. As there
was little difference in accuracy between SVM and RF when using
constructed dataset, we used SVM for five-fold cross-validation.
As shown in Table 2, the proposed method yielded a high average
accuracy of 95.40% for H. sapien, 94.83% for M. musculus,
98.28% for S. cerevisiae, 93.22% for D. melanogaster, and 94.63%
for H. pylori. These findings indicated that our model was
effective and robust for PPIs prediction (Supplementary Tables 2,
6 and Supplementary Figs. 2, 5).

Performance of different feature extraction and combination.
For the same classifier, diverse feature extraction methods may
yield different prediction results. To further determine the
importance of dinucleotides and triplet nucleotides in predicting
protein interactions, we separately predicted interactions com-
bined SVM with NV (using only nucleotide information), NVD
(using nucleotide and dinucleotide information), NVT (using
nucleotide and triplet nucleotide information), and NVDT (using
nucleotide, dinucleotide, and triplet nucleotide information). As
shown in Fig. 2, SVM-NVDT showed the best accuracy, preci-
sion, MCC, and F-scores for S. cerevisiae, D. melanogaster and H.
pylori constructed datasets and high sensitivity (Supplementary
Table 7). For D. melanogaster, the accuracy of the proposed

method was 7.02% higher than that of SVM-NV, 5.90% higher
than that of SVM-NVD, and 1.12% higher than that of SVM-
NVT. The polynucleotide module may therefore improve the
prediction performance.

Similarly, distinct feature combination methods based on the
same classifier will produce different prediction results. For one
protein pair composed of protein i and protein j, the 92-
dimensional feature vectors of two proteins can be obtained by
the NVDT method. Suppose that the feature vector of protein i is
A = (a1, a2, …, a92), and the feature vector of protein j is B = (b1,
b2, …, b92). Now we encode the protein pairs in five different
means, which are defined as follows.

Cod1 : abs A� Bð Þ ¼ ½ a1 � b1
�� ��; a2 � b2

�� ��; ¼ ; a92 � b92
�� ���

Cod2 : Aþ B ¼ ½ða1 þ b1Þ; ða2 þ b2Þ; ¼ ; ða92 þ b92Þ�

Cod3 : ðabs A� Bð Þ;Aþ BÞ ¼ ½ a1 � b1
�� ��; ¼ ; a92 � b92

�� ��;
ða1 þ b1Þ; ¼ ; ða92 þ b92Þ�

Cod4 : A � B ¼ ½ða1 ´ b1Þ; ða2 ´ b2Þ; ¼ ; ða92 ´ b92Þ�

Cod5 : ðA;BÞ ¼ ½a1; a2; ¼ ; a92; b1; b2; ¼ ; b92�
The accuracy results of Cod1–Cod5 on H. sapiens and M.
musculus datasets were shown in Table 3. It can be seen that
Cod5 (i.e., our method SVM-NVDT) achieved the highest
accuracy in all four datasets.

Comparison with other feature extraction methods. The pre-
diction results for alternative methods based on gene sequence
data using three datasets were shown in Table 4. Our method
showed accuracies of 99.20% for S. cerevisiae, 94.94% for D.
melanogaster, and 98.56% for H. pylori, which were better than
the two other methods, indicating that NVDT was more suitable
for predicting PPIs than other gene sequence-based methods.

We further compared our method with the codon pair-based
method(CCPPI) proposed by Zhou et al.56 on the S. cerevisiae
dataset. We used the same ten-fold cross-validation as the CCPPI
method and obtained an average accuracy of 98.05%, precision of
98.14%, sensitivity of 97.95%, and MCC of 96.10% (Supplemen-
tary Table 8). Compared with CCPPI, the average accuracy,
precision, sensitivity, and MCC of our method are improved by
8.45, 10.04, 6.25, and 16.80%, respectively.

