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An observer traversing an environment actively relocates gaze to fixate objects. Evidence suggests that gaze is frequently
directed toward the center of an object considered as target but more likely toward the edges of an object that appears as
an obstacle. We suggest that this difference in gaze might be motivated by specific patterns of optic flow that are
generated by either fixating the center or edge of an object. To support our suggestion we derive an analytical model that
shows: Tangentially fixating the outer surface of an obstacle leads to strong flow discontinuities that can be used for flow-
based segmentation. Fixation of the target center while gaze and heading are locked without head-, body-, or eye-rotations
gives rise to a symmetric expansion flow with its center at the point being approached, which facilitates steering toward a
target. We conclude that gaze control incorporates ecological constraints to improve the robustness of steering and
collision avoidance by actively generating flows appropriate to solve the task.
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Introduction

In the 20™ century research on optic flow revealed its invariant
properties and influence on steering control. This early research
defined optic flow as the apparent change of structured light in the
optic array over time and shows that this optic flow is useful to
segment a visual scene [1] or to control aircrafts [2]. Decades later,
experiments showed that humans can judge heading within two
degrees of accuracy from random dot kinematograms that were
designed to generate optic flow cues only [3]. Human heading
accuracy depends on dot density and observer speed [4].
Simulated eye-movements in these displays increase errors in
estimated heading, and errors are biased in the direction of the
simulated rotation in the optic flow [5], [6]. Heading judgments
for the same displays are robust with respect to simulated noise or
limited dot lifetime for either translational or rotational motion
above a ground-plane or through a 3D dot cloud [7]. Experiments
in virtual environments show that optic flow is used for controlling
walking toward a target in conjunction with pure positional
information about the target [8]. In sum, optic flow provides
information about heading, and humans use this information to
control their behavior.

Active gaze control, or an active vision approach, can help to
solve inverse problems in vision. For instance, ill-posed problems
such as reconstructing shape from shading, from contour, or from
texture become well-posed under appropriate active control of the
camera [9], [10]. Another example is the estimation of optic flow
from image sequences that becomes well-posed when employing
active vision strategies [9]. In theory, many ill-posed inverse
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problems in vision become well-posed or better constrained by
assuming an active vision approach.

Eye-tracking data shows that active gaze control is used by
humans. Gaze is actively controlled in ordinary daily tasks [11],
e.g. the making of a cup of tea [12] or steering a vehicle on the
road during driving [13]. When preparing a peanut butter and

jelly sandwich, humans deploy an orchestrated sequence of eye-

movements that are astonishingly similar between participants
when given the same abstract instruction [11]. Eye-tracking data
shows that humans are actively selecting gaze points that are
related to the current task [11], [12]. During a visual navigation
task humans fixate the center of targets while they prefer to fixate
the edge of obstacles [14]. An illustration is shown in Figure 1.
What generates this task-dependent difference in gaze behavior?
Why do we not use one of the other possible control strategies? For
instance we could fixate the center of an obstacle or the edge of a
target, as shown in Figure lc.

We suggest an optic-flow based explanation for the gaze
behavior during visual steering. This explanation is based on a
combination of eye-tracking data and walking trajectories for the
same tasks [15]. We develop an analytical model and run
simulations for the detection of flow discontinuities and flow
patterns in these tasks of visual navigation. This model explains
patterns of gaze and heading for target approach and obstacle
avoidance on the basis of local and global flow cues. We make two
claims based on the model analysis. (i) For flow-based steering
control the point being approached can be directly extracted from
flow, if the observer proceeds in the same direction. This occurs if
the observer is close to the target. In this case heading and gaze are
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Figure 1. lllustration of two tasks that generate two strategies for gaze control. a) If humans approach a target they fixate the center and
align heading with gaze. b) To avoid an obstacle the outer edge is fixated and gaze points to a direction that is different from the direction of
heading. This outer edge is an apical edge. These two sketches are based on the findings reported by Rothkopf & Ballard [14] and Fajen & Warren
[15]. €) These strategies are embedded in a larger set of possible control strategies that depend on gaze and heading, the point of fixation, and the
role of the faced object to be either target or obstacle. The control strategies from a) and b) are used by humans. Our derived model provides a flow-
based analysis of all four possible strategies that does not include the detection of an object to be target or obstacle, e.g. by a color cue as in the

experiment.
doi:10.1371/journal.pone.0038446.9001

aligned, and fixating eye—/head-rotations and body rotations are
small and can be neglected. This translational motion can be
identified due to zero-valued curl and shear components and a
positive divergence component of the flow. (i) Local flow
derivatives are maximized if a wall that either is planar or
smoothly curved is tangentially fixated. This could facilitate flow-
based segmentation.

Our flow-based explanation makes the following assumptions: (i)
that no independently moving objects occur, (i) that the object for
fixation is identified and (iii) that the scene is rigid. Rigid means that
the scene contains no deformable objects, e.g. a face that is
changing its emotional expressions. Note that we do not require the
segmentation of the edge or object from the background. Instead,
we offer a flow-based explanation for such a segmentation that is a
search for discontinuities in the flow. Furthermore, once the
segmentation is achieved our analysis provides information about
controlling gaze in order to maintain fixation at the edge which can
be facilitated by the detection of flow-based discontinuities.

Our analysis includes visual cues in form of optic flow that is
generated from parameters of gaze and heading for target
approach or obstacle avoidance. Mathematical descriptions of
flow for a sensor moving with a translational and rotational
velocity through a rigid environment [16] are used to derive a
model for the spatially local flow derivatives assuming various edge
types, such as fixating tangentially a planar or curved surface, or
an apical edge. Tangential fixation is defined by looking parallel to
an object’s surface. An apical edge is characterized by a
continuous transition on one side of the edge and an abrupt
change on the other side. For instance, in Figure 1b fixation is
directed to an apical edge of the object.

Local flow derivatives can be decomposed into geometrical
components of divergence, curl, and shear as suggested by
Koenderink and van Doorn [17] and Braddick [18]. Figure 2
shows an example of such decomposition. Assume a regular
checkerboard texture that is transformed by flow. This flow can be
described by its divergence, curl, and shear components. These
components are applied separately to the input texture in
Figure 2a. Applying divergence gives the texture pattern shown
in Figure 2b, applying curl the texture in 2c, applying Type I shear
the texture in 2d, and applying Type II shear the texture in 2e.
Note that for Type II shear the axis for the frame of reference is
rotated by 45° compared to the reference frame of Type I shear.

@ PLoS ONE | www.plosone.org

These flow derivatives have also an interpretation with respect
to patterns of global flow defined for the entire visual field. In such
an interpretation, (i) divergence relates to an expansional global
flow pattern that is a result of forward motion. The opposite
interpretation holds for contractive global flow patterns. (i) A
global flow pattern that originates from rotating the sensor around
the optical axis gives rise to curl. Type I shear or Type II shear do
not exclusively or directly relate to one single type of self-motion.

Our work analyzes flow derivatives that occur for different
forms of self-motion and gaze direction. Figure 3 provides an
outline and overview of this idea. On the left-hand side of the
figure three scenarios are displayed: fixation at the center of a
target object, fixation parallel to the edge of an obstacle, and
fixation at the outer edge of an obstacle called an apical edge. The
first column shows drawings of these 3D scenarios of facing a
plane, looking tangential to a plane, and looking at an outer edge
that has the background on the right side, in this example. The last
column of Figure 3 shows the different flow derivative components
of divergence, curl, and shear that occur in these configurations.
These derivative components are characterized by the normal
vector of the surface with components n,, n,, and 7., and the
translational self-motion vector with components v,, v, and .
Note that flow derivatives are encoded using the same icons as in
Figure 2. According to our derived analytical model some types of
derivatives only occur for a specific configuration. For instance, in
the target approach in Figure 3a with 7,70, n, =0, and 7,70 and
if the observer translates only along the x-axis, only divergence and
Type I shear occur. See Figure 3a the table in the first row and
there the entries for »,. More details about the analytical model
and its comparison to responses from a biologically motivated flow
derivative detector are given next.

