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Ground states of a Bose-Einstein 
Condensate in a one-dimensional 
laser-assisted optical lattice
Qing Sun1, Jie Hu1, Lin Wen2, W.-M. Liu3, G. Juzeliūnas4 & An-Chun Ji1

We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted 
one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system 
can be described by an effective model with spin-orbit coupling (SOC) of pseudospin (N-1)/2, where N is 
the number of layers. Due to the intricate interplay between atomic interactions, SOC and laser-assisted 
tunnelings, the ground-state phase diagrams generally consist of three phases–a stripe, a plane wave and a 
normal phase with zero-momentum, touching at a quantum tricritical point. More important, even though 
the single-particle states only minimize at zero-momentum for odd N, the many-body ground states may 
still develop finite momenta. The underlying mechanisms are elucidated. Our results provide an alternative 
way to realize an effective spin-orbit coupling of Bose gas with the Raman-laser-assisted optical lattice, and 
would also be beneficial to the studies on SOC effects in spinor Bose systems with large spin.

The realization of Raman-induced artificial gauge fields in ultracold atomic gases1–7 provides a well-controllable 
way to investigate many fundamental phenomena induced by SOC8–11. Among these studies, the spin-orbit (SO) 
coupled Bose gases, which have no counterpart in conventional solid materials, are of particular interests in cold 
atom community. An important consequence brought by SOC is the degeneracy in the single-particle ground 
states, which play a centre role in determining the many-body ground states of BECs. Many new phases as well as 
phase transitions are predicted to appear in diverse Bose systems with different types of SOC12–24. For example, 
the stripe and plane wave phases12–18, half-vortex (meron) ground states19–23, and fractional skyrmion lattices24,25 
may emerge in SO coupled BECs.

Despite of different proposals to generate SOC in ultracold atoms26–36, so far for Bose gases, the artificial SOC 
has been realized only in one dimension1,2,5 or in 2D lattices7. Recently, the technique of laser-assisted tunne-
ling37–39 is developed to produce strong magnetic fields in optical lattices40–43. Such method provides a powerful 
and delicate way to manipulate atoms in lattice potential. Stimulated by these developments, some authors24,25 
have proposed an alternative and realistic way to realize an effective 2D SOC in bilayer Bose systems based on 
the laser-assisted tunneling. In such schemes, the prerequisite “internal” states to fabricate SOC are essentially 
replaced by the Raman-assisted “external” motional states in each layer, providing a new system to investigate the 
SO coupled BECs.

Motivated by the above advances, in this paper, we consider a gas of ultracold scalar bosons subjected to a 
Raman-assisted 1D optical lattice potential forming a multilayer system. Within the lowest band of the lattice, 
the system can be mapped to an effective model with SOC, where N different layers play a role of a pseudospin 
(N −  1)/2 coupled to the intralayer motion via the laser-assisted tunneling of atoms between the layers. This 
scheme can avoid the using of near resonant light beams which cause heating in previous experiments1, and can 
be applied to a wide range of atom species including fermions. Recently, a related scheme has been experimentally 
implemented to realize the effective SOC with double well potential formed by an optical superlattice44. In such a 
scheme the double layer is in a direction of the atomic motion. On the other hand, we suggest to use a lattice with 
N sites in a direction perpendicular to the atomic motion. This resembles bosonic ladders43, but the atoms now 
undergo a planar rather than a one-dimensional motion.

