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Abstract

Fall-risk classification is a challenging but necessary task to enable the recommendation of

preventative programs for individuals identified at risk for falling. Existing research has pri-

marily focused on older adults, with no predictive fall-risk models for lower limb amputees,

despite their greater likelihood of fall-risk than older adults. In this study, 89 amputees with

varying degrees of lower limb amputation were asked if they had fallen in the past 6 months.

Those who reported at least one fall were considered a fall risk. Each participant performed

a 6 minute walk test (6MWT) with an Android smartphone placed in a holder located on the

back of the pelvis. A fall-risk classification method was developed using data from sensors

within the smartphone. The Ottawa Hospital Rehabilitation Center Walk Test app captured

accelerometer and gyroscope data during the 6MWT. From this data, foot strikes were iden-

tified, and 248 features were extracted from the collection of steps. Steps were segmented

into turn and straight walking, and four different data sets were created: turn steps, straight-

away steps, straightaway and turn steps, and all steps. From these, three feature selection

techniques (correlation-based feature selection, relief F, and extra trees classifier ensem-

ble) were used to eliminate redundant or ineffective features. Each feature subset was

tested with a random forest classifier and optimized for the best number of trees. The best

model used turn data, with three features selected by Correlation-based feature selection

(CFS), and used 500 trees in a random forest classifier. The resulting metrics were 81.3%

accuracy, 57.2% sensitivity, 94.9% specificity, a Matthews correlation coefficient of 0.587,

and an F1 score of 0.83. Since the outcomes are comparable to metrics achieved by exist-

ing clinical tests, the classifier may be viable for use in clinical practice.
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Introduction

Falling is the second leading cause of accidental injury death [1]. Injuries related to falling can

be debilitating, life-altering, and lead to lower self-perceived balance confidence [2]. Although

preventative programs exist to reduce the chance of falling such as muscle strengthening, life-

style changes, and Tai Chi [3], the initial task of fall-risk identification can be challenging.

While more than 26 fall risk assessment tools are available for clinicians [4], evolving wearable

sensors systems can provide opportunities to augment common clinical mobility tests for fall

risk identification.

Wearable technology has been used to develop fall-risk classifiers that provide accurate and

automated fall risk classification, to enable timely intervention with fall-risk mitigation tech-

niques. Previous research has used a variety of sensors and technology, such as inertial sensors,

for fall risk classification [5–10]. Features can be extracted from data collected during clinical

tests such as the 6 minute walk test (6MWT) [5] or 10 meter walk test [6]. The 6MWT includes

straight and turn walking, measures functional capacity, and is widely used to measure the

response of therapeutic interventions [11]. Recently, a study with stroke survivors reported a

moderate relationship with 6MWT and fall risk [12]. Research reports differences in turning

strategies between fall-risk and no fall-risk populations, and that viable elderly fall-risk classifi-

cation can be achieved with turn data [5,9]. If fall risk classification can be determined from

the 6MWT, clinic time could be more efficiently used by reducing the number of tests in a

session.

Previous studies have used sensors at multiple locations on the body [5,6]. This can be

problematic in the clinic due to the time required to setup sensors on the person, sensors fall-

ing off or sliding, and patients changing how they move due to too many sensors, and accuracy

of their position. Therefore, the number of sensors should be minimized, and sensors should

have easy and reliable placement on the body. For example, the pelvis was reported as the best

single sensor location for fall-risk classification [6], and the most commonly used location

[13]. One technique for collecting pelvis data is to use The Ottawa Hospital Rehabilitation

Center (TOHRC) Walk Test app [14]. This app allows for a low cost and easily accessible

option to have multiple sensors in one device at a single sensor location.

The fall-risk classification literature has focused primarily on elderly populations, with no

predictive fall risk models for lower limb amputees. However, lower limb amputees are at

higher risk of falling compared to able-bodied and other clinical populations in all phases of

rehabilitation [15,16], and the risk of fall related injuries requiring medical care can be higher

than older adults [17]. Predictive models developed for able-bodied or elderly populations do

not necessarily translate to the lower limb amputee population. The purpose of this research

was to determine the best features and models to perform fall-risk classification in amputees

who are completing a 6MWT and ensure that similar results can be achieved when compared

to existing assessment tools.