Results

In the following paragraphs we support our two claims by
stating results for our derived model of flow discontinuities. We
also include simulations using biologically inspired mechanisms for
the detection of flow derivatives and their interconnection to
provide responses for divergence, curl, and shear. First, we give
possible interpretations for the finding by Rothkopf & Ballard [14]
that fixation goes to an object’s center in a target approach task,
because the generated flow pattern encodes the point of approach
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Figure 2. lllustration of the decomposition of flow into divergence, curl, and shear components. a) Shows the input pattern, a regular
checkerboard texture. Subsequent panels show the resulting deformed image for a divergence in b), a curl in c), a Type | shear in d) and a Type Il
shear in e), and all of these components are positive. For illustration purposes these deformations were applied to a regular texture pattern. Later we
will look for these deformations locally in image sequences whose spatio-temporal gray-value changes can be described by image flow models from
the introduction. The depiction is adapted from Koenderink [19], his Figure 7. These figures depict divergence, curl, and shear applied to texture
patterns. There is also an interpretation of these components for global flow patterns (see text in the Introduction).

doi:10.1371/journal.pone.0038446.9g002

and simplifies steering control. Second, we analytically describe
the fixation of obstacle edges by flow discontinuities which can be
used for localization of an obstacle in the visual field. Third, we
analyze flows extracted from videos and compute divergence, curl,
and shear responses using the biologically inspired mechanisms to
illustrate our developed mechanisms for generated and recorded
videos.

Fixating Targets at Their Center while Aligning Gaze and
Heading

The fixation of a target’s center together with the alignment of
gaze and heading has two implications for the generated flow fields
that can contribute to the solution of the task of approaching a
target. First, if gaze and heading are aligned, a translational flow
results that is, ideally, a symmetric pattern of flow vectors. Within
cach sector, flow vectors point away from the point of fixation.
This flow has a divergence component of 2-v./d. Curl and shear
are zero, see Figure 4a. This argument excludes any rotations
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either originating from the eye, head, or body and supports our
first claim.

From a behavioral point of view excluding rotations makes
sense, since such rotations would shift the center of motion (COM)
and this shifted COM does not correspond to the theoretical focus
of expansion (FOE). Coming closer to the target, human subjects
show a reduced amount of body rotation [15]. In combination
with the eye-tracking data [14] this suggests small eye-rotations
and no head rotations while fixating the target’s center. Together,
these data suggests that gaze and heading direction are aligned
and that eye and head rotations are small as an observer comes
close to a target.

Second, if gaze and heading direction are aligned, then the
location of the FOE coincides with the point being approached
when assuming a constant self-motion. Humans could use the
detection of the FOE to align their walking direction with their
gaze in order to accomplish straight walking and, furthermore, to
align both with the target’s center in order to navigate toward the
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Figure 3. Summary of the local flow derivative analysis. a) Approaching a target while fixating the surface n, # 0, n,=0, and n,#0 yields
divergence and Type | shear components if moving sideward; curl and Type |l shear components if moving up/downward; a divergence component if
moving forward, compare with the Table 1. For the case n,=0, n, # 0, and n, # 0 the same components occur if swapping x and y, compare with the
Table 2. b) Avoiding an obstacle by tangentially fixating its edge surface yields the same flow derivative components as in a) for the case n,=1, n, =0,
and n,=0. c) Fixation of an apical edge yields all four components if moving along the optical axis. Sideward movement results in divergence and
Type | shear and up—/downward movement in curl and Type Il shear components.

doi:10.1371/journal.pone.0038446.9g003

target. After successful alignments the target center, heading, and
gaze coincide and all point toward the point being approached.
We have thus supported our first claim that fixating the center of
an object and aligning gaze, heading, and the point being
approached supports steering toward the target; furthermore, only
a positive flow divergence results. The second claim about flow-
based segmentation namely, that fixating the edge facilitates a
flow-based obstacle segmentation, will be supported next.

Fixating the Obstacle’s Edges while Avoiding a Collision
with the Obstacle

In order to avoid an obstacle it has to be visually segmented
from the background. In addition to texture, color, and stereo
cues, flow fields can provide a cue for segmentation. But what
should the pattern of self-motion and gaze be to generate flow that
best facilitates segmentation? Qualitative flow derivative compo-
nents caused by different patterns of self-motion and gaze are
shown in Figure 4a. Fixating the edge of an object, the derivative
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components that are present are the same regardless of the
alignment between gaze and heading direction. Thus, a more
qualitative analysis might be helpful. In order to approximate flow
derivatives at an edge, we apply two steps; see Figure 4b. First, the
edge is rotated until it is parallel to the direction of gaze. Second,
the distance between optical axis and the plane that describes the
edge is moved toward zero in the limit. Figure 5 and Table 1
provide qualitative values for flow derivatives. In general, directing
gaze toward the center of an obstacle leads to smaller divergence,
curl, and shear components than fixating the obstacle’s surface
tangentially or fixating one of the obstacle’s outer or apical edges.
These depictions are based on equations given in Table 2 for a
general surface function £ and in Table 3 replacing the general
surface function { with a plane. Equations from Table 3 show that
fixating the center of an obstacle leads to responses that are linear
for varying x, the distance of the fixation point from the surface, or
these responses have a constant slope for varying x (see 1* column
in Figure 5). This is unlike the response curves from column two
and three in Figure 5 which are hyperbolic. The singularity of
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Figure 4. Shows the expected flow derivative components and the limit case applied to approximate flow derivatives at depth
discontinuities. a) Repeats the table from Figure 1 showing the expected flow derivative components. For the target approach strategy only a
divergence component is present that is the case in the upper right with fixating the center and alignment between heading and gaze direction.
Note that not all cases could be distinguished by their qualitative pattern response. Therefore, we study the quantitative response at discontinuities
like an edge. b) Shows the approximation used for an edge. The first graphics depicts fixation of a plane orthogonal to gaze direction. In the two
succeeding graphics the wall is rotated by 90° until fixation appears tangential to the gaze direction.

doi:10.1371/journal.pone.0038446.9004

these curves is reached in the limit case of tangential fixation of a
planar (2" column in Figure 5) or curved surface (3™ column in
Figure 5). For tangential fixation the infinitely large values of
divergence, curl, and shear could be used to first establish
tangential fixation and second to segment objects from the
background as they occur at this transition. This finding is also
shown in Table 1 using a compact notation. Fixating the center
leads to straight curves (2™ row in Table 1), and tangential fixation
gives hyperbolic response curves for planar (3™ row) and curved
surfaces (4™ row) and thus shows the second claim from the
introduction. These hyperbolic are directly linked to discontinu-
ities in depth: “In the velocity field they [depth discontinuities]
appear also as singular curves where the expansion, vorticity [curl]
and shear take on infinite values”, cited from page 54 in [19].
To illustrate the derived properties we chose the following
example: A forward motion
(v, Vy,v2) =(sin (9)- cos (), sin (), cos () cos (Y))m/ sec with
9=—30" and Y =30°, the distance d=5m for the object
(nx,n,,n:)=(0, 0, 1), and the focal length of the pinhole camera
is f=0.01m. Fixating the center of the object gives a flow

divergence of v/3/10 sec™! ~0.173sec™! in the fovea locally
around the fixation point with x=0m and y =0 m. In this case
the curl and shear components have a zero value. In contrast, the
fixation of the rim of an object results in strong components of
divergence, curl, and shear. Assume the location of the derivative
to be computed at x=f away from the fixation point, because at
the fixation point the derivatives are not defined. For this case the
divergence is 250 sec™!, the curl is —50 sec™!, the Type I shear
is (250v/3+475) sec! 2508 sec™!, and the Type II shear is
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—50 sec™!. Curl and Type II shear have the same values,
compare also with Table 3 for the case x=f". The components for
a fixating eye-rotation are comparatively small (compare with the
third row in Table 1 and set x=f, y=f, and Zr=5m, e.g. the
divergence is 3:(2—4/3)/20~0.04 sec”’) and were neglected in the
above analysis.

Flow derivatives for a curved edge are approximated by
assuming tangential fixation of a circular post. We assume again
x=f and R=0.5m. In this case the divergence is
~ —0.3067 sec™!, the curl is —0.0018 sec™!, the Type I shear
is ~0.0007 sec™!, and the Type II shear is —0.0018 sec™!.
Again curl and Type II shear components are identical, compare
with Table 2. Compared to the tangential fixation of a plane these
components are small; however, in their limit case of x
approaching zero they also approach Finfinity. These previous
examples show that tangentially fixating the edge of a planar
surface leads to strong divergence, curl, and shear components,
which are much stronger than those generated by fixating the
center of an obstacle approximated by a plane orthogonal to the
gaze direction. In addition these components of tangential fixation
are also much stronger than those generated by a fixating eye-
rotation. Components of tangential fixation on a planar surface
are stronger than those for tangential fixation on a circular post,
assuming the same distance x = f.