1Department of Physics, Capital Normal University, Beijing, 100048, China. 2College of Physics and Electronic 
Engineering, Chongqing Normal University, Chongqing, 401331, China. 3Beijing National Laboratory for Condensed 
Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. 4Institute of Theoretical 
Physics and Astronomy, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania. Correspondence and 
requests for materials should be addressed to Q.S. (email: sunqing@cnu.edu.cn) or A.-C.J. (email: andrewjee@sina.
com)

received: 20 April 2016

accepted: 01 November 2016

Published: 24 November 2016

OPEN

mailto:sunqing@cnu.edu.cn
mailto:andrewjee@sina.com
mailto:andrewjee@sina.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:37679 | DOI: 10.1038/srep37679

We determine the ground states of the system in the presence of atomic interactions. Note that, the dynamics 
of a SO coupled BEC in a weakly tilted optical lattice has been studied45, where the correlated Bloch oscillations 
with spin Hall effect are revealed. Here, the one-dimensional optical lattice potential is sufficiently tilted and 
unlike the typical atom-atom interactions in conventional spinor BEC46, the special type of interactions from 
on-site repulsions in our system is quite different in the psuedospin representation, and can give rise to peculiar 
N-dependent phase diagrams with different behaviors: (1) For even N, by tuning the tunneling strength J, the 
single-particle ground state may change from a single minimal with zero-momentum to double minima with 
finite momentum, with the corresponding many-body ground states evolving from a normal phase to a robust 
stripe phase. (2) For odd N, the single-particle states only minimize at zero-momentum. However, when the 
interaction strength is increased, a stripe/plane wave phase with finite momentum can still emerge in the ground 
states. Such unique features reflect the competition and compromise between Raman-assisted tunneling and 
atomic interactions in this system.

Results
The model. We consider a three-dimensional ultra-cold Bose gas (e.g. 87Rb) loaded into a one-dimensional 
optical lattice potential. Such potential are tight enough that the atoms only occupy the lowest energy band of 
the lattice potential (along z-axis), but move freely in the traverse xy-plane, forming a stacked-disk configura-
tion. Furthermore, we apply a linear gradient potential in z-direction to tilt the lattice, as depicted in Fig. (1). 
Such global tilt can be achieved by implementing a frequency shift between the lasers for the creating of the 
lattice potential47,48, or by tilting the lattice along the direction of the gravitational field49,50. The single-particle 
Hamiltonian of this system reads:
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where Ψ (r) annihilates a boson at position r. U0 and F are the strengths of optical and linear gradient potential 
respectively, and ω=V z z( ) z
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2 2 is a weak harmonic potential along z-axis with ωz the trapping frequency. P and 
m are the momentum and mass of atom, and ko is the wave-vector of laser to generate the lattice potential.

When the tilting is not too large, the atoms can still move in the lowest state of each well, forming the energy 
band of the lattice potential. We can expand the field operator φΨ = ∑ −x y w z zr( ) ( , ) ( )i

N
i i

c  with the localized 
wannier function −w z z( )i

c  of the ith lattice, where N is the lattice number. The Hamiltonian. (1) then can be 
rewritten as:

Figure 1. Schematic diagram of the Raman-laser-assisted optical lattice. The lattice potential is deep and 
tilted enough so that the tight-binding approximation can be applied but the direct tunnelings between adjacent 
sites can be neglected. Two Raman lasers (labeled as red and blue arrows) couple the internal electron ground 
state |g〉 i to an excited state |e〉 i and would induce an interlayer transition (see the context for detail). (a). Energy 
levels with Δ  the energy difference between adjacent sites. (b) Momentum relations. k1,2 are the incident 
momenta of two Raman lasers, δ k =  k1 −  k2 =  δ kz +  δ k⊥.
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by the linear-tilted part, which is given by Δ  ≡  Δ ij =  |εi −  εj|. Generally, there should also be a tunneling matrix 
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 between adjacent sites < ij>. 

However, for a sufficiently tilted lattice potential, the inter-site tunneling is much smaller than the energy mis-
match between two sites, i.e.  ∆ . For example,  ≈ . × − E2 5 10 R

3  for Δ  ≈  8ER with ER the recoiling energy 
of the lattice39. As a result, the direct tunneling is inhibited and hence can be neglected. To restore the atomic 
hopping between adjacent wells, we resort to the newly developed laser-assisted process40–43.