Comparison with other sequence-based methods. In order to
make an effective comparison of our proposed SVM-NVDT
model, and considering the limited literature based on the D.
melanogaster dataset, we further compared the predictive per-
formance of our method with other state-of-the-art sequence-
based approaches using S. cerevisiae and H. pylori datasets. The
comparison results on the S. cerevisiae dataset were presented in
Table 5. The accuracy of our proposed method achieved an
enhancement of 1.39% compared with the second TAGPPI,
2.11% to the third PIPR, 4.13%to the fourth LightGBM, and
4.56% to the fifth StackPPI. The comparison results on the H.
pylori dataset were presented in Table 6. Our proposed method
achieved an improvement in an accuracy of 7.31% compared with
the second PCVMZM, 8.84% to the third StackPPI, 9.09% to the
fourth RF+PR+LPQ, and 9.41% to the fifth Weighted Skip-
sequential. Our model has shown superior results compared with
other methods, further supporting the validity of our model.

Performance on independent cross-species datasets. When a
large number of interacting proteins in an organism show cor-
related evolution, orthologs in other taxa will also interact.
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Fig. 1 PPNI network prediction results. a A one-core network involving P62879. b A multiple-core network involving the Q8TBX8-O75175-P31150-
Q16828-Q8TAU0-Q9H6S3 pathway. c A crossing network. The core and satellite proteins are represented by indigo blue circles and light blue circles,
respectively. Dotted lines connecting two proteins are divided into four classes: gray, predicted correctly; red, predicted falsely; green, re-predicted
correctly after adding 40% non-interactions, blue, re-predicted falsely after adding 40% non-interactions.

Table 2 Five-fold cross-validation results on the constructed dataset.

Test set Acc. (%) Pre. (%) Sen. (%) MCC (%) F-score (%) AUC

H. sapien 95.40 ± 1.45 91.69 ± 2.39 99.90 ± 0.22 91.19 ± 2.68 95.61 ± 1.33 0.9647 ± 0.0360
M. musculus 94.83 ± 2.69 96.43 ± 2.64 93.10 ± 3.92 89.71 ± 5.31 94.74 ± 2.77 0.9430 ± 0.0184
S. cerevisiae 98.28 ± 0.33 98.87 ± 0.47 97.68 ± 0.33 96.58 ± 0.67 98.27 ± 0.33 0.9963 ± 0.0009
D. melanogaster 93.22 ± 1.53 95.33 ± 1.62 90.92 ± 3.03 86.57 ± 2.99 93.04 ± 1.65 0.9656 ± 0.0106
H. Pylori 94.63 ± 2.18 97.56 ± 1.64 91.56 ± 4.02 89.49 ± 4.19 94.43 ± 2.33 0.9822 ± 0.0088

Note: The values in the table are average ± standard deviation.
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Therefore, we trained the model with SVM using all S. cerevisiae
samples and used the other five species in the DIP database as
independent test datasets. For these five test datasets, all samples
were interacting protein pairs. As summarized in Table 7, the
minimum prediction accuracy was 89.64%, indicating that the
proposed method can be used to predict cross-species PPIs.

Discussion
Our method calibrated on known PPNIs in H. sapiens and M.
musculus addressed the limitations of established computational
methods for PPIs prediction, including low accuracies and inef-
ficient prediction of real non-interactions. At the same time, the
validity of the model was verified on S. cerevisiae, D. melanoga-
ster, H. pylori, H. sapiens, and M. musculus constructed datasets
based on the commonly used protein pairs using different sub-
cellular locations to construct negative samples. Several aspects of
the proposed approach were worth highlighting. (1) We utilized
information from gene sequence data, enabling the extraction of
more extensive information not accessible in protein sequence
data. The dinucleotides and triplet nucleotides are related to
many diseases, metabolism, and mutations, and their information
can be well obtained by NVDT. (2) NVDT had better perfor-
mance than those of other gene sequence-based methods, with
higher accuracy and better stability and this can be explained by
the integration of polynucleotide information, which dramatically
reduces the repeatability of different protein feature vectors. (3)
NVDT juxtaposed the two feature vectors of a protein pair to

form a new vector with a single dimension, retaining more
information. Especially when combined with SVM, the prediction
classifications of the two feature vectors (feature_A, feature_B)
and (feature_B, feature_A) corresponding to each sample
(assuming the protein pair composed of protein A and protein B)
are always consistent. The reason may be that each dimension in
SVM is independent, and the classification fundamentally
depends on calculating the Euclidean distance of any two sam-
ples, so the order of features does not affect the classification
results. (4) Ensemble classifiers typically show higher accuracy
and robust performance than those of single classifiers. However,
our model using a single classifier SVM showed better perfor-
mance than those methods using ensemble classifiers on the H.
pylori dataset. (5) The constructed negative datasets were
restricted to protein pairs located in different cellular compart-
ments, potentially leading to a functional bias in downstream
analyses and predictions. The high accuracy of these datasets
hardly reflected the true prediction effect, but the good perfor-
mance on the real dataset can well reflect the feasibility of our
model. Among them, results showed that the prediction accuracy
of the real dataset was not sufficiently high, which may be
explained by the limitation of real non-interacting protein pairs.