So far, the analysis of divergence, curl, and shear in the flow
fields refers to the image plane of a pinhole camera model. To
study the same expressions in a representation as in the primary
visual cortex in primates we use an additional monopole mapping
[20] that models the cortical magnification for the transform of

June 2012 | Volume 7 | Issue 6 | 38446



Optic Flow-Based Segmentation and Steering

a Approach of a plane with tilt b Fixation of a planar surface C Fixation of a curved surface
gaze gaze
; i = (sing, 0, cosa) Z' A /
fixation @ i /
T\
! fixation ’/ ' (1,0,0)
I n=(1,0, |
: % / : :
i & fixation | i
d < parallel plane ° i H
I ’)@ 1 : :
| | | ; :
L 1 1 ! !
fovea eccentriciy fovea eccentriciy fovea eccentriciy
\ Sxv-x?v>0 i/
- slope 3/(df)'sin(a)'v. and v>0 and &>D :/
& 1

-*4- div =

X
>
sl
-1/d-sin(a)'\{T+2/d~cos(a)-v_,

A

7
7

4 X ?
= e
% -l/dsin(a) v, % ;/
% i
< / Y/
A s |
“':"" slope 1/(df ) sin(a)v. ? / \a::gjbbm ?
% y
® X > X V
i |
5 -m)'*u // Y/
g A v>0 and d>D ;
4] 1
2 Ad-sin(a)v, / = V
, 1
< /] o

Figure 5. Response for flow divergence, curl, and shear get infinitely large if fixating tangentially. These strong responses located at
objects’ edges allow for their segmentation. In all cases the camera has the translational velocity (v,, v,, v,). a) Sketch of the scenario for fixating a
plane that has a tilt = >0 in the xz-plane. The lower four rows show the functions for the response of flow components depending on the declination
from the center of the visual field along the horizontal axis. Divergence and Type | shear depend linearly on x, the declination along the x-axis. Curl
and Type Il shear are independent of x. b) For a plane parallel to the optical axis all four components are reciprocal dependent on x. For values close
to zero the component’s responses approach minus infinity. In this panel we depicted div, curl, and shear components by the gray-dashed line for a
specific eccentricity or horizontal distance x of the plane from the gaze direction. c) A curved surface that is cylindrical in the xz-plane and planar in
the xy/yz-planes leads to the same response characteristics for divergence, curl, and shear. For x—0 or x—R all four components approach =*infinity.
The difference in linear versus hyperbolic response curves for case a) versus b) and c) gives an explanation why segmentation of obstacles can be
improved by fixating the edge. Such a fixation results in strong responses that could be detected by difference operators. All sketches in the first row
show a top-down view of the three scenarios, respectively.

doi:10.1371/journal.pone.0038446.9g005
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Table 1. Shows the decomposition of a flow field into
responses of divergence, curl, and shear.

Sensor Scenario div curl shear, shear, row
Tilted plane / = / = 1
Pinhole Parallel plane N N al N 2
Parallel circle N n n n 3
Tilted plane — 0 - 0 4
Monopole periphery  Parallel plane N 0 al 0 5
Parallel circle N 0 N 0 6
Tilted plane / / - - 7
Monopole fovea Parallel plane N N N n 8
Parallel circle N N N N 9

The meaning of symbols is: “/” response depends linear on the declination x
that is the distance to the center of the visual field measured along the x-axis;
“—" constant response independent of x; “N" response with hyperbolic
dependence on x, a discontinuity is attained if fixating the edge tangentially;
"“0" no response. The cortical transform changes the different response
characteristics; however, for all three sensors the tilted plane does not result in
a hyperbolic response curve. Thus, fixating at the center (tilted cases) is
qualitatively different from fixating at the edge (parallel cases).
doi:10.1371/journal.pone.0038446.t001

visual space as a function of polar coordinates to cortex. This
monopole mapping is applied before computing partial derivatives
to define the Jacobian matrix and then divergence, curl, and shear
in the new coordinate system (see Appendix SI1). For this
representation we study the response characteristics for the
periphery (the limit r—o0) and for the fovea (the limit r—0).
Qualitative results for these two regions in the visual field are given
in Table 1; the lower two groups labeled by ‘Monopole periphery’
and ‘Monopole fovea’. For both regions within the visual field,
response curves are linear in declination x for the fixation of a
tilted plane 4™ row and 7™ row in Table 1). In contrast, the
tangential fixation leads to hyperbolic responses (5, 6", 8", and
9" row in Table 1). Strong divergence, curl, and shear

Optic Flow-Based Segmentation and Steering

components can be used to better segment an obstacle from the
background. The same applies if using foveal vision modeled by a
monopole mapping.

Simulation of Divergence, Curl, and Shear Components
for Video Sequences

After developing our theoretical model we analyzed video
sequences in terms of their flow-based divergence, curl, and shear
components. Synthetic videos were generated using the configu-
rations of Rothkopf & Ballard [14]. Figure 6 shows results of this
simulation (details about parameters etc. are given in the Method
Section). Analytical flow for the central five degrees of visual field
(horizontally and vertically) is computed and depicted by black
arrows. The angular distribution of motions in the circular left and
right half of the visual field is shown in the circular histograms. For
the target approach both halves of the visual field show a
distribution of angles over 180°. In contrast, the obstacle
avoidance with the fixation strategy leads to narrow distributions
approximately 180° apart. This distribution is optimally suited to
be picked up by the biologically inspired operator as depicted
below the histograms in Figure 6b. The type of filter and its visual
representation has been taken from Born & Bradley [21] their
Figure 6C. Their study provided evidence that motion disconti-
nuities are detected by orientation selective filter mechanisms with
juxtaposed ON and OFF subfields. Such filter sensitivities have
been measured in half of the population tested, see Xia et al. [22].
Results for spatial flow derivatives that are computed by using such
operators and their decomposition into divergence, curl, and shear
components are displayed in the small panels on the left in
Figure 6a and 6b. For an approaching observer only the
divergence component is strictly positive over the entire field of
representation. All other components are zero. This matches the
case of purely expansion flow that is shown in Figure 6a; where the
FOE of this flow indicates the point being approached that is
directed to the center of the target object. In contrast the flow for a
fixating observer has more variability. Fixation at the edge gives a
discontinuity in depth in the field of view that leads to mainly
translational flow for the foreground object. This is visible at the

Table 2. Shows a decomposition of the Jacobian matrix for different self-motions.

div(gpion) curl(gsion) shear(gsiow) shear1(gfiow)
Translation 0xZ 0xZ 0xZ 0z
— (et an) — ) — O fetan) =S A= trn)
0,Z 0,Z 0,Z 0Z
— = f ) + (k) + L) — S (Svan)
Vz
i
Rotation’ 3 1 1 1
.)—('(y'wxfx'wy) 7}7'0)'w,\.+x'w}.)72'w: 7./7 (Vo +xwy) —j—p'(y-w).—x'wx)
Fixati tati 3 o . L (e — o 1 (e 1
ixating rotation T (X Ve +yvy) Z vx—xvy) 7Zr (xvx—yv) —vetxm)
fZFp
Translation toward a plane? L. R LS . RS - LS oy
d'f( fve+3xv2) d'f( vy +yv:) d'f( S v+ xv2) d'f( v +yv:)
ny ny ny ny
(= 43y e YRR T Y (—Fy - Y ey -
+df( Sy +3yv:) d'f( Sy +x:) a"f( Svy+y:) +d'f( St xv:)
12l
7

doi:10.1371/journal.pone.0038446.t002
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This matrix Jg,, is decomposed into divergence, curl, Type | shear, and Type Il shear using the function gg,,, considering only a translation (v,, v,, v,) (second row), only a
rotation (w,, w,, ;) (third row), only a fixating rotation (fourth row), or a translational motion toward a plane with the normal (n,, n, n.) and distance d (fifth row). Note,
X and y are the differential displacements on the image plane or pixel velocities. Rotations are independent of the depth and its partial derivatives.

"The roll rotation w, is independent of the surface. Furthermore, this roll rotation appears only and exclusively in the curl component.

2The divergence 2+v,/Z is present, independent of the spatial derivatives of the depth Z and this component only appears for the divergence.
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Table 3. Shows the decomposition of the Jacobian matrix for fixation of a tilted surface and tangential fixation of a surface.