To this end, we implement two Raman lasers with wave-vector ki and frequency ωi (i =  1, 2), which couple to 
the atomic internal state via a two-photon transition. This gives rise to an time-dependent scalar potential 
VK =  1V0[ei(δk⋅r−δωt) +  1e−i(δk⋅r−δωt)], where V0 is controlled by the Raman beam intensities. δ k =  k1 −  k2 and δ ω  =  ω 
1 −  ω 2 denotes the wave vector and frequency differences of the Raman lasers. Then along the z-direction, one has 
an additional overlap integral ∫′ = − − +δ δ δ δω δ δ δ δω+ + − − + + −⁎V dzw z z w z z e e( ) ( )[ ]ij i
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< >H̃ H K H h c( )ij ij0 0 0  , where we have assumed δω  ~ Δ  with the dominant contribution 

in K′  is from the overlap between adjacent sites < ij> , while other processes are far off-resonance and can be 
neglected. Then by introducing N-component spinor Φ  =  (φ1φ2 …  φN)T, and applying a unitary transformation 
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being the laser-assisted tunneling strength. Notice that, it is the factor δei k zz  due to the momentum transfer along 
the z-axis making the overlap integral J nonzero. Under the rotating-wave approximation, one can drop the 
counter-rotating terms and arrive at the following effective single-particle Hamiltonian
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is the z- component of angular momentum matrix with angular momentum = −L N 1
2

, δε =  Δ  −  δω is the 
two-photon detuning. Furthermore, we have also included an additional harmonic trap V(z), which can be 
termed as an effective quadratic Zeeman energy δ ω= az z

1
2

2 2 (a is the lattice spacing) by adjusting the trapping 
center. Due to   ≡ − ≠F F F[ , ] 0z z z , Eq. (4) effectively describes a system with nontrivial spin-orbit 
coupling, which reduces to a familiar form with equal Rashba and Dresselhaus contributions13–15 for N =  2 and 
N =  3. The major difference is that the internal spin states now are played by atoms in different wells and the total 
pseudospin can be varied via the lattice number N.

Before proceeding, we should mention that there are generally Bloch oscillations for atoms in a tilted optical 
lattice potential45,47–50. For sufficiently tilted lattice case as discussed above, the energy difference Δ  between adja-
cent sites is much larger than the suppressed inter-site tunneling . In this regime, the Bloch oscillation becomes 
a rapid shivering motion with frequency Δ /h and amplitude /K �. When the two-photon Raman transition is 
introduced, Δ  reduces to a two-photon detuning δε, and a considerable effective tunneling J is induced. In this 
case, it was shown that the coherent Bloch oscillations of frequency δε/h would appear in the form of a periodic 
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breathing dynamics51 or a periodic center of mass motion52. In the following, we mainly concentrate on the 
ground-state behaviors for the resonant case with δε =  0.

Without loss of generality, in the following we assume that the traverse momentum transfer δk⊥ is along the 
x-axis, i.e. δ λ=⊥ ˆk ex with λ =  |δk⊥|, and set m =  ħ =  1 and energy unit Eλ =  λ2/2 throughout the paper.

Single particle spectrum. We first discuss the single particle states of this system. In the absence of effective 
Zeeman fields, Hamiltonian. (4) bears the time-reversal symmetry (TRS) with − − =ˆ ˆH F H Fk k( , ) ( , )z z , result-
ing in a symmetrical single-particle energy spectrum E(k) =  E(− k). Due to the laser-assisted tunneling J, the 
atomic states in different wells get mixed, and hence the degeneracy of psuedospin components is lifted with N 
energy branches. We are interested in the lowest branch, which is responsible for the determining of bosonic 
ground states.

