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ABSTRACT

A potential connection between physico-chemical
properties of mRNAs and cognate proteins, with
implications concerning both the origin of the
genetic code and mRNA–protein interactions, is
unexplored. We compare pyrimidine content of nat-
urally occurring mRNA coding sequences with the
propensity of cognate protein sequences to interact
with pyrimidines. The latter is captured by polar re-
quirement, a measure of solubility of amino acids in
aqueous solutions of pyridines, heterocycles closely
related to pyrimidines. We find that the higher the
pyrimidine content of an mRNA, the stronger
the average propensity of its cognate protein’s
amino acids to interact with pyridines. Moreover,
window-averaged pyrimidine profiles of individual
mRNAs strongly mirror polar-requirement profiles
of cognate protein sequences. For example, 4953
human proteins exhibit a correlation between the
two with jRj>0.8. In other words, pyrimidine-rich
mRNA regions quantitatively correspond to regions
in cognate proteins containing residues soluble in
pyrimidine mimetics and vice versa. Finally, by
studying randomized genetic code variants we
show that the universal genetic code is highly
optimized to preserve these correlations. Overall,
our findings redefine the stereo-chemical hypoth-
esis concerning code’s origin and provide
evidence of direct complementary interactions
between mRNAs and cognate proteins before devel-
opment of ribosomal decoding, but also presently,
especially if both are unstructured.

INTRODUCTION

The universal genetic code is the central building block
at the foundation of all of life as we currently know it,
but the problem of how it evolved is still completely open
(1,2). In fact, it has been argued that the origin of the
genetic code, i.e. of translation is one of the central foun-
dational questions in molecular biology that are still un-
resolved (3). Obviously, the origin of the code must be
related to its overall structure and function. Early on it
was noticed that the structure of the genetic code is highly
non-random: codons coding for the same amino acid
resemble each other, and so do the codons for different,
but chemically similar amino acids (1,4). This suggests
that the code somehow embodies features that go
beyond a simple mapping between codons and amino
acids, and that it might actually also be in service of
other, higher-level functions. For example, Lesnik and
Reiss (5) showed that hydropathy profiles of membrane
proteins are related to sequence profiles of the thymine/
adenine ratio in their genes, i.e. uracil/adenine ratio in
their mRNAs. More recently, Prilusky and Bibi (6)
showed the same when it comes to mRNA uracil-density
profiles, and hypothesized that there might exist cellular
factors which recognize uracil-rich regions and are respon-
sible for membrane targeting of membrane proteins’
mRNA. Moreover, it has recently become apparent that
mRNA, in addition to its coding function, plays a multi-
tude of other roles in the cell, such as ensuring proper
protein localization (7), determining the rate of translation
(8,9) or even affecting the ways nascent peptides get
post-translationally modified (10).

Concerning the evolutionary development of the genetic
code, there exist several main classes of hypotheses. The
‘frozen-accident hypothesis’ suggests that the code is es-
sentially inherited from the last universal common
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ancestor and could simply not evolve further as any
change would be detrimental to a large number of
proteins (2,11). Second, the ‘coevolution hypothesis’
proposes that the code coevolved together with amino
acid biosynthetic networks and that similar codons code
for metabolically connected amino acids (2,12). On the
other hand, the ‘error minimization hypothesis’ is based
on computational analyses which have shown that the
code is robust to point mutations and translational
errors, such that certain properties of the original and
the mutated amino acids, like hydrophobicity, differ to a
minimal degree (2,13,14). Finally, the ‘stereo-chemical hy-
pothesis’ suggests that the principal feature of translation
before the development of ribosomal decoding machinery
was a direct interaction between codons and amino acids
they code for (2,15–19). Although binding of individual
codons and cognate amino acids has never been observed,
analysis of amino acid-binding RNA aptamers and differ-
ent RNA–protein complexes has revealed that some
codons are present at a higher-than-random frequency in
the binding sites of cognate amino acids (e.g. isoleucine
and arginine) (18–20).

Importantly, the original support for the stereo-
chemical hypothesis came from the analysis of polar re-
quirement (PR), an experimental measure of the way
amino acids partition in aqueous solutions of substituted
pyridines, nitrogenous bases closely related to pyrimidines
(Figure 1A) (21–23). Depending on type, amino acids were

shown to exhibit different, clearly defined preferences for
interacting with pyridines and this was then used not only
as evidence supporting the stereo-chemical hypothesis, but
also as an explanation for the general structure of the
genetic code itself (21,22). Namely, when grouped accord-
ing to the PR of their cognate amino acids, composition-
ally similar codons automatically cluster together (21).
More recently, Mathew and Luthey-Schulten employed
molecular dynamics simulations to provide a microscopic
picture behind the PR scale and also to improve it, albeit
marginally, by avoiding some experimental artifacts
(Pearson R=0.95 between the two scales) (23). Their
PR scale, derived using 2,6-dimethylpyridine and used in
all of our analysis (if not indicated otherwise), is given in
Figure 1A (the higher the PR, the lower the affinity for
pyridines and vice versa). A very similar ordering is
obtained for pure pyridines and 2-methylpyridines as
well (21).
While it has been recognized that individual amino