Fixating the center of an object surface that is tilted w.r.t. gaze

div(gs,,) curl(gg,,,) sheary(gg1,,) shear(gs1,,)
Plane tilted by « with respect to gaze'  sin (x) . sin (o) sin (o) sin (o)
(/) g ap (/v =g
+2 COZ(G{) V.
Fixating the edge of an object surface tangentially
div(ggion) curl(gyy,,) shear;(gg10,,) shearyi(ggion)
Plane parallel to gaze® _ l'v o §‘v . l‘v . l,v +LV . l,v
P 7 z = X~ f Z x 7
Curved edge’ (R=x)(=f"xve+xv:) 20 (R—x)["v, (R=x)(=fv,+x72) (R=x)f"xv,
D+(d—D)* d—D D+(d— D) D(d—Dy D(d— D)

This decomposition uses a pinhole camera model and we assume y=0.

derivative components approach *infinity.

doi:10.1371/journal.pone.0038446.t003

center of motion that is positioned at the obstacle’s edge in
Figure 6b. In the background the flow pattern is dominated by
rotational flow, since the translation flow components are only
minor in magnitude due to their large distance from the observer
(compare also with Equations (2)). This mainly translational flow
on the object and the mainly rotational flow on the ground are
very different. The translational flow component is expansional
while the rotational flow component is laminar. At the boundary
of these two regions a strong discontinuity in the flow direction and
speed occurs. See again in Figure 6b the zoomed-in image. This
discontinuity leads to strong components of divergence, curl, and
shear that are suited to segment the object from the background.
In sum, the foveation in the target approach strategy gives
expansion flow with the FOE at the point being approached while
the fixation in the obstacle avoidance strategy results in a mixture
of translational and rotational flow with a strong discontinuity in
motion direction and speed at the location of the obstacle’s edge.
In order to characterize these component responses we derived
an analytical model for the divergence, curl, and shear compo-
nents of a moving observer. Thus, the responses of Figure 6a and
6b could be explained by our theoretical model (see Table 2 and
Table 3 in the methods section). For the scenario in Figure 6a the
plane is fixated with the gaze direction orthogonal to the plane’s
surface, thus (n,, n,, n.) = (0,0,1). Independent of the angle between
the direction of gaze and heading, only a positive divergence
component of 2¢v,/d is present that encodes an expansion flow (or
source); all other components are zero. The value of this
divergence component depends inversely on the distance of the
plane and is proportional to the translational speed along gaze.
Divergence, curl, and shear components for the scenario in
Figure 5b can be approximated by using Equations (10a—c) from
the methods section. Plugging in the values for this scenario given
in the methods section into Equation (10a—c) gives the graph for
the locations sampled from the edge line depicted in Figure 6c.
The corresponding values of the simulation are shown in Figure 6¢
— center and right panel. While the curves do not exactly match
each other their ordinal relationship is preserved and the main
trend of the responses is the same. Major differences occur
between the curl and Type II shear components. The analytical
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"The tilt angle « is defined between the plane’s normal vector and the direction of gaze.
2In this case the plane is parallel to gaze and appears at a very small distance of x aside from the gaze. Note that in the limit, where the distance approaches zero, the

3In this case a circle is defined with the radius R at the position (X, Z) = (R, d). The discriminant is D=/x"(2'R—x).

model gives identical responses, while they differ in the simulation.
These differences might be explained by the approximation 9,{~0
in the model that was used in Equation (9) in the methods section,
the approximation of difference operators, and the discrete
sampling of the surface.

Initial Segmentation by Finding Extreme Values for Flow
Derivatives

An additional simulation used a horizontal 50° field of view
in order to compare derivative components of the fixated object
against background and other objects. Figure 7a shows the 1%
image frame and Figure 7b the analytical flow that was used to
compute the partial derivatives by applying the biologically
motivated mechanisms (see methods section). Derivative com-
ponents are strongest for the fixated obstacle assuming that it is
the closest object (see Figure 7c). The strongest components,
here divergence and Type I shear, can be used to segment the
fixated closest obstacle from the background and other potential
obstacles. If all obstacles are completely visible from a first-
person perspective, responses of opponent sign can be grouped
into a single object. This excludes configurations in which
obstacles overlap or are only partly visible within the visual
field.

In order to generalize flow-based scene segmentation further,
we apply the biologically inspired mechanisms to flow detected
from video sequences. We choose two representative video
sequences, one sequence consisting of self-motion and the other
of independent object motion. In the self-motion sequence
‘Flower garden’ [23] the camera is arranged as if looking out of
a side window from a driving car. The object motion sequence
‘Dumptruck’ [24] shows a typical traffic scenario of moving cars
at an intersection (see insets in Figure 8a and 8b). Both
sequences are considered as passive viewing, since the camera is
not actively maintaining gaze at a fixation point. Flow was
computed using the algorithm of Brox et al. [25]. The
computed flow is shown in Figure 8a for the ‘Flower garden’
sequence and in Figure 8b for the ‘Dumptruck’ sequence.
Strong divergence and Type I shear components occur at the

June 2012 | Volume 7 | Issue 6 | 38446



Optic Flow-Based Segmentation and Steering

a Approaching a target
I

b Avoung an obstacle divergence 45

i

shear |

dlvergence 015

0

1lframe
1.fframe

1
o
-
(6]

S o
me &,

1/fra

__-—I
1.v'frame o

1
o
-
(9]

o
—_
9]

s

=
1/frame

o 1."frame

I
e
-—
o

shear |

o
—_
o
(=}

o

9 1/frame

¢ Comparison between analytical model and simulation

analytical model 15 numerical simulation
—— divergence
“E’ 18 B —=— curl
- © 5‘5/45- e
= —— shear,
0
A | e }.:e—ﬂ_; ~— shear,
-5
0.45 0.5 0.55 0.45 0.5 0.55
A A

Figure 6. Display of flow and flow derivative components for the central five degrees of the visual field. a) If approaching a target, the
flow has a focus of expansion (FOE) that marks the point being approached assuming constant motion. The overlaid image shows the scene with a 50
degrees horizontal field of view with a small square denoting the foveal five degrees of the visual field. The two circular histograms show the angular
distribution of the motion direction for the circular left and right half of the visual field. Applying the antagonistic center-surround operator to
compute the partial derivatives results in the divergence, curl, and shear components depicted in the four right panels. The shade of gray encodes
the response strength, lighter encodes positive responses and darker encodes negative responses. Note this flow has only a positive divergence
encoded by white; the other components are zero encoded as gray. b) When avoiding an obstacle it is fixated at the edge while the observer is
walking around it. The resulting flow of this self-motion has a center of motion (COM) that does not coincide with the theoretical FOE due to the
rotational components for fixation. Angular distributions of flow peak approx. 180 degrees apart and thus fit optimally to the derivative operator
shown under the histograms. The flow field shows a strong discontinuity between object and background indicated by the strong divergence, curl,
and shear components. Divergence and Type | shear show positive responses encoded as white stripes. Curl and Type Il shear have negative
responses encoded as black stripes. Note that the flow for the fixation of a cylindrical pillar shows the same qualitative behavior and is thus not
shown. ¢) Comparison between the analytical model and the simulation. The left panel displays the input image superimposed with the model of an
edge line where 4 is within the range depicted in the white boxes. In the center panel curves for divergence, curl, and shear components are
presented for samples along the edge line top to bottom and using the analytical model of spatial flow. The graph in the right panel shows the same
edge samples that are numerically computed from a discretized image sequence. Samples are from pixels that are nearest neighbors to the points
shown in the first panel. Due to the approximation of partial derivatives by biologically inspired operators and approximations in the apical edge
model, values differ between model and simulation. In this plot evaluations of the analytical model are scaled by a value of 30 in order to match the
simulations results.

doi:10.1371/journal.pone.0038446.9g006

boundaries of the tree that is in front of the flower garden, very and u,=0. For object motions in the ’Dumptruck’ sequence
similar as in the scenario depicted in Figure 7c. Derivative strong curl and Type II shear components are present, see
components for ’Flower garden’ are depicted in the lower Figure 8b lower panel. Note that none of the cases in our
panels of Figure 8a. Strong divergence and Type I shear analytical model describe object motions. This simulation shows
components fit to the theoretical model of an apical edge. For a that flow discontinuities occur at depth discontinuities or the
sideward translation only divergence and shear Type 1 transition of independent object motions and in both cases these
components occur at a depth discontinuity, compare with discontinuities can serve as a cue for flow-based object
Equations (10a—) in the methods section and set 2,70, »,=0, segmentation.