In general, the single-particle ground-state manifold can be classified into two categories: for even N, there may 
exist a two-fold degeneracy; while for odd N, there is only one state in the ground subspace. As shown in Fig. (2a), 
we plot the lowest energy spectrum by diagonalizing Hamiltonian. (4) for different N (=  2, 3, 4) with J/Eλ =  0.1. 
We can see that for odd N (=  3), there is only one minimum state at k =  0. On the other hand, for even N (=  2, 4),  
double minima at ± kmin can be identified. Here, we have also included a weak harmonic trap. As the quad-
ratic Zeeman term does not break the TRS, it would just modify the ground state energy for small δz without 
destroying the double degeneracy. On the other hand, a nonzero linear term δε ≠  0 would break the TRS and 
lead to asymmetric energy spectra. As a result, such possible degeneracy is lifted, with only one state left in the 
ground-state manifold.

In Fig. (2b), we plot the momentum evolution of minimal states as a function of J for even N (=  2, 4). One can 
find that, when J surpasses a critical Jc, kmin would converge to 0, indicating a tunneling induced transition would 
happen in the single-particle ground state. As we will see below, above different behavior of the single-particle 
states would have dramatic effects on the many-body ground states when the atomic interactions are included.

Ground state phase diagram. We now turn to investigate the many-body ground states of this system in 
the presence of atom-atom interactions. Considering a short-ranged case, the interactions for atoms situated in 
the same well are much stronger than that in different wells. Then, one can neglect the contribution from the latter 
and write the Hamiltonian for interacting atoms as

∫ ∑=H g d nr ,
(7)D

i

N

iint 2
2 2

where = Φ Φ†ni i i denotes the atomic density in ith layer and ∫= −g dz w z z( )D
g

i
c

2 2
40  with g0 the contact inter-

action strength. Notice that, the interactions here only happen in each pseudospin component, which keeps 
invariant under the unitary transformation U, and would play an important role in determining the ground-state 
configurations.

In the following we will discuss independently the “even” and “odd” N cases, which exhibit different behavior 
in the single-particle spectra and the many-body ground states.

Even N. In this case, we find that for giving trapping potential δz, the phase diagrams in g2D −  J plane for dif-
ferent N have similar structures, and three different phases may appear: (I) “Stripe” phase, where the 
wave-function is a superposition of two plane waves with opposite momenta ± km (km ≠  0) and = =+ −a a 1/ 2 ;

Figure 2. (a) The lowest single-particle energy branch of N =  2 (blue solid), 3 (red dashed), 4 (green dash-dotted) for 
J/Eλ =  0.1. The curves have been shifted constantly for explicitness. Arrows label the energy minima. (b) Momentum 
evolution of the minimal states with the tunneling strength J for N =  2 (blue solid) and N =  4 (green dash-dotted). In 
both figures (a) and (b) the relative strength of the quadratic Zeeman shift is taken to be δz/Eλ =  0.1.
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(II) “Plane Wave” phase, where only one plane wave component with finite momentum km contributes to the 
ground state; (III) a “Normal” phase with bosons condensed in the zero-momentum state of k =  0.

To be more specific and without loss of generality, we choose the simplest N =  2 for illustrations. In Fig. (3), 
we give the ground-state phase diagram in the g2D −  J plane for N =  2 by numerically minimizing the energy EG. 
Generally, due to the interplay between atomic tunneling and atom-atom interactions, above three phases may 
compete with each other and survive in three distinct regimes (labeled by colors), touching at a tricritical point.

In the dilute limit (g2D/Eλ ≪  1), above a critical tunneling strength, i.e. J >  Jc1 ≃  0.5Eλ, the system is in the 
zero-momentum Normal phase. While for J <  Jc2 ≃  0.41Eλ, a Stripe phase is favored. Between them (Jc1 <  J <  Jc2), 
a Plane Wave phase is expected to have lower energy. The regime of such Plane Wave phase gets diminished with 
increasing of interaction g2D, and finally disappears at a tricritical point around (J/Eλ, g2D/Eλ) ≃  (0.38, 0.11), where 
three phases merge. Beyond the tricritical point, only Normal to Stripe phase transition survives (See Fig. (4b,d)). 
These features essentially reflect the competitions between kinetic and interaction energies of these states. In the 
weak interaction regime, the kinetic energy is dominant, and the system is always in a Normal phase when the 

Figure 3. Phase diagram in g2D − J plane for N = 2, consist of three phases: Stripe, Plane Wave and Normal 
phases (see the context for detail), touching at a tricritical point. The color bar denotes the magnitude of 
ground state momentum. The green solid lines label the parameters we used in Fig. (4b).