acids encoded by pyrimidine-rich codons generally have
low PR, i.e. a relatively high affinity for pyridines, and
vice versa (21,22), this connection has never been quanti-
tatively explored. Moreover, thanks to the modern
large-scale sequencing efforts, one can now also examine
a potential connection between the pyrimidine content of
complete mRNA-coding regions and the PR of cognate
protein sequences on the whole proteome level. There are
several reasons why this might be important. First, regard-
less of how the genetic code evolved, its essence has always
been to encode sequence properties of one large polymer
(protein) in sequence properties of another polymer
(mRNA). Second, if the direct binding between amino
acids and their codons exists, but is weak, the cooperative
effect of combining multiple such interactions in the
context of long polymers may yield a stronger net effect.
Finally, depending on codon usage bias and specific amino
acid sequences in question, the strength of correlation seen
just on the level of the genetic code table might
significantly change in either direction. Motivated by
these rationales, as the central objective in this study we
explore the relationship between the pyrimidine content of
mRNA-coding sequences and the PR (23) of cognate
protein sequences for complete proteomes of 15 different
organisms, five from each domain of life (Supplementary
Table S1).

MATERIALS AND METHODS

Datasets

Complete proteomes for 15 organisms (five Archaea:
Archaeoglobus fulgidus, Methanobacterium thermoauto-
trophicum, Methanocaldococcus jannaschii, Methano-
sarcina acetivorans and Pyrococcus horikoshii; five
Bacteria: Bacillus subtilis, Escherichia coli, Mycobacterium
tuberculosis, Salmonella typhimurium and Synechocystis
sp., and five Eukaryota: Arabidopsis thaliana, Drosophila
melanogaster, Homo sapiens, Musmusculus and
Saccharomyces cerevisiae) were extracted from
UniProtKB (24) database (October 2011 release), with
maximal-protein-evidence-level set at 4 (i.e. proteins

Figure 1. Pyrimidine content of individual codons versus PR of
cognate amino acids. (A) chemical structure of pyridines and pyrimi-
dines with the PR scale (23) for the 20 natural amino acids. (B) cor-
relation between the pyrimidine content of individual codons, as based
on the universal genetic code, and the PR of cognate amino acids.
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annotated as ‘uncertain’ were excluded), and only the
reviewed Swiss-Prot entries used for further analysis.
The coding sequences of their corresponding mRNAs
were extracted using the ‘Cross-references’ section of
each UniProtKB entry, where out of several possible
translated RNA or DNA sequences the first one satisfying
the length criterion (RNA length=3�protein length+3)
was selected and its sequence downloaded from The
European Nucleotide Archive (25). The protein as well
as RNA sequences with only canonical amino acids or
nucleotides were chosen for analysis. Proteins were
sorted into mutually exclusive cytosolic and membrane
groups using controlled vocabulary within the ‘Subcellular
location’ subsection of each UniProtKB entry, employing
the following criteria: membrane proteins are those
labeled with any of the ‘Membrane’, ‘Multi-pass
membrane protein’, ‘Single-pass membrane protein’,
‘Single-pass type I membrane protein’, ‘Single-pass type
II membrane protein’, ‘Single-pass type III membrane
protein’ or ‘Single-pass type IV membrane protein’ iden-
tifiers, but are not labeled with the ‘Cytoplasm’ identifier,
while the opposite was used for the cytosolic proteins.
Proteins that did not fall into either category were
designated as ‘other’. Homology filtering was performed
using CD-HIT web server (26) by multiple runs with
default settings and sequence identity cutoff values for
first, second and third run set to 90, 60 and 30%,
respectively.

Window-averaging procedure for profile comparison

Sequence profiles were generated using a sliding-window
averaging procedure, whereby each position in a given
sequence is associated with the average value of the
property in question calculated over a window centered
at that position. Initially, we tested window sizes in the
range of 1–41 residues/codons and calculated the average
value of the Pearson correlation coefficient between the
mRNA pyrimidine content and protein PR profiles over
the entire human proteome. This value attains approxi-
mately constant value for all windows greater than or
equal to 21 residues (Figure 3A inset), and therefore the
window size of 21 residues/codons was used for all further
calculations. Note that for all profile comparisons and
windows of size N+1, the first N/2 and the last N/2 pos-
itions in the compared sequences were not included
because for these positions a window of N+1 residues is
not defined. Similarity between individual mRNA and
protein sequence profiles was estimated using the
Pearson correlation coefficient between them.
Superposition of mRNA and protein profiles was carried
out by aligning the average values of the two profiles and
rescaling each profile by its standard deviation.