Materials and methods

The work was approved by the Ethic Committee of the University Rehabilitation Institute, Slo-

venia. It was approved on April 18th, 2018 (approval number No 46/2018), and re-approved

for an additional 30 participants on September 9th, 2019 (No. 27/2019). Written consent was

obtained by each participant.

Participants

A convenience sample of 129 participants with lower limb amputations were recruited from

the University Rehabilitation Institute (Ljubljana, Slovenia) and gave informed consent for
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this study. Clinical records provided self-reported number of falls, with falling at least once in

the past six months prior to testing considered fall risk. For this study, data from 89 partici-

pants (19 female, 70 male, age 62.3 ±12.5) were suitable for fall risk classification (32 fall-risk,

57 no fall-risk). Participants included 4 bilateral transtibial amputees, 1 bilateral transtibial and

transfemoral, 63 transtibial, 18 transfemoral, 2 knee disarticulation, and 1 ankle disarticula-

tion, with an average time since amputation of 15.6±17.3 years. Some participants indicated

when falling most often occurred: 2 said not while wearing their prosthesis, 4 said equally

often with and without the prosthesis, 18 said while wearing the prosthesis, but the prosthesis

is not the cause, 7 said falling due to the prosthesis, and 58 said the cause was unknown. Inclu-

sion criteria were ankle disarticulation or higher amputation of at least one lower limb, walk-

ing with a prosthesis for at least 6 months, functional prosthesis (good socket fit, not broken),

and willing to participate. Exclusion criteria were wounds on stump or other foot that may

worsen with 6MWT, all other medical conditions that will be contraindicated for 6MWT, and

a broken prosthesis. Reasons for unsuitable data were malfunctions exporting data from

phone (5 people), no fall incidence data on file (9 people), running instead of walking during

the 6MWT (1 person), or had unidentifiable foot strikes due to highly irregular gait (2 people),

a single crutch (2 people), double crutches (18 people), or non-rolling walker (3 people). Par-

ticipants using canes or walkers who had identifiable foot strikes were included.

Equipment

An Android smartphone was affixed to the midline of the posterior pelvis using a waist belt (Fig

1). Participant demographics and information were input into a custom designed The Ottawa

Hospital Rehabilitation Center (TOHRC) Walk Test app [14] (Fig 2). Each participant performed

a 6MWT along a 20m hallway (i.e., walk, turn around a cone, and continue the circuit for 6 min-

utes). The TOHRC Walk Test app collected smartphone 3D accelerometer and gyroscope raw

data, and pelvic rotation, tilt, and obliquity at 50 Hz. Each trial was also video recorded. Once the

test was complete, data were exported from the smartphone to a text file for post-processing.

Step and turn segmentation

Raw accelerometer data, gyroscope data, and smartphone orientation were imported to

MATLAB 2013b, along with the time stamps for each recording. Foot strikes were identified

Fig 1. 6MWT with smartphone on posterior pelvis.

https://doi.org/10.1371/journal.pone.0247574.g001
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from anterior-posterior (AP) linear acceleration (Figs 3 and 4), using the peak value near the

estimated next step, based on average step duration [14]. AP acceleration had the least variance

when compared to other linear acceleration axes. However, this automated technique for able-

bodied gait [14] sometimes failed to select the correct peak with lower limb amputees due to

amputee participant’s more asymmetric and variable gait (e.g., Fig 3). In these cases, manual

step identification was required (Fig 4). The manually cleaned data was used to extract

features.