The proposed method utilized detailed gene sequence infor-
mation, including the distribution information of three kinds of
nucleotides, and showed better predictive performance than those
of established protein sequence-based methods. Moreover, by
comparing combined and single features, we found that various
features may be complementary. And our model performed well
on three types of networks. These results proved that gene
sequence information can be used to distinguish interacting and
non-interacting protein pairs and ultimately to establish a com-
plete PPI and PPNI map to better understand biochemical and
biological processes.

Methods
In this section, we elaborated on the proposed NVDT approach for predicting PPIs
and PPNIs based on gene sequence. NVDT consisted of the following three steps:
(1) Encode the protein pairs’ interaction and non-interaction information into
natural vectors via the distribution of nucleotides, dinucleotides, and triplet
nucleotides. (2) Generate and normalize feature vectors of protein pairs. (3) Train
the model via different classifiers (SVM and RF) and test on an independent test

Fig. 2 Prediction performance based on SVM with NV, NVD, and NVDT on S. cerevisiae, D. melanogaster and H. pylori constructed datasets. The
abscissa shows the prediction metrics and the ordinate shows the prediction performance.

Table 3 Prediction performance based on distinct feature
combination methods on H. sapiens and M. musculus
datasets.

Datasets Cod1 Cod2 Cod3 Cod4 Cod5

H. sapiens constructed dataset 79.95 88.89 90.82 89.37 92.51
H. sapiens real dataset 70.77 78.26 78.27 74.15 80.92
M. musculus constructed
dataset

86.21 89.66 90.52 88.79 94.83

M. musculus real dataset 75.00 69.83 78.45 66.38 80.17

Note: The values in the table are the accuracy (%) of the independent test set.
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set. Finally, we briefly described the common model performance evaluation
metrics used in the study. The flowchart of NVDT was shown in Fig. 3.

Dataset collection. Seven datasets were obtained. The positive datasets consisted
of interacting protein pairs collected from the public Database of Interacting

Proteins (DIPs: https://dip.doe-mbi.ucla.edu/dip/)66. To reduce fragments and
sequence similarity, samples with fewer than 50 amino acids and >40% pairwise
sequence identity to one another were excluded.

The negative datasets were composed of non-interacting protein pairs obtained
in two ways. First, negative samples were derived from the Negatome Database 2.0
(http://mips.helmholtz-muenchen.de/proj/ppi/negatome)47, which currently

Table 5 Comparison of established methods using the S. cerevisiae dataset.

Model Acc. (%) Pre. (%) Sen. (%) MCC (%)

ACC (Guo, et al., 2008)16 89.33 88.87 89.93 N/A
AC (Guo, et al., 2008)16 87.36 87.82 87.30 N/A
Cod1 (Yang, et al., 2010)17 75.08 74.75 75.81 N/A
Cod2 (Yang, et al., 2010)17 80.04 82.17 76.77 N/A
Cod3 (Yang, et al., 2010)17 80.41 81.66 78.14 N/A
Cod4 (Yang, et al., 2010)17 86.15 90.24 81.03 N/A
SVM+LD (Zhou, et al., 2011)71 88.56 89.50 87.37 77.15
RF+PR+LPQ (Wong, et al., 2015)72 93.80 96.66 90.64 88.35
PCVMZM (Wang, et al., 2017)73 94.48 93.92 95.13 89.58
DeepPPI (Du, et al., 2017)74 94.43 96.65 92.06 88.97
DPPI (Hashemifar, et al., 2018)36 94.55 96.68 92.24 N/A
LightGBM (Chen, et al., 2019)20 95.07 97.82 92.21 90.30
PIPR (Chen, et al., 2019)37 97.09 97.00 97.17 95.63
StackPPI(Cheng, et al., 2020)22 94.64 96.33 92.81 89.34
TAGPPI(Song, et al., 2022)75 97.81 98.10 98.26 95.63
Our model (SVM-NVDT) 99.20 99.35 99.03 98.39

Note: N/A means not available.