@ PLoS ONE | www.plosone.org 9 June 2012 | Volume 7 | Issue 6 | 38446



a Input image

Optic Flow-Based Segmentation and Steering

b Analytical Flow

AN Y

A Y v - -~

AT T Y « - -
4 A Y v - -
Fe AV Y - - - -

P A U T - e v e e
- e e A A ) - e e e e e e v e e v e e
Ll i i R
—r e . il
L i i Ll Ll i ol i ol
- e e e e . . - e e e e e e e e o e e e e e
S R e s 5 R R R S B A
Fir s e v 3 o S aitioet et o st P
S
e e e e o e

........... ) e e e e
"""""" pod g R R RS RS s R R B T e SR e e
____________ -
e e e e e e e m—
e e e e e e e e e mm— -
e N T e e N e e T T T N N L e N e
L T T A A T N N N N T N S N N N N N
L R D D e e e T S O N O T T . . S O N
LA S A A A A A D R R R U U U S N U N . T U U N
curl 1 curl
= 2
.

o0 o
19 OH,_M.LV__.\,N.

_2"‘:—1

=
-3 2

¢ Flow derivative decomposition
divergence divergence

o 2
e 1
g0
=1
~2

shear | shear |
KR J{F 12 1
| 0 5 o
-1 £ _4

x—coordinate

shear Il shear Il

BT

w

- N

S b mame oo

(@]

x—coordinate

Figure 7. Shows the flow-based segmentation of obstacles for a horizontal 50° field of view with no monopole mapping. a) First
frame of two with 320 x 640 pixels. b) Analytical flow for translational self-motion while fixating the point at the center of the visual field. c)
Decomposition of flow derivatives into divergence, curl, and shear. Graph plots show the profile from the center row. Flow derivative components are
largest for the fixated obstacles and could be used to identify and segment it against the background.

doi:10.1371/journal.pone.0038446.g007

Discussion

This work derived an analytical model for spatial flow
derivatives decomposed into divergence, curl, and shear and
simulated biologically inspired derivative operators to compute
these flow derivatives for passive and active viewing. We related
analytical and simulation results to each other, and discussed how
our model relates to behavioral data on human visual steering and
gaze direction. Our analytical model provides a description of flow
discontinuities for a pinhole camera and a monopole mapping that
depend on scene and motion parameters. Using our model we
showed that if heading and gaze are aligned only a flow divergence
component occurs (see Figure 4) and the focus of expansion
indicates the point being approached. Flow discontinuities respond
maximally for tangentially fixated planar or smoothly curved
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surfaces (see Table 1). A summary of the different local flow
derivatives decomposed into divergence, curl, and shear compo-
nents for edge types and velocities is shown in Figure 3a for target
approach and in Figure 3b and 3c for obstacle avoidance. Note
that entries in each of the tables shown in Figure 3¢ combine
linearly. This allows for several predictions that are summarized in
Table 4. For target approach we expect a linear dependency of
flow divergence, curl, and shear regarding the distance from the
fovea. In contrast, for obstacle avoidance, either for tangential
fixation or fixation of an apical edge, flow divergence, curl, and
shear approaches Finfinity in the limit. For a finite sampling
schema we expect large values for derivatives. Note that this
qualitative difference of flow derivatives between target approach
and obstacle avoidance is independent of the self-motion and
depends only on the surface properties next to the point of
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Figure 8. Computation of flow and derivative components for video sequences. a) Flow sampled by every 10" value is depicted by arrows
for the transition of the 15™ to the 16™ frame (counting from zero) of the ‘Flower garden’ sequence. The inset shows the 15 image frame. The four
panels depict divergence, curl, and shear. Between foreground and background strong divergence and Type | shear responses occur. According to
the theory (Equations 10a—c) onla/ these components occur for a pure sideward translation at a depth discontinuity. b) Flow sampled by every 20t
value for the frame transition 107 to 11™ frame of the ‘Dumptruck’ sequence. The 10 image frame is shown as inset. Four panels depict divergence,
curl, and shear components. For these object motions mainly curl and Type Il shear responses occur.

doi:10.1371/journal.pone.0038446.g008

fixation. Model and simulation results give a flow-based explana- Fixating self~motion simplifies various problems related to the
tion for gaze points in visual navigation tasks of obstacle avoidance estimation of flow, self-motion, and time-to-contact. Applying a
and target approach. This explanation could be seen as an fixation constraint for the estimation of self-motion has been
example of affordance-based guidance of behavior based on optic shown to reduce the dimensionality of the search space from three
flow in task-dependent visual navigation [26]. parameters to one parameter using a flow template matching

A discussion of prior theoretical work and the relation to our algorithm based on normal flow [28]. This requires the tracking of
model and simulations follows below. We discuss fixating self- a point by rotational motions, the estimation of self-motion, and
motion, flow statistics, prior work on the decomposition of flow time-to-contact from the spatio-temporal derivatives of the image
derivatives and scene-constraint models of flow. intensity function. Such a computation is a variant of a direct

Self-motion estimation is a challenging problem. The estimation of method that estimates self-motion directly from image intensities
self-motion based on optic flow is commonly formalized as a non- [29]. An alternative simplification projects spherical flow onto a
linear estimation problem using Longuet-Higgins & Prazdny’s [16] longitudinal and latitudinal unit vector on the sphere, which
model for optic flow. For certain scene types the estimation of self- reduces the computation of self-motion and time-to-contact to two
motion from optic flow has multiple solutions [27]. In other words, 1D searches along meridians of the sphere [30]. A similar
different self-motions and scene types lead to identical flows for the approach analyzes the pattern of flow signs on the sphere to
model of Longuet-Higgins & Prazdny. To simplify or constrain the estimate parameters of self-motion [31]. The same idea of pattern
problem of estimating self-motion we argue that humans use an analysis has also been presented for the pinhole camera model in
active vision approach by selecting a specific gaze pattern the context of robust self-motion estimation from normal flow
combined with a particular self-motion pattern that leads to a [32]. In contrast to the computation of self-motion, we focused on
trajectory and a sequence of scene views that are useful for solving the different characteristics of flows for behavioral strategies of
the task of avoiding an obstacle or approaching a target. approaching a target or avoiding an obstacle. While the approach
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Table 4. Shows the decomposition of a flow field for target
approach and obstacle avoidance.
Configuration Flow

div curl shear, shear,
Target approach (n,#0, n,=0, n,#0)
v, sideward motion / 0 / 0
vy up/down motion 0 / 0 /
v, forward/backward motion / / / /
Target approach (n,=0, n,#0, n,#0)
vy sideward motion 0 / 0 /
vy up/down motion / 0 / 0
v, forward/backward motion / / / /
Obstacle avoidance (tangential fixation)
v, sideward motion N 0 n 0
vy up/down motion 0 n n
v, forward/backward motion N n n n
Obstacle avoidance (apical edge)
v, sideward motion N 0 n 0
vy up/down motion 0 n 0 N
v, forward/backward motion N n n n
Regardless of the self-motion target approach leads to linear responses
indicated by “/” and obstacle avoidance to hyperbolic responses indicated by
“N". Note that the meaning of the symbols is the same as in Table 1. A
tangential fixation of a surface leads to qualitatively the same flow derivatives
as fixation of an apical edge.
doi:10.1371/journal.pone.0038446.t004

situation is well analyzed in the literature in terms of estimating
self-motion and relative depth (or time-to-contact), fixating self-
motion has been studied only from the perspective of flow and self-
motion estimation [33], [34] and self-motion estimation using a
monopole mapping [35].

Our analysis provides a model for recent behavioral findings of
visual navigation in humans. Rothkopf & Ballard [14] show data
where humans fixate around the center of a target object that they
approach and next to the edge of an obstacle object that they
avoid. Their study used an eye-tracking and position tracking
system, the latter to update the participant’s position in a virtual
environment that is displayed through video goggles. Fajen &
Warren [15] used the same experimental setup without the eye-
tracking. Their experiment measured participants’ trajectories for
navigation tasks of obstacle avoidance and target approach.
Recorded trajectories show only small rotations for a target
approach as the subject is close to the target. Combining the
results from both studies suggests that humans during target
approach keep their gaze and heading aligned, while they fixate
the center of the target object. Our theoretical analysis shows that
in this case the FOE is aligned with the point being approached
and a control strategy simply has to align this FOE with the
desired target location. For obstacle avoidance gaze and heading
are independently controlled. Gaze is directed toward the edge of
the obstacle, while heading is not necessarily aligned with gaze.
Our explanation from the flow analysis suggests that subjects
direct their gaze toward the edge to enhance the detection of the
flow discontinuity and, thus, the localization of the obstacle.
Tangential fixation of an edge leads in the limit to infinitely large
responses that should be easily registered. Overall our analysis
suggests a flow-based explanation for recent behavioral data of
visual navigation tasks.
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Alternative hypotheses for visual navigation focus on the image
statistic and route selection. Rothkopf and Ballard [14] propose
that gaze is not purely controlled by bottom-up image character-
istics, like contrast, simple or complex cell responses, but also
influenced by the task in a top-down manner. Their analysis of the
foveated image shows strong responses for vertical edges in case of
obstacle avoidance and no strong responses for neither vertical nor
horizontal edges for target approach. Fajen and Warren [15]
suggest that “route selection may emerge from online steering
dynamics, making explicit path-planning unnecessary” (page 343).
In their suggested steering dynamics obstacles act as repellent
forces and goal objects act as attractive forces. Both types of forces
control a second order dynamics (damped spring type model) to
control the steering yaw-angle. Their model uses a birds-eye view
to define repellent and attractive forces. In contrast we suggest a
first-person perspective view. This alternative view allows for the
flow-based segmentation of objects from the background.
Estimates of object positions in the image can be integrated into
dynamics similar to Fajen and Warren’s to explain walking paths
[36], [37].