In previous research, data from turn walking was better at classifying fall risk than data

from straight walking [5]. Therefore, data were segmented into turns and straightaways. Dif-

ferences between straight and turn steps (Fig 4) include greater medial-lateral accelerations

and a greater anterior-posterior acceleration peak in the middle of the turn. Turns were

defined as the five steps around the center of each turn. The center of a turn was identified

using pelvis rotation, by using the middle frame between the beginning and end of pelvis

Fig 2. TOHRC walk test application. (A) Walkway length; (B) Start trial, (C) Distance walked; (D) About, Help; (E)

Share output; (F) Settings; (G) Results tables; (H) Load previous data; (I) Enter patient demographics.

https://doi.org/10.1371/journal.pone.0247574.g002
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rotation (i.e., when the pelvis started to rotate and when it stopped rotating). Two steps before

and two steps after this middle step constituted the five steps. Straightaways were all other

steps. Similar to foot strikes, this process was first automated in MATLAB, then verified

manually.

Once turn and straightaway steps were identified, four feature sets were created. The first

feature set calculated features for all steps (AS) without distinguishing between straightaway

and turn steps. The second and third feature sets were straightaway (S) and turn (T) step fea-

ture sets. The fourth feature set was the combination of the S and T feature sets (S&T), there-

fore doubling the number of features, but keeping the distinction between the two types of

steps.

Feature extraction

Based on existing literature [5,13], features were extracted from linear acceleration and angular

velocity signals in each step. 62 features were extracted for the four feature sets:

Temporal. Cadence, step time (foot strike to foot strike of the opposite foot), stride time

(foot strike to foot strike of the same foot), symmetry in right and left limb step times (symme-

try index) [18].

Descriptive statistics. Minimum, maximum, mean, standard deviation, root mean square

in three axes (vertical, medial lateral (ML), AP) for pelvis linear acceleration (Android pro-

cessed signal, not including gravity) and tilt, rotation, and obliquity angular velocities.

Fig 3. Anterior-posterior (blue), vertical (green), and medial-lateral (yellow) accelerations before manual step

identification. Black lines indicate right steps, red lines indicate left steps. Manual step identification was required

around frame 8340.

https://doi.org/10.1371/journal.pone.0247574.g003
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Linear acceleration and angular velocity frequency domain features. From the absolute

value of the Fast Fourier transform (FFT) of each step, the First Quartile of Fourier transform

(FQFFT), Ratio of Even/Odd Harmonics (REOH), and peak distinction.

FQFFT. Percentage of frequencies within the first quartile of the Nyquist frequency (6.25

Hz was used as the first quartile). Lower FQFFT values indicate more high frequency compo-

nents, linked to instability [19].

REOH. Ratio of the frequencies in the even harmonics compared to the odd harmonics

(using stride time as the fundamental frequency). Lower REOH values have been associated

with fall risk [5,20].

Peak distinction. To determine if the FFT peak frequency was distinct from other fre-

quencies, the percent of frequencies in the FFT with power greater than a threshold (⅓ ampli-

tude of peak signal) was calculated. A lower peak distinction value means a more distinct peak

(Fig 5).

Once features were extracted for each step, the minimum, maximum, mean, and standard

deviation were calculated over all included steps for a total of 248 features (62 multiplied by 4

statistics) per data set (496 for the S&T data set).

Feature selection

Feature selection was used to reduce feature space dimensionality, simplifying the problem by

removing redundant and irrelevant data [5,6,21]. Three feature selection techniques were

used, based on previous success in fall risk classification: Correlation-based feature selection

(CFS) [22], Relief-F (RelF) [23,24], and an extra trees classifier ensemble method (ETC) [5,25].

Fig 4. Anterior-posterior (blue), vertical (green), and medial-lateral (yellow) accelerations after manual step

identification. Black lines indicate right steps, red lines indicate left steps.

https://doi.org/10.1371/journal.pone.0247574.g004
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CFS is a supervised, filter-based method that identifies a subset of features that are corre-

lated with the class label (i.e., fall-risk or no fall-risk), but also uncorrelated to other parameters

by calculating the “merit” based on pair-wise correlations [22]. This allows CFS to develop a

subset that has no irrelevant or redundant features, by only adding features that improve the

subset’s merit.

RelF is a supervised method that ranks features by weighting them based on their relevance

and how well instances from different classes and the same class can be distinguished [23,26].