Table 6 Comparison of existing methods using the H. pylori dataset.

Model Acc. (%) Pre. (%) Sen. (%) MCC (%)

HKNN (Nanni, 2005)76 84.00 84.00 86.00 N/A
Signature products (Martin, et al., 2005)32 83.40 85.70 79.90 N/A
Ensemble of HKNN (Nanni and Lumini, 2006)77 86.60 85.00 86.70 N/A
Boosting (Shi, et al., 2010)78 79.52 81.69 80.37 70.64
Ensemble ELM (You, et al., 2013)79 87.50 86.15 88.95 78.13
MCD-SVM (You, et al., 2014)80 84.91 86.12 83.24 74.40
Phylogenetic bootstrap (Bock J R et al., 2015)42 75.80 80.20 69.80 N/A
RF+PR+LPQ (Wong, et al., 2015)72 89.47 89.63 89.18 81.16
PCVMZM (Wang, et al., 2017)73 91.25 90.06 92.05 84.04
DeepPPI (Du, et al., 2017)74 86.23 84.32 89.44 72.63
Weighted Skip-sequential (Goktepe and Kodaz, 2018)81 89.15 87.29 88.13 77.21
LightGBM (Chen, et al., 2019)20 89.03 88.36 89.99 78.14
StackPPI (Cheng, et al., 2020)22 89.72 90.37 87.93 78.59
Our model (SVM-NVDT) 98.56 98.36 98.77 97.12

Note: N/A means not available.

Table 4 Prediction results of different methods on three constructed independent test datasets.

Method Acc. (%) Pre. (%) Sen. (%) MCC (%) F-score (%)

S. cerevisiae
Natural vector difference 78.43 83.80 70.49 57.60 76.57
Codon frequency difference 91.90 90.38 93.78 83.86 92.05
our method (SVM-NVDT) 99.20 99.35 99.03 98.39 99.19
D. melanogaster
Natural vector difference 79.78 84.87 72.47 60.20 78.18
Codon frequency difference 89.04 89.71 88.20 78.10 88.95
our method (SVM-NVDT) 94.94 97.62 92.13 90.03 94.80
H. Pylori
Natural vector difference 71.60 71.18 71.19 43.21 71.49
Codon frequency difference 72.84 79.37 61.73 46.85 69.44
our method (SVM-NVDT) 98.56 98.36 98.77 97.12 98.56

Note: Natural vector difference method58. Codon frequency difference57.
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contained experimentally supported non-interacting protein pairs. In the
Negatome database, the subcellular structure information for some proteins was
unclear or even absent, and some proteins belonged to at least two or more
subcellular localizations simultaneously, which was consistent with the actual
phenomenon. After a selection of protein pairs from multiple species in the
Negatome database, the majority belonged to H. sapiens (1217 pairs), followed by
M. musculus (347 pairs) and Rattus norvegicus (33 pairs). Accordingly, we collected
2434 protein pairs for H. sapiens and 694 protein pairs for M. musculus, with
interacting protein pairs and non-interacting protein pairs each accounting for half.
The datasets obtained in this way were called “real dataset”.

The other negative samples in different subcellular compartments were obtained,
based on the assumption that proteins within different subcellular localizations tend
not to interact. Considering that the ratio of positive samples to negative samples
used in previous literature research is mostly 1:1, we should not only verify the
prediction accuracy of interacting protein pairs but also ensure the prediction
accuracy of non-interacting protein pairs. Therefore, the balanced dataset was
selected when constructing the dataset, that is, we randomly selected negative
samples with the same number of positive samples. Here, the selection of negative
samples was random without any cluster analysis. Four datasets were finally
collected in this way, including 11188 protein pairs for S. cerevisiae, 2140 protein
pairs for D. melanogaster, 1217 protein pairs for H. sapiens, and 694 protein pairs
for M. musculus. We also performed on 2916 protein pairs for H. pylori described
derived by Rain et al.67, and a list of H. pylori protein interactions was given in its
supplementary materials. These datasets were called “constructed dataset”.