Another line of research looked at the statistics of flow fields for a
moving camera sensor. Spatial and temporal statistics of image
sequences recovered from a hand-held camera and car-mounted
camera have been analyzed to form a prior for flow estimation [38].
Gradient-based, energy-based, and correlation based methods often
show a very consistent bias for the estimated flow toward slower
speeds and toward the major flow direction measured in a local
neighborhood. A bias correction would be possible, if the noise
characteristics were known; however, this is unlikely for a changing
environment. Thus, the biashasbeen described as a property intrinsic
to flow estimation and linked to visual illusions [39]. Retinal flow
speed is tightly coupled to the scenes’ depth statistics. The direction of
flow vectors in the image plane is tightly coupled to the direction of
heading with respect to gaze (compare also with Equations 1 and 2).
These couplings depend on the position in the visual field [40].
Another example of characterizing the statistics of flow fields used
movies recorded for a person walking in natural environments. The
data from the flow analysis shows that oblique motion directions have
a broader and more asymmetric distribution of motion energy
compared to cardinal directions [41]. All these analyses provided
statistical measures of flow computed from different image materials.
Butresults were notlinked to the underlying flow model of self-motion
from Equation (1) and (2). The other way around, methods for self-
motion estimation use the statistics of self-motion flows [42], [43],
[44]. In contrast, we suggestamodel of the foveal flow statistics during
self-motion for target approach and obstacle avoidance. We suggest
that this foveal flow statistics is generated by subjects on purpose and
in accordance to the task by actively controlling their gaze and
heading.

The detection of singularities and local flow analysis has a long
history. It ranges from first qualitative descriptions [1], [2], [18] to
quantitative model analyses [17], [45], [46]. These analyses point
out: The inverse relationship of flow to translational speed,
compare with Equation (1), and the generation of motion parallax
at depth discontinuities [47]. For instance, local flow divergence
has been linked to time to contact estimation and obstacle
avoidance for technical systems [48]. Recently, it has been
formally shown that for a spherical camera model the point of
the maximum divergence always appears halfway of the arc
between the translational direction and surface normal. This
maximum divergence can be estimated without knowing transla-
tional direction or surface normal. This makes the maximum
divergence point suitable for steering control [49]. A complete
decomposition of flow derivatives into divergence, curl, and shear
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components has been derived by Koenderink and van Doorn [17].
In this context complete means changing the basis vectors for the
representation of local flow derivatives as applied in Equation (5).
The new basis is defined by divergence, curl, and two shear
components. Koenderink and van Doorn’s description was limited
to a translational motion of the observer above a plane and used
spherical coordinates for a spherical camera model. Nevertheless,
their Equations (17-19) [17] bear some similarity to the equations
presented in Table 3 in the methods section. Note that our work
continues with this local flow analysis, but builds upon the more
general flow model of Longuet-Higgins and Prazdny [16]. Table 1
specifies these same derivatives (for divergence and curl) in terms
of a general surface function {(x,y) and a general self-motion that
contains translations and fixating rotations. As special cases we
analyzed planes, edges tangentially viewed with and without
curvature, and an apical edge. We analyzed flow represented at
the level of primary visual cortex assuming a monopole mapping
[50]. Details are given in Tables 5 and 6 in the Appendix S1. This
analysis emphasizes that singularities are events that can be
robustly detected in flow fields [51].

A local decomposition of flows or, in general, higher order spatial
Slow derivatives has been used for flow estimation. An approximation
of temporal changes in the intensity function uses non-linear terms
including higher order flow derivatives. These terms are embed-
ded into a linear least-squares problem to estimate flow together
with various flow derivatives in order to describe the intensity
change more precisely [52]. In another context, flow on the
cortical sheet has been defined by using a dipole mapping. Such a
representation has been shown to be beneficial as a representation
to estimate translational self-motion and roll-rotation when using a
Helmholtz decomposition of cortical flow into a divergence free, a
curl free, and a harmonic vector field [53] (chapter 7). The same
Helmholtz decomposition has been embedded into a variational
calculus to provide the regularization for flows from non-rigid
structures that include high divergence and curl components, e.g.
fluid motion [54]. In sum, higher-order flow derivatives have been
used to gather additional constraints [52], to simplify the
estimation by a dipole mapping of flow with high divergence
and curl components [53] (chapter 7), or to specify further
regularization for specific flow types [54].

A constraint flow model for scene segmentation uses the assumption that
the scene can be approximated by a tessellation of multiple planes
of varying and unknown distance and orientation. Assuming
sampling from a plane by plugging the constraint from Equation
(6) into the flow Equation (1) results in second-order polynomials
for x and p in arguments x and y. The coeflicients of these
polynomials depend entirely on the parameters of self-motion and
the parameters of the plane. All these parameters are constant
either over the entire visual field or for each planar surface within
the visual field. Thus, a voting strategy can be used to segment the
scene into planar surfaces of different motion and scene
parameters [55]. Such an approach builds upon flow being
compatible with a model for a specific parameterization within the
entire visual field or the projected image region of a planar surface
patch. In contrast, our approach explicitly characterizes the flow
discontinuity as it appears for edges and emphasizes on the
importance of its detection. Thus, voting uses the piecewise
compatibility whereas our approach uses the incompatibility of
flows at depth discontinuities. These discontinuities have been
used to segment a foreground object from the background for a
moving observer (Figure 8a) or independently moving objects for a
stationary observer (Figure 8b).

The development of a real-world application must focus on
closing the loop between extracting sensory information and
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motor steering control. We focused on the extraction of
flow-information and gaze/heading strategies that control the
flow information. An application would have to solve the
selection of fixation points that we excluded from this study
since it requires not only bottom-up but also top-down context
information [56].

In summary, we introduced an analytical model for the
decomposition of flow derivatives into divergence, curl, and shear
components considering a model of fixating self-motion. Based on
the analytical model and simulations we showed that fixation of
an obstacle edge results in strong flow derivative components that
could be used to (i) segment the object and (ii) to maintain
fixation at the edge. This could explain why humans fixate the
edge because of exploiting the actively generated flow to improve
segmentation using eye rotations. For a target approach the
strategy is the opposite. At a close distance toward the target eyes,
head, and body do not rotate and fixation is directed toward the
center of the target object. This allows for the association of the
focus of expansion with the point being approached. In
conclusion, optic flow is a rich source for segmentation and
steering control and might explain the difference in gaze patterns
for humans: fixating the center of targets and the edge of
obstacles.

Methods

This section is organized into three parts. In the first part we
review an analytical model that describes optic flow. In the second
part we derive an analytical model for local spatial derivatives of
optic flow for different edge types. In the third part we propose a
method for the numerical computation of these analytical
expressions. Procedures discussed in the latter two parts are then
used to extract relevant properties of optic flow that are generated
by an active observer following different strategies of gaze and
heading control depending on the task.

Models of Image Flow

Optic flow and image flow. Optic flow is defined as the
apparent change of structured light in the optic array over time
[2]. In contrast, we define image flow as the vector field that
describes the displacement of 3D sample points projected onto the
image plane due to either motion of the observer or of objects in
the environment. Models of image motion have been suggested for
translational and rotational instantaneous motion through a rigid
environment for a passive observer [16] and an active observer
maintaining fixed gaze [28], [33]. We next briefly recap these
models for a passive and active observer and highlight their
properties.