RelF does not eliminate redundant features, making this method most useful when evaluating

parameters with interdependencies.

ETC is an ensemble method that fits a number of randomized decision trees on various

sub-samples of the dataset and uses averaging to improve the predictive accuracy and control

over-fitting [25]. Each feature is then ordered based on their importance and the best features

can be selected. An ETC ensemble method was used in this research because, while they are

very similar to random forests, ETC computes using randomly selected weightings, making

ETC better for feature selection [27].

For RelF and ETC, features sets were created for the top 30, 20, 10, and 5 features. CFS

selected less than 5 features for all sets.

Classification techniques and optimization

A random forest classifier with 100 trees and a leave-one-out strategy was applied to the data

set. Random forests consist of many decision trees operating as an ensemble, making them

preferable to a single decision tree. Features are sets of variables calculated from the sensor sig-

nals, which are used as input for the decision trees so that the model can learn to predict a sam-

ple’s class. A random forest classifier takes a majority vote across multiple trees to decide

which class the model should predict [28]. The belief is that the trees are uncorrelated so that

operating as a committee allows them to outperform any of the individual models.

Five evaluation metrics were used for evaluating the models: accuracy, sensitivity, specific-

ity, Matthews correlation coefficient, and F1 score. The best five “feature selector–data set

combinations” were chosen based on a ranking technique similar to [6] and [29]. Each classi-

fier was ranked in the five evaluation metrics, and the lowest summed rankings were chosen as

the top five classifiers, with five being the lowest possible summed ranking since five metrics

Fig 5. Peak distinction for two different steps. Peak distinction for two steps. (a) A step with a very distinct peak,

having a peak distinction of 5.26%. (b) A step with a less distinct peak, having a peak distinction of 20.83%. Horizontal

red lines indicate one third of max amplitude.

https://doi.org/10.1371/journal.pone.0247574.g005
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were used. These five models were then optimized for the number of trees that provided the

highest accuracy by testing increments from 5 to 1000 trees. More trees perform better with

minimal risk of overfitting, although more trees increase computation times [27]. To test

robustness, each of the five optimized models were built 10 times with different random seeds

in a leave-one-out strategy to determine the mean and standard deviation for accuracy, sensi-

tivity, specificity, and MCC score.

Results

The mean result for the 6MWT was 289.8m ± 118.0m.

Feature selection

Each feature selector chose different features, creating a range of subsets (Tables 1 and 2). For

turn data, CFS chose only three features but provided the best overall feature set (vertical accel-

eration maximum standard deviation, AP acceleration minimum peak distinction, and tilt

angular velocity minimum peak distinction). Straight walking CFS only chose one feature,

standard deviation of vertical acceleration’s standard deviation. S&T and AS CFS chose combi-

nations of these 4 features, so that all CFS subsets selected similar features.

AP linear acceleration minimum peak distinction was the only feature selected in the top

ten by all three feature selectors, for turn data. More fall-risk participants had lower peak dis-

tinction for minimum AP linear acceleration and tilt angular velocity, meaning that more fall-

risk participants had distinct FFT peaks.

Model optimization

Table 3 shows the unoptimized results for fall risk classification using each feature selector and

a random forest classifier with 100 trees.

Table 1. Legend of feature descriptions for feature sets in Table 2.

Variable Statistic (Feature #) Variable Statistic (Feature #)

Maximum Vertical acceleration Max (10), Std Dev (12) FQFFT tilt angular velocity Mean (119)

Maximum AP acceleration Mean (15), Std Dev (16) FQFFT rotation angular velocity Min (121)

Mean ML acceleration Std Dev (32) Maximum of tilt angular velocity FFT Mean (143)

Mean Vertical acceleration Min (33) Standard deviation of ML acceleration FFT Min (153)

Standard deviation of vertical

acceleration

Max (46), Std dev (48) Standard deviation of AP acceleration FFT Min (161)

Tilt angular velocity range Std Dev (56) Standard deviation of rotation angular velocity

FFT

Mean (171)