The gene sequence of each protein was obtained from the NCBI database
(https://www.ncbi.nlm.nih.gov/). To verify the performance of the proposed
method, the positive samples of H. sapiens and M. musculus datasets in the real
dataset and constructed dataset were consistent, only the negative samples were
obtained differently (Supplementary Table 9). Finally, each of the seven datasets
was divided into a training dataset and a test dataset in a ratio of 5:1.

Feature extraction. Deng et al. have defined natural vector and mathematically
proved that there was a one-to-one correspondence between natural vector and
gene sequence for a protein58. The natural vector method to extract vital infor-
mation from gene sequence was as follows.

Let S ¼ s1s2 � � � sN be a gene sequence of length N, where si 2 A;C;G;Tf g; i ¼
1; 2; ¼ ;N . For k representing one of the four nucleotides, define
ω �ð Þ ¼ A;C;G;Tf g ! f0; 1g, where

ωk si
� � ¼ 0; si ≠ k;

1; si ¼ k:

�
ð1Þ

(1) Denote nk ¼ ∑N
i¼1 ωk si

� �
as the number of nucleotide k in gene sequence S.

(2) Taking the first nucleotide as the origin, diskðiÞ ¼ i � ωk si
� �

is the distance
from the first nucleotide to the ith nucleotide k, where i ¼ 1; 2; ¼ ; nk , and

μk ¼
∑

nk
i¼1 diskðiÞ
nk

represents the average position of nucleotide k in gene

sequence S.
(3) The normalized central moments are defined as Dk

j ¼
∑nk

i¼1
ði�μkÞj �ωk sið Þ

nj�1
k Nj�1 ; j ¼ 1; 2; ¼ ; nk .

The first normalized central moments Dk
1 (j = 1 in Dk

j ) could be ignored since
its values were zero. Deng et al. and Yu et al. have demonstrated that the second
normalized central moments Dk

2 (j = 2 in Dk
j ) in the vector could obtain stable

classification results; accordingly, the central moments (Dk
j ) higher than j = 2 do

not need to be considered, and computed58,68. Thus, the 12-dimensional natural
vector N(S) of a gene sequence S was given as follows:

N Sð Þ ¼ nA; nC ; nG; nT ; μA; μC ; μG; μT ;D
A
2 ;D

C
2 ;D

G
2 ;D

T
2

� � ð2Þ
In this work, we proposed an extended natural vector with the frequencies of
dinucleotides and triplet nucleotides, which considered the properties of a single
nucleotide and its vicinal nucleotides and regarded any two contiguous nucleotides
or any three contiguous nucleotides as a unit. The size of type dinucleotide should
be 4 × 4= 16 and the size of type triplet nucleotide should be 4 × 4 × 4= 64.
Finally, we defined a 92-dimensional natural vector to make further investigation
on gene sequence as the following:

N Sð Þ ¼ nA; nC ; nG; nT ; μA; μC ; μG; μT ;D
A
2 ;D

C
2 ;D

G
2 ;D

T
2 ; nAA; ¼ ; nTT ; nAAA; ¼ ; nTTT

� �
ð3Þ

For each protein pair in the dataset, we could convert a gene sequence into a
natural vector. Assume that the kth protein pair corresponds to protein i and
protein j, we then juxtaposed the two natural vectors. The features of the protein

Fig. 3 Workflow of our computational pipeline to predict protein-protein interaction and non-interaction. It describes the whole research
process, including dataset collection, feature extraction, feature-selective classifier and result analysis.

Table 7 Prediction results for independent datasets.

Test species No. of Test pairs Acc. (%)

D. melanogaster 1070 99.35
H. pylori 1458 94.51
Caenorhabditis elegans 1045 98.56
M. musculus 336 98.50
Escherichia coli 2143 89.64
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pair can be described as two 184-dimensional feature vectors:

dk ¼ ðNi;NjÞ or ðNj;NiÞ ð4Þ
where Ni and Nj were feature vectors for proteins i and j.