Figure 4. The ground state momentum km/λ (a,b) and interlayer polarization 〈 Fz〉  (c,d) as functions of 
tunneling J/Eλ for given interactions g2D/Eλ =  0.05 (left panel) and g2D/Eλ =  0.2 (right panel) at N =  2. SP, PW 
and NP denote Stripe, Plane Wave and Normal phases, respectively.
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single particle spectrum has only one minimum at k =  0. On the double minima side, the kinetic energies of Stripe 
and Plane Wave phases for the same km are degenerate, and would be further lifted by the atomic interactions.

In Fig. (4), we plot the ground-state momenta km and the interlayer polarization 〈 Fz〉  as functions of tunneling 
J for two typical interaction strength. One can see that, the Plane Wave has homogeneous intralayer density ni but 
finite interlayer polarization |〈 Fz〉 | >  0, while the Stripe phase has inhomogeneous density ni(r) with 〈 Fz〉  =  0. On 
the other hand, since the atoms in the same layer repulse each other, the system tends to have both equal popula-
tions and homogeneous densities in each layer. Hence, close to the Normal phase, the Plane Wave phase with 
small |〈 Fz〉 | but homogeneous intralayer density is more favorable. While with decreasing of J, |〈 Fz〉 | becomes 
larger and larger, and the system transits into the Stripe phase. Moreover, the Plane Wave phase would be also 
suppressed by increasing of interactions and turn to a Normal phase continuously. Such two transitions finally 
meet at a quantum tricritical point.

Several remarks are on hand: first, we have taken δz/Eλ =  0.01 in numerical calculations, which gives no phys-
ical effects for N =  2 and would modify the phase boundaries slightly for N >  2. Second, compared to the effective 
model in ref. 1, here the external states in different layers play the role of spin rather than the internal states. The 
corresponding effective spin-spin interaction takes the value c2/c0 =  (g↑ −  g↑↓)/(g↑ +  g↑↓) =  1 with g↑↓ =  0, which 
is much larger than in the previous case, where c2 is very close to the degenerate point c2 =  01,24. This makes the 
Stripe phase in this system quite robust13. Third, for N >  2, the phase diagrams are qualitatively unchanged around 
tricritical regime and similar analysis can be applied.

Odd N. When N is odd, the situation changes a lot and the phase diagrams may exhibit different behaviors. 
To be specifc, in the following we take N =  3 as an example to address this problem. Similar results can be found 
for N >  3.

In Fig. (5), we give the phase diagram for N =  3. It is interesting to see that even though the single-particle 
spectrum is only minimized at the k =  0 state, the system can still be Plane Wave or Stripe phases carrying finite 
momenta in some regimes. In one hand, the zero-momentum Normal phase is predominant for small g2D. In the 
other hand, the interaction energy would become significant with the increasing of interactions. As shown in 
Fig. (6e,f), the density of Normal phase = −n F1 z0

2  in center layer is relative large. And for sufficient large g2D, 
an instability to Plane Wave/Stripe phases with more delocalized atomic distribution and finite km (Fig. (6a,b)) 
would happen, where the increasing of kinetic energies is compensated by the decreasing of interaction energies. 
Furthermore, similar to the even N case, the Plane Wave phase with a finite 〈 Fz〉  ≠  0 (Fig. (6c,d)) only survives for 
moderate tunneling strength J, between the Normal and Stripe phases, and ends at a tricritical point.