Tilt angular velocity mean Min (65) Standard deviation of obliquity angular velocity

FFT

Std Dev (176)

Rotation angular velocity mean Std Dev (72) Peak distinction of ML acceleration Mean (179)

Obliquity angular velocity mean Mean (75) Peak distinction of vertical acceleration Max (182), Mean (183)

Step timing Max (90), Mean (91), Std Dev (92) Peak distinction of AP acceleration Min (185)

Stride timing Min (97), Max (98), Mean (99), Std Dev

(100)

Peak distinction of tilt angular velocity Min (189)

Cadence Min (101), Mean (103) Peak distinction of rotation angular velocity Min (193), Max (194)

FQFFT ML acceleration Min (105), Std Dev (108) Peak distinction of obliquity angular velocity Mean (199)

FQFFT vertical acceleration Std Dev (112) REOH of vertical acceleration Min (205), Max (206), Mean

(207)

FQFFT AP acceleration Mean (114) Root Mean Square of Rotational Angular

Velocity

Min (241)

https://doi.org/10.1371/journal.pone.0247574.t001
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The top five models were rebuilt using different numbers of trees, ranging from 5 to 1000.

Results for the best model (T-CFS) are shown in Table 4. Table 5 provides a summary for all

the best trees.

Once the optimal number of trees was determined, ten models with different random seeds

were built for each model to determine robustness (Table 6).

Discussion

This research demonstrated that a random forest classifier with smartphone sensor data col-

lected at the posterior pelvis can provide viable fall-risk classification for lower extremity

amputees that completed a 6MWT. The best model had 81.3% accuracy, 57.2% sensitivity, and

94.9% specificity. The very high specificity showed that the model had a low chance of false

positives, indicating that if the model has a low chance of inappropriately classifying a person

as a faller. This almost 95% specificity was higher than other clinical tests that focus on fall risk

in amputees [30]. This is important for health and long-term care systems where appropriate

resource allocation is essential.

More than half the people with amputations who are at risk of falling would be properly

identified (i.e., 57.2% sensitivity), which is an interesting result considering that the 6MWT

Table 2. Top 30 selected features for each feature selector.

T-CFS T-RelF T-ETC S-CFS S-RelF S-ETC S&T-CFS S&T-RelF S&T-ETC AS-CFS AS-RelF AS-ETC

46 100 65 48 90 171 48 (S) 100 (T) 193 (S) 46 98 75

185 90 207 92 103 46 (T) 90 (S) 98 (S) 48 189 101

189 91 98 56 121 185 (T) 90 (T) 183 (S) 185 90 32

92 15 16 205 189 (T) 56 (S) 179 (T) 189 99 199

207 176 12 108 91 (T) 121 (S) 92 194

98 100 99 48 91 (S) 153 (T) 97 10

72 103 183 182 12 (S) 100 (T) 56 241

185 119 91 105 185 (T) 32 (S) 91 33

97 185 97 161 98 (T) 153 (S) 185 143

206 72 101 16 99 (S) 97 (T) 101 114

T = Turn, S = Straight, S&T = Straight and Turn, AS = All steps. Refer to Table 1 for feature descriptions.

https://doi.org/10.1371/journal.pone.0247574.t002

Table 3. Unoptimized ranked metrics for top 10 subsets with a random forest classifier. Numbers after feature selector ETC and RelF indicate the number of features

from that subset.

Feature Selector Accuracy (%) Sensitivity (%) Specificity (%) MCC F1 SR

T-CFS 78.7 53.1 93.0 0.521 0.642 6

S&T-CFS 74.2 53.1 86.0 0.417 0.596 16.5

S-ETC10 70.8 43.8 86.0 0.331 0.519 24.5

S-RelF10 70.8 40.6 87.7 0.326 0.500 27

AS-RelF30 69.7 40.6 86.0 0.301 0.491 37.5

AS-ETC30 69.7 40.6 86.0 0.301 0.491 37.5

T-ETC30 69.7 37.5 87.7 0.295 0.471 45

ASCFS 68.5 50.0 78.9 0.299 0.533 54.5

S&T-RelF10 67.4 46.9 78.9 0.270 0.508 63.5

StT-RelF30 68.5 34.4 87.7 0.264 0.440 65

T = Turn, S = Straight, S&T = Straight and Turn, AS = All steps, MCC = Matthews Correlation Coefficient, F1 = F1 score, SR = summed ranking.