However, protein feature vectors correlated to the length of protein (the
number of nucleotides) complicate the comparison between two protein pairs. The
feature vectors were standardized by the Z-score method69, with the mean value of
0 and standard deviation of 1:

d0k lð Þ ¼ dk lð Þ � μ lð Þ
σ lð Þ ; k ¼ 1; 2; ¼ ; n; and l ¼ 1; 2; ¼ ; 184 ð5Þ

where dk lð Þ was the lth feature of the kth protein pair, and n was the number of
protein pairs. μ(l) and σ(l) were the mean value and standard deviation of all
proteins for the lth feature, respectively:

μ lð Þ ¼ ∑n
k¼1 dk lð Þ
n

; σ lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k¼1 dk lð Þ � μ lð Þ� �2
n

s
ð6Þ

For data standardization, the training set was standardized in the above way, and
the mean and standard deviation of the training set were used to standardize the
test set. d0k , the input features of a classifier, were a 184-dimensional vector
containing the statistical features of nucleotide, dinucleotide, and triplet nucleotide.

Support vector machine. SVM70 is a supervised learning method that has been
popularly utilized for classification and regression in computational biology. It con-
structs a hyperplane to maximize the margin. Specifically, SVM finds several samples
as support vectors that minimize the distance of samples between different classes,
and the minimum distance is called the margin. The optimal hyperplane is located in
the center of the margin, where the larger the margin is, the smaller the generalization
error will be. Therefore, this hyperplane can better divide the samples in the training
set according to the labels given. In this study, the Gaussian radial basis function was
chosen as the kernel function, and the regularization parameter c and the Gauss
kernel function parameter γ were optimized by a grid search approach. Here, the
parameters were the default of LIBSVM, and cross-validation was used to avoid over-
fitting (Supplementary Table 10). And select a cut-off value of 0.5. The application of
the SVM classifier under optimal parameter settings guarantees the reliability of
classification prediction with the minimum error.

Random forest. Random forest (RF)70 is another typical classification and
regression method with biological applications. It uses multiple decision trees,
which do not correlate them, to obtain the final result by voting or taking the mean
value, generating an overall model with high accuracy and generalizability. For a
new sample, each decision tree assigns the sample to a class, and then the voting
method is used to determine which class is selected more frequently as the final
classification result. Three parameters are usually adjusted when training an RF
model, the number of trees to grow (denoted as n_Tree), the number of randomly
selected features at each decision split (denoted as n_feature), and the minimum
node size of a terminal node (denoted as min_leaf). In our study, n_Tree values
under 200 were evaluated to find the optimal value concerning computational time,
cost, and overfitting (Supplementary Table 10). All other parameters were set to
default values.

Performance evaluation. Common performance evaluation metrics were used,
including accuracy (Acc.), precision (Pre.), sensitivity (Sen.), specificity (Spe.),
Matthews correlation coefficient (MCC), F1-score, and the area under a ROC curve
(AUC) to evaluate the predictive performance of the proposed method. These
metrics were defined as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð7Þ

Precision ¼ TP
TP þ FP

ð8Þ

Sensitivity ¼ TP
TP þ FN

ð9Þ

Specificity ¼ TN
TN þ FP

ð10Þ

MCC ¼ TP ´TN � FP ´ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ ´ TN þ FPð Þ ´ TP þ FPð Þ ´ TN þ FNð Þ

p ð11Þ

F1-score ¼ 2 � precision � sensitivity
precisionþ sensitivity

ð12Þ

where TP represents the number of positive samples that are correctly predicted;
FN represents the number of positive samples that are incorrectly predicted; TN
represents the number of negative samples that are correctly predicted; FP repre-
sents the number of negative samples that are incorrectly predicted. The receiver

operating characteristic (ROC) curve was generated by plotting the TP rate against
the FP rate at various thresholds; the abscissa of the ROC curve was 1-specificity
and the longitudinal coordinate is sensitivity.

Statistics and reproducibility. All quantitative results of K-fold cross-validation
were shown using mean ± standard deviation. Graphing of three types of PPNI
networks was performed with Pajek. The computational experiments were repeated
at least two additional times with a similar outcome.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this work are available at https://github.com/Zhaonan99/NVDT and
Supplementary Data 1. Supplementary Data 1 is a .xlsx file that includes data for
reproducing Fig. 1. Supplementary Table 7 includes data for reproducing Fig. 2. The
interacting protein pairs discussed have been deposited in the DIP database, the real non-
interacting protein pairs are accessible through the Negatome Database 2.0, and the gene
sequence of each protein is available from the NCBI database. Other information is
available from the corresponding author on reasonable request.

Code availability
The source code is available at https://github.com/Zhaonan99/NVDT.
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