Image flow model for a passive observer.
optic flow we assume that an observer is moving passively
through the environment without deploying head or eye
movements. The observer’s body motion is defined as the
linear velocity V= (Vx, Yy, V:) and the rotational velocity

For a model of

—

w=(wx, Wy, a)z), in classical mechanics this motion type is
known as instantaneous motion [57]. One model of optic flow,
called the image flow model, describes the projected temporal
differential displacement ﬁ = (X, y) or pixel speed at the image
location p=(x, y) and this image location corresponds to the
sample point P=(X,Y,Z) in the environment. For a pinhole
camera model with the focal length f* these two points are related
by B=f-P/Z. If the observer is moving the differential
displacements on the image plane are given by Longuet-Higgins
& Prazdny [16]:
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In this model the heading vector is ¥ and the gaze vector is
(0, 0, Z"), where the global coordinate system is defined by X',
Y’, and Z' and an arbitrary sample point in this coordinate frame
by X, Y, and Z. This image flow model has several important
properties illustrated in Figure 9. Flow induced by translational
motion is the translational flow — the first term on the right-hand-
side — and flow induced by rotational motion is the rotational
flow — the second term on the right-hand-side. Both flows
superimpose linearly. Second, only the translational flow depends
on the depth Z(x,y) of the sample point in the scene that is
accessible by “looking” or casting a ray through the image
location p=(x,y). This depth dependency can be used to
reconstruct relative depth from translational flow or to decide
about nearness and farness of object surfaces visible to the
camera. Absolute depth cannot be reconstructed because of the
scaling invariance between the depth values and the translational
speed; see also Equation (1). In Figure 9a nearer to the image
plane (smaller Z) move faster than far points. Third, the
rotational flow is independent of depth since the term Z(x,y)
has been cancelled out in the components of the second term of
the right-hand-side in Equation (1). Fourth, for a narrow field of
view, i.e. a large focal length f; the rotational flow is barrel-shaped
for a rotation around the x-axis (pitch rotation) or y-axis (yaw
rotation). Fifth, translational forward motion leads to an
expansion flow field with the focus of expansion (FOE) as point
of source where flow vectors emerge. For backward motion the
source becomes a sink where flow vectors vanish, called focus of
contraction (FOC). Assuming a constant self-motion the FOE
indicates the point the observer steers toward and eventually will
approach this point in the scene. Sixth, if the translational motion
is superimposed by pitch or yaw rotation the FOE or FOC is
deflected, most importantly the vanishing point(s) in the flow,
now called center of motion (COM), does not indicate the point
the observer is steering toward, see Figure 9b. Seventh, the
rotation around the z-axis (roll rotation) leads to a concentric flow
with the center of rotation (COR) in the center of the image. All
these properties help to describe the optic flow that is sensed by
the eyes and to better understand its processing by the visual
system. To facilitate this understanding we will further constrain
the image flow model by introducing a fixating eye rotation
(vestibule-ocular reflex) that is performed when humans maintain
gaze fixed at a point in the environment while moving their body
[58].

Image flow model for an active observer maintaining
gaze fixed. We call this observer active because he or she
controls gaze by employing fixating eye-rotations in order to
compensate for translational and rotational body motions. In
order to maintain the point (0, 0, Zr) fixated and, thus, stationary
on the image plane, pitch- and yaw-rotations are sufficient for an
observer to perform if he is not trying to keep horizontal lines
horizontal. Thus, we set roll-rotation to zero. Then, the model
equation for fixating self-motion is [33], [59]:
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&flow - (X, y)_)(xa y); with
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Again, p = (X,J’) denotes the temporal change of sample points that
appear at p=(x,y) on the image plane using a pinhole camera
model with the focal length /. The fixated point is (0, 0, Z) with
the depth { measured along the optical axis or direction of gaze.
On the right hand side of Equation (2) a linear superposition of two
terms appears. The first term describes the translational flow that
depends on Z(x,y), while the second term describes the rotational
flow that occurs during the fixation and that is independent of
Z(x,y). In comparison to Equation (1) the rotational velocities are
now constrained by the translational velocities ¥= (VX,Vy,VZ) and
the fixation point (0, 0, Zr). Note that Equation (2) excludes body
or head rotations to simplify the model analysis. An example for a
transformation of these rotations into the eye’s coordinate frame has
been given by Waxman and Duncan [60].

The image flow model for a fixating rotation has some
additional properties compared to the general model given in
Equation (1). First, the COM, i.e. the point that appears stationary
in the projection, is always at the location of the fixation point.
This COM does not coincide with the FOE if gaze and heading
point in different directions. Thus, the GOM does not indicate the
future point being approached, see also Figure 9c. Second, if the
fixation point is very far, that is if Z is large, the second summand
in Equation (2) could be neglected. In other words, the flow
becomes a pure translational flow. Third, there is an overall
symmetry between the x- and y-component; consistently swapping
of x and y yields the same expressions.

Model of Spatial Flow-derivatives

An analytical model provides insights about the characteristics of
flow derivatives under different conditions and informs the observer
about objects in the scene. Furthermore, we constrain our model for
the case of an edge to characterize the flow discontinuity of an edge.

Decompose spatially local flow derivatives. To study
local, spatial flow derivatives using Equation (2) we compute the
partial derivatives for each flow component with respect to the
Cartesian xy-coordinate system. The four partial derivatives are
summarized in the Jacobian matrix:

0k 0%
Jﬂow = 5

. . 3
0xy 0,) (3)

where X and p denote the image flow from Equation (1) or (2).
These derivatives quantify the strength of flow change across the
main coordinate axes. Note, the derivatives defined by Equation
(3) do not directly denote acceleration or deceleration in the
physical sense, which are defined as second-order temporal
derivatives 0,X=X and 0,y=). Derivatives of a large value
indicate a discontinuity in the flow; either because of the depth
discontinuity between foreground and background or because of
independently moving objects in the visual field.

In the following analysis we begin with the flow from Equation
(2). Plugging in the definition and computing the above partial
derivatives results in the Jacobian matrix:
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a Passive observer on a straight path b Passive observer on a curve-linear path
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Figure 9. Display of image flows for a passive and an active observer. a) Translational flow for an observer moving along a straight path on
a ground plane (black traces) and a pseudo-transparent object (red traces) that stands on this plane. The gaze is parallel with respect to the ground
plane. The observer is passively sensing flow for the self-motion velocities ¥=(0.15, 0, 0.06) m/frame and &= (0, 0, 0) deg /frame. b) Curve-linear
path for a passive observer with translational velocity ¥=(0.05, 0, 0.08) m:/frame and rotational velocity &= (0, 0.26, 0) deg /frame. Note that in this
case the vanishing point or center of motion (COM) is shifted away from the focus of expansion (FOE) and does not indicate the point being
approached. ) The same configuration as in a); however, the observer is now actively maintaining gaze at the point Zy=(0, 0, 2) m. This fixation
introduces a rotation around the y-axis (yaw rotation). Again FOE and COM do not coincide. d) The observer is on a curve-linear path while
maintaining gaze at the point Zr = (0, 0, 2) m. Note that the difference from c) is that the sample points are viewed different due to the additional
body rotation. Active gaze control leads to strong differences of flow between foreground and background, in this example nearly 90°, compare a)
with c) and b) with d). The legend in panel a) pertains to all panels.

doi:10.1371/journal.pone.0038446.9009

Note that we omitted the dependency of < on the variables x

BZ ey x4 S 4 23wy 41y and y in the notation in this Equation (4). No partial derivatives for
72 x @z Sz L occur, since this value does not vary with the image

— OZ(foy, ey, L coordinates, unlike to . The overall change in flow can be
z? 4 AT characterized by the decomposition into the four components of

_ 222 '(—f'Vx‘i‘x'Vz)"‘/;Y.Zl? divergence, curl, Type I shear, and Type II shear:
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y-component
of flow

shear,

Figure 10. Shows a neural implementation of derivative operators and a network for the computation of divergence, curl, and
shear. Derivative operators d, and 0,, are applied to the flow components x and j. This gives the four entries of the Jacobian matrix, see Equation (5).
Sums and differences between two entries of the Jacobian matrix result in divergence, curl, and shear components (last row). The symbol **' denotes
the correlation with respect to the coordinate system shown in the top, middle of the figure.

doi:10.1371/journal.pone.0038446.g010
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The symbol ‘=’ denotes a coordinate transform into the new basis
system defined by divergence, curl, and two shear components.
This decomposition has been studied in psychophysics to find a
basis system for motion perception [17], [18] and in neurophys-
iology to characterize the selectivity of cells [61], [62]. Table 2
summarizes the decomposition of flow derivatives into these terms
and their interpretation is as follows: (i) Expanding and contracting
flows relate to a positive and negative divergence or a source and
sink, respectively, see Figure 2b. (ii) Clockwise and counterclock-
wise rotating flows correspond to negative and positive curl,
respectively, see Figure 2c. (iii) Shear components express an
expansion in one axis and a contraction in the orthogonal axis. FFor
Type I shear both axes are aligned with the Cartesian xy-
coordinate system, see Figure 2d. Type II shear references a 45°
counterclockwise rotated Cartesian xy-coordinate system, see
Figure 2e.
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Scene model of a plane. To relate these general terms for
divergence, curl, and shear to a behaviorally relevant scenario we
further assume <(x,9) to be defined by a plane

df
xXng+yn,+fon;’

Z(x,y)= (6)

This plane is defined by the normal vector (ny,n,,n-) with ||| =1
and the distance d that is measured along the normal vector; x and
y denote the image coordinates, and fis again the focal length of
the pinhole camera model. For instance, a normal vector of
(0, 1, 0) denotes a ground plane or ceiling and a normal vector of
(0,0, 1) a back- or front-plane. The latter planes are parallel to
gaze. Note only translational flow depends on this planar depth
surface. Thus we only report divergence, curl, and shear in Table 1
for translational flow in combination with a plane.