https://doi.org/10.1371/journal.pone.0247574.t003
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was not designed as a fall risk measure. However, this sensitivity was lower than other clinical

fall risk tests. Two common clinical tools are the Four Square Step Test (FSST) and Timed Up

and Go (TUG). In one study predicting multiple falling (2 or more falls in 6 months), FSST

with lower limb amputees had a predictive sensitivity of 92% and specificity of 93% in ampu-

tees using a cut-off time of 24 seconds, and TUG had a predictive sensitivity of 85% and speci-

ficity of 74% [30]. However, the sensitivity and specificity could have been high due to the 2 or

more falls criteria for fallers, since this group may have had consistently poorer TUG perfor-

mance than people who have only fallen once. Instead, a review of fall risk assessments found

that the Time-up and Go (TUG) test has a predictive sensitivity of 76% and specificity of 49%

on older adults [4]. A study that used wearable sensors with a TUG test achieved a mean sensi-

tivity of 77.3%, and a mean specificity of 75.9% in older adults [9], demonstrating an improve-

ment when wearable sensors were included.

The specificity of the best model from this study was more than 20% greater than the speci-

ficity of the Timed Up-and-Go (TUG) test on older adults both with and without wearable

sensors. However, best model sensitivity was around 57%; therefore, the 6MWT approach can-

not be considered as a surrogate for other fall risk tests. However, people can confidently be

classified as fall-risk in a clinic using a 6MWT approach without requiring additional testing,

due to the test’s high specificity. In many amputee clinics, specific fall risk test may not be rou-

tinely performed, so this 6MWT approach would be useful for identifying other people who

may be at risk. If clinicians believe that the individual is a fall-risk, and the person was

Table 4. Tree optimization for best model (T-CFS).

T-CFS Accuracy (%) Sensitivity (%) Specificity (%) MCC F1

5 76.4 46.9 93.0 0.467 0.588

10 79.8 59.4 91.2 0.547 0.679

25 71.9 46.9 86.0 0.360 0.545

50 75.3 53.1 87.7 0.442 0.607

75 77.5 53.1 91.2 0.493 0.630

100 78.7 53.1 93.0 0.521 0.642

150 79.8 59.4 91.2 0.547 0.679

200 79.8 50.0 96.5 0.555 0.640

250 80.9 59.4 93.0 0.574 0.691

300 79.8 56.3 93.0 0.548 0.667

400 82.0 56.3 96.5 0.606 0.692

500 82.0 56.3 96.5 0.606 0.692

1000 80.9 56.3 94.7 0.576 0.679

T = Turn, MCC = Matthews Correlation Coefficient, F1 = F1 score.

https://doi.org/10.1371/journal.pone.0247574.t004

Table 5. Summary of tree optimizations for the 5 best models.

Feature Selector Trees Accuracy (%) Sensitivity (%) Specificity (%) MCC F1

T-CFS 500 82.0 56.3 96.5 0.61 0.69

S&T-CFS 500 80.9 56.3 94.7 0.58 0.69

S-ETC10 250 71.9 46.9 86.0 0.36 0.55

S-RelF10 50 71.9 50.0 84.2 0.37 0.56

AS-RelF30 150 70.8 50.0 82.5 0.34 0.55

T = Turn, S = Straight, S&T = Straight and Turn, AS = All steps, MCC = Matthews Correlation Coefficient, F1 = F1 score.

https://doi.org/10.1371/journal.pone.0247574.t005
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identified as “no fall risk” from the 6MWT, other clinical fall-risk tests can be performed as

indicated.