It is worthy to stress that, the emerging of Plane Wave/Stripe phases for odd N is mainly driven by atom-atom 
interactions, in a sharp contrast to the even N case, where the role is mainly played by atomic tunnelings. This may 
reflect the topological differences of single-particle ground-state manifolds between these two cases.

Discussions and Conclusions
We now discuss some experiment-related issues. First, our results are quite general and independent of specific 
atoms. Here, we take the 87Rb as an example. The simplest N =  2 case can be achieved by a similar scheme as the 
bilayer configurations24,25. For N >  2, one can resort to a superlattice potential with more than two nonequivalent 
sites39 or a linear tilt potential37. For a standing wave with wave-length λs and depth U0 ~ 15Er, where 

λ=E h m/(2 )r s
2 2  is the recoil energy, the trapping frequency in each well is about ω ~ E U4o r 0 . If one choose 

Δ  ~ Er, the Raman-assisted tunneling 
∆

~J J Vz 0 with the bare tunneling Jz ≪  Δ , can be tuned up to J ~ 2π ×  60 Hz 
by varying V0. Note that, V0 ≪  Δ  ≪  ω 0 can be satisfied to ensure the validity of tight-binding and the lowest band 
approximations. To reach the scope of the phase diagram, one need Eλ ~ J. This can be done by arranging the 
opening angles of two Raman lasers with δ ⊥ ~ mJk 2 / 2 . For a typical harmonic trap with frequency  
ω z ~ 2π ×  10 Hz, δ ω λ~ m /8q z s

2 2  is much smaller than Eλ. In the case of 87Rb, g0 ~ 7.8 ×  10−12 Hz cm3, and the cor-
responding π ξ=g N g2 /2D a z2 0  with ξ ω= m/z o , is limited to a weakly interacting regime.

Up to now, we have neglected the effects of effective Zeeman fields δε and δq. For not too large δε and/or δq, the 
phase boundaries would be modified quantitatively17 which are also confirmed in our case, while leaving the main 

Figure 5. Phase diagram in g2D − J plane for N = 3. The color bar denotes the momentum magnitude of 
ground states. The green solid lines label the parameters we used in Fig. (6).
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results qualitatively unchanged. To detect these phases in experiments, one may implement the momentum- 
resolved time-of-flight measurements. The atom population in each well which characterizes 〈 Fz〉  and Fz

2 , can 
be measured via in-situ absorption imaging.

In conclusions, we have investigated the ground states and the associated phase diagrams of a BEC in 
a laser-assisted 1D optical lattice potential forming a multilayer system. The unique N-dependence of the 
single-particle spectra and the corresponding many-body ground-state configurations reflects the subtle compe-
tition between the effective SOC induced by laser-assisted interlayer tunneling and atom-atom interactions. Our 
results would have potential implications in searching new matter states in spin-orbit coupled Bose systems with a 
large spin. In future studies, one may consider the effects of interlayer long-range interactions, and the extensions 
to multicomponent BECs and Fermi gases.

Methods
For weakly interacting Bose gases, the quantum fluctuations can be neglected safely. And one can adopt the vari-
ational method13,24 to investigate the ground states of the system. In mean-field level, the variational Ansatz of the 
ground-state wave-function can be constructed as:

Ψ = Φ + Φ+ − −
−a e a e , (8)k

ikx
k

ikx
G

where Φ ±k e±ikx are the eigenstates of the lowest energy branch with momentum ± k, determined by Eq. (4). a+ 
and a− are complex amplitudes with normalization condition |a+|2 +  |a−|2 =  1. In the dilute limit, one has k =  kmin 
for double minima case and k =  0 for single minimum. While in general, k is dependent on the interactions13. 
Minimizing the energy = Ψ + ΨE H HG G 0

eff
int G  with respect to variational parameters a+, a− and k, one can 

obtain the ground-state phases as well as the phase diagrams.
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