To formalize the scenario of fixating an edge versus fixating the
center of a planar surface we define a parametric plane with the
normal #=(sin(«), 0, cos(x)) and the distance d. Note that a
back-plane or front-plane is given by a0 =90". A decomposition of
the Jacobian matrix for this case is given in Table 3 in the second
row, where the y-component has been set to zero in order to
simplify expressions. To formalize the fixation of an edge we apply
the following trick. The back or front-plane is rotated by 90°, see
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also Figure 4b. For the observer then it appears as a single line
assuming that this plane is fixated in the center of the visual field.
Thus, fixation of an edge can be expressed as the limit case o—90°
and we identify the distance of the plane by the horizontal image
coordinate d=x to account for the case if the plane does not
appear exactly in the center of the visual field. The result of this
approximation is shown in the second to last row of Table 3.
These flow components express the flow derivative components for
looking at a planar surface.

Scene model of a cylinder. An edge can also be defined as
looking tangentially onto a circle with the radius R that appears at
the distance ¢ measured along the optical axis and at R to the right.
In order to simplify calculations we assume a parallel projection
for this circle, thus, x = X, and assume x to be small which is the
case for foveal vision. This gives the depth values:

Z(x)=d+1/R>—(x—R)’. (7)

By computing the partial derivatives for x and y and plugging the
result into the equations in second row of Table 2, all last row
entries in Table 3 are derived. These last row entries describe the
decomposition of flow components for a smoothly curved surface
that has been modeled by a cylinder.

Scene model of an apical edge. The derivation of a scene
model of an apical edge, example in Figure 1, is given in the
following steps. First, we describe the edge by a line. This line is
then projected onto a ground plane and could be interpreted as a
shadow line beaming light from the camera’s position. Second,
both lines are rotated according to the camera’s orientation.
Third, differences in depth between corresponding points on the
two lines are computed. Fourth, these differences are assumed to
approximate the partial derivative of the depth function in the x-
dimension. The partial derivative in the y-dimension is assumed to
be approximately zero.

Assume that the edge line is given as P, =(d,, d» + A-h, d3) with
the starting position (d;, d», d3), height i, and A< —d5 /h. In our
case dy is negative because the line starts below the camera’s
position that is (0,0, 0). The ground plane is defined by
E,:(0,1,0)(X, Y,Z)' —d, =0 with the normal vector pointing
up in the direction of the y-axis and the distance d» below the
camera. Projecting the edge line onto the ground results in the
shadow line Py;=d,/(d>+ -h)(d, dy+ A-h, d3). Both lines are
rotated by applying the rotation matrix M. This gives the rotated
points P; = M-P, and P;, = M-P,. The rotated version of the lines’
dots is indicated by an apostrophe. Computing the difference
between the rotated lines results in:

/ Ah /

AP =— ——P 8

dr+2h ¢ ®

Thus, we approximate the partial derivatives of the function
Z(x,y) by the following expressions:

Ah 7

AYZ%_ ‘L,
. ot ih e

and 0,Z~0,

©)

with Z; denoting the depth of the fixated edge. This depth is
plugged into Equation (4) for all instances where Z(x,y) occurs.
These two terms are plugged into the definition of divergence,
curl, and shear components from Table 2. This gives the following
expressions for an apical edge:
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div(gfiow) bt ih 7 (=fvetxv)+ Z (10a)
curl(gﬂow) = Shearll(]s‘law)

Ah 1 (10b)

= m'?'(—f'vy + )C'VZ), and
Ah 1
shear(gpiow) = m'z‘(—f Vvetxv)  (10c)

Note that in order to match the definition for pixel flow that is
used in the simulations the Equation (10b) has to be multiplied by
minus one, since the y-axis is considered to be negative in order to
point downward for image pixel coordinates. When the image
coordinates  (x,y) are close to gaze, A approaches
(dy-sino- sin f+dy- cos f—ds- cos a- sin f)/(h- cos f). More gen-
eral, image coordinates that fall onto the edge line are:

X, 7
r | 7 dy-sina cos B+ (da + A-h)- sin f+ds- cos o cos f§

(11)
di-coso+ds sina )

(aﬁ -sin o sin f+(dp + A-h)- cos f—d3- cos o sin f8

The angle o denotes a rotation around the y-axis, the angle f§ a
rotation around the already rotated x’-axis, and f* the focal length
of the pinhole camera model. This finishes the derivation of flow
derivatives for an apical edge and the change in flow between the
foreground object and the ground in the back.

Simulation of Divergence, Curl, and Shear Responses for
Synthetic Video Sequences

Specification of scene and computation of analytical
flow. The scene is defined by a ground plane with the normal
vector (7, ny, n:)=(0, 1, 0) and the distance d» = —1.5 m. This
defines the camera to be 1.5 m above the ground. The focal length
of the simulated pinhole camera is f'=11.45cm (or 2748.45
pixels) assuming a display size of 1 emx1 cm or 240x240 pixels.
This definition corresponds to a visual field of five degrees
horizontally and vertically. The post’s height is #=2 m and its
width and depth are 18 cm, respectively. For target approach this
post appears with its center at the position (0, 0, 2) m. That is two
meters away measured along the optical axis. The translational
velocity of the camera is (vy, vy, v2)=(0, 0, 5) cm/frame. For

obstacle avoidance the translational velocity is
(Vx, vy, v2)=(3.321, 0.869, 3.634) cm/frame, the post appears at
the position (2,0,2)m, and the fixation point is

(2.09, —0.5, 2.09) m. For this scene images were rendered using
the ray-tracer from Persistence of Vision Pty. Ltd. [63]. This
allows us to compute the depth map Z(x,y) and, thus, analytical
flow by using the above Equation (2).

Computation of flow derivatives. Partial derivatives d, and
Jy of the flow are approximated using biologically inspired
operators with antagonistic and asymmetric center-surround [22].
These operators are similar to the motion-opponent operators

June 2012 | Volume 7 | Issue 6 | 38446



used for the estimation of self-motion and relative depth [64] as
well as the estimation of self-motion in combination with a
monopole mapping [35]. We define these biologically inspired
operators by using the difference of two Gaussian subfields. For
the partial derivative in the x-component the positive Gaussian
subfield that models the positive center of a cell’s receptive field
has a standard deviation of two pixels in the y-component and one
pixel in the x-component. This models an elliptical shape for the
Gaussian kernel. The kernel’s size is 9x5 pixels. The negative
Gaussian subfield or negative surround of a cell’s receptive field
has a standard deviation of two pixels in the y-component and
three pixels in the x-component and its modeled size is 9x13
pixels. To align correlation results from the two subfields we shift
the center result by one pixel to the left and the surround result by
two pixels to the right. See also the icon for x-derivatives in
Figure 4. This assumes the negative subfield to be on the right and
the positive subfield to be on the left. For the partial derivative in
the y-component this circuit is 90° rotated in counterclockwise
direction, see also the icon for y-derivatives in Figure 10. Then the
decomposition into divergence, curl, and, shear components is
calculated by using the Equation (5), compare also with the circuit
shown in Figure 10. The x- and y-flow components are correlated
with the Gaussian subfields that are subtracted in order to
compute the partial x- and y-derivatives for each flow component.
This results in four combinations that are shown in the middle of
the circuit in Figure 10. Sums and differences of these four partial
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derivatives result in divergence, curl, and shear components. See
bottom row in Figure 10.
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Appendix S1 Contains the deviation of flow derivatives
for a monopole mapping that models cortical flow. The
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fovea and periphery with the exception of curl and shear Type 11
components being zero-valued in the periphery.
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