Random Forest classifiers using feature-selectors have been effective in previous studies on

older adults. Using these techniques on an amputee population’s pelvis sensor data from a

6MWT provided similarly effective outcomes for fall risk classification. A previous study on

older adults who completed a 6MWT with accelerometers located at the pelvis and ankles

achieved 73.4% accuracy, 60.5% sensitivity, and 82.0% specificity [5]. The outcomes from this

study agreed with previous work that turn data was better for fall-risk identification, but the

models generated for amputee participants had a higher specificity and accuracy. It was impor-

tant to examine older adults and people with amputations separately since gait patterns differ

between these groups and amputee populations have a higher fall risk than older adult

populations.

While previous studies typically used multiple sensor locations (e.g., accelerometers at pel-

vis and shanks for older adults [5]), this research only use smartphone sensors at the posterior

pelvis. A single pelvis location provides an approach that is efficient to apply and easily repeat-

able in the clinic. The proposed smartphone-based method could have better chance of knowl-

edge translation at the point of patient contact. Fall risk classification results could be provided

to the clinician immediately following the test by including the model in the smartphone

6MWT application, thereby supporting clinical decision-making with instant reporting. Since

the machine learning model uses a random forest classifier, fall-risk classification can be per-

formed rapidly on a mobile device and is achievable now with appropriate smartphone soft-

ware development and improved automated step detection in amputees.

Features

Feature selection generally improved classification results since sets with no feature selection

were in the bottom 20%. CFS provided noticeably better results than other feature selection

techniques, except with straight data where only one feature was selected. Both RelF30 and

ETC30 achieved accuracies above 65% for all data sets, and these feature sets were ranked in

the top half of all models. However, four of the top five feature subsets had ten or fewer fea-

tures. While most feature subsets achieved good specificities, smaller feature subsets also had

good sensitivities. Smaller subsets may have led to less data overfitting and therefore better

fall-risk classification.

The most selected feature for turn data was AP acceleration minimum peak distinction (i.e.,

most distinct FFT peak). For AP acceleration, if the FFT had one predominant frequency, the

peak would have been more distinct since one peak FFT amplitude would have a noticeably

greater than the others. Participants who were a fall-risk were more likely to have more distinct

peaks.

Table 6. Final mean and standard deviation (in brackets) metrics for optimized models based on 10 random seeds.

Feature Selector Accuracy (%) Sensitivity (%) Specificity (%) MCC F1

T-CFS 81.3 (1.09) 57.2 (2.11) 94.9 (1.29) 0.59 (0.027) 0.69 (0.019)

S&T-CFS 78.9 (1.38) 55 (1.61) 92.3 (1.48) 0.53 (0.033) 0.65 (0.021)

S-ETC10 69.3 (1.5) 41.6 (3.31) 84.9 (0.91) 0.30 (0.038) 0.49 (0.032)

S-RelF10 68.7 (2.4) 44.7 (4.43) 82.1 (3.07) 0.29 (0.055) 0.51 (0.039)

AS-RelF30 69 (1.42) 43.4 (3.74) 83.3 (1.49) 0.29 (0.036) 0.50 (0.031)

T = Turn, S = Straight, S&T = Straight and Turn, AS = All steps, MCC = Matthews Correlation Coefficient, F1 = F1 score.

https://doi.org/10.1371/journal.pone.0247574.t006
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T-CFS model had the best classification results and included two minimum peak distinc-

tions and one maximum standard deviation. The second-best model (S&T-CFS) used the

same features as T-CFS, but also included straight walking vertical acceleration’s standard

deviation of the standard deviation. Interestingly, including this single feature decreased all

outcome metrics by over 2%.

Turning while walking can be more challenging for people with mobility disabilities, so it is

intuitive that a model using turn data provided the most successful classifier. This is consistent

with results from an elderly population [5]. Therefore, turn steps should be used for 6MWT-

based faller classification. In future research, additional features such as personal health infor-

mation and the results of the 6MWT could be included. This study only included results

obtainable from smartphone sensors.

Models

The best classification model was T-CFS, closely followed by S&T-CFS. Model performances

were also similar to clinical functional assessment tools [4], making the 6MWT smartphone

approach a good tool for clinical fall-risk identification. Since most models had relatively high

specificity, the sensitivity results contributed most to the overall ranking. This demonstrates

the importance of having multiple types of evaluation metrics. Metrics such as accuracy can be

inflated due to class imbalance (this data set had 36% of the participants identified as fall-risk).

Class imbalance is an unavoidable problem with fall-risk classification since less of the popula-

tion is at risk of falling. Therefore, classifiers that are better at dealing with slight class imbal-

ances, such as a random forest, should be considered for fall risk classification.

Initial testing with 100 trees resulted in the T-CFS and S&T-CFS performing better than

other classifiers. Optimization by adding more trees improved results up to a plateau in effec-

tiveness around 100 or 200 trees. No additional improvements occurred after 500 trees. After

the optimal number of trees was selected for each classifier, this optimal number of trees was

tested ten times each to verify that the results were robust. Mean results for both CFS models

by the end of optimization were better than unoptimized models.

A limitation of this study was that fall-risk was based on individual retrospective self-report,

where the response depends on personal recall. Future research could include prospective fol-

low-up questionnaires that provide more details on falls and stumbles. Additionally, the model

identifies people who have fallen at least once, which could relate to a different risk of injury

when compared to multiple fallers, and therefore different preventative techniques may be

required.

Another limitation of this study was that all participants were recruited from only one reha-

bilitation institute. Future research could consider participants from a variety of countries and

clinics. Additionally, increasing the number of participants would help improve the model’s

generalizability and possibly improve model effectiveness.

The smartphone app requires that foot strikes be automatically identified, using sensor data

from the posterior pelvis location. The current rule-based method appropriately identifies foot

strike for free walking and single cane gait; however, foot strike detection errors were found

when people used a walker, two forearm crutches, or shuffled their feet (i.e., not foot strike or

foot off). Therefore, further research on foot strike detection for these conditions is required

before using the app for these three conditions. This could involve new AI foot strike detection

models or adding the option of securing IMU sensors to the shoes specifically for these

conditions.

Since the best model (T-CFS) had better specificity than TUG in older adults [4] and a sen-

sitivity of 57%, it is reasonable to use T-CFS as a preliminary indicator for fall risk that
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identifies those who may have previously been missed as fall-risk individuals. This approach

could help reduce the number of tests required for a complete functional assessment, since

6MWT are often performed during clinical evaluations and TUG may not be collected for peo-

ple who can walk for 6 minutes. As more participants are added to the training set, this Ran-

dom Forest Classifier approach should continue to improve and complement existing

functional assessment tools to assist with fall-risk classification. Random Forest Classifier

models are computationally efficient and could easily be implemented and run on a mobile

device and integrated into a 6MWT app, making the fall risk model accessible for clinicians.

Conclusions

A novel smartphone sensor-based fall-risk classification method was developed to provide a

sensor-based fall-risk classification for lower limb amputees. The best classification model

used correlation-based feature selection on turn step features in combination with a random

forest classifier. This model had very high specificity, leading to few false negatives. This is

important so that patients are not mistakenly suggested into preventative programs. While

57% sensitivity indicated that more than half the people at risk of falling were appropriately

classified, future research should aim to improve model sensitivity to identify more people at

risk of falling. Turn steps have been found to be the best indicator of fall-risk in both lower

limb amputees and older adults, making them the best choice for fall-risk identification. Addi-

tion of a single straightaway step feature negatively affected the turn step classifier’s results.

The methods developed here for collecting data and classifying individuals can be easily imple-

mented into clinical practice, making it a potential method to indicate a need for fall risk

assessment tools. By achieving fall-risk assessment during a 6MWT, the number of required

functional mobility tests can be reduced, thereby reducing patient time in clinics.

Future work should continue to add more participants to the dataset, improving the classifi-

cation metrics to ensure success in clinical implementation. If the larger dataset includes suffi-

cient instances of both single and multiple fallers, research could be initiated to differentiate

between these two fall classes. A fall risk model could also be trained and evaluated for a two-

minute walk test.
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