Randomization of the genetic code

Randomized genetic codes were generated by randomly
shuffling the 64 codons in the natural genetic code. In
this way, each natural codon is mapped to another
codon in the randomized code, allowing straightforward
rewriting of the mRNA for a given protein. Here, the
number of codons for each amino acid remains the same

as in the natural code. In total, 106 randomized genetic
codes were generated for each organism, and compared
with the natural code. The reported P-values correspond
to the fraction of randomized codes for which the absolute
value of the Pearson correlation coefficient jRj> jRnaturalj

for sequence-average or j<R>j> jRnaturalj for sequence-
profile comparisons.

Amino acid scales and calculation of average properties

A total of 531 amino acid scales, describing different
physico-chemical or biological properties of the 20
natural amino acids, were extracted from the AAindex
database (27), with additional nine extracted from the
literature (23,28–31). The hydrophobicity-related scales
were separated from the rest by searching for
hydrophobicity-related keywords (hydrophobicity, hydro-
philicity, transfer/solvation free energy, polarity,
membrane preference/composition, exposure, buriability,
accessibility, surface area, partitioning, retention coeffi-
cients and variations thereof) in the AAindex database
description, as well as by consulting the original literature.
The average protein sequence property, as defined by a
given amino acid scale (x1 . . .x20), was calculated as a
weighted sum where each xi is weighted by the fraction
of residue type i in the sequence. The average protein
sequence disorder was calculated by averaging the
disorder scores of its residues as predicted by IUPred
web server (32). Proteins with average disorder scores
>0.5 were considered to be disordered.

RESULTS

We first focus on the relationship between the pyrimidine
content of individual codons and the PR of cognate amino
acids. To address this, in Figure 1B we plot these two
properties against each other using all 61 coding triplets
from the universal genetic code and all 20 naturally
occurring amino acids. Several patterns become immedi-
ately obvious. First, the general inverse dependence
between the two properties is apparent with the Pearson
correlation coefficient R=�0.61, i.e. pyrimidine-rich
codons do preferentially code for amino acids having
higher affinity for pyrimidine mimetics as captured by
PR. However, just on the level of the genetic code table,
this relationship is not overly quantitative with a large
level of scatter around the central trend line (Figure 1B).
Second, some amino acids such as arginine are coded for
by multiple codons with significantly different pyrimidine
content having an adverse impact on the observed correl-
ation. Finally, there are amino acids, such as tryptophan
and methionine, which clearly deviate from the trend
followed by other amino acids in that they exhibit low
PR, while being coded for by purine-rich codons.
However, it should be mentioned that tryptophan in
particular is thought to have appeared later in evolution
(33) and the definition of its codon may have been
influenced by different factors than for other amino acids.

How does the correlation seen just on the level of the
genetic code table change if one looks at the average pyr-
imidine content of realistic mRNA coding sequences and
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compares it with the average PR of cognate protein se-
quences? In principle, depending on codon usage bias and
specific sequence composition, one could expect the
above level of correlation to change in either direction.
To address this question, we have analyzed complete
proteomes of 15 different organisms, and as representative
examples, in Figure 2A–C we show the results for the
proteomes of M. jannaschii, B. subtilis and H. sapiens, re-
spectively. Similar results hold for all of the proteomes
examined (Supplementary Table S2). Remarkably,

regardless of the organism studied, the average pyrimidine
content of mRNA coding sequences exhibits an extremely
strong inverse correlation with the average PR of cognate
protein sequences over complete proteomes. For example,
the two exhibit a correlation with R=�0.89 over 17 349
annotated human proteins (Figure 2C), and similar results
are seen for all other organisms. What is more, the results
do not change if the protein homology level within a given
proteome is reduced to 30%. For example, in such
homology-filtered human proteome, including now
10 113 proteins instead of the original 17 349, the correl-
ation changes to R=�0.88. Overall, such strong, univer-
sally found correlations attest to a curious,
close-to-quantitative correspondence: the higher the pro-
pensity of a given protein’s amino acids to interact with
pyrimidine mimetics in water mixtures, the more
pyrimidine-rich is its cognate mRNA coding sequence
and vice versa. What is more, moderate tendencies
embodied in the genetic code (Figure 1B) get significantly
amplified if one analyzes the average features of realistic
mRNA and protein sequences on the whole-proteome
scale, thus accounting for both sequence composition
and codon usage bias. In the context of the
stereo-chemical hypothesis, these findings can be thought
of as a coarse-grained, generalized analog of Chargaff’s
complementarity rules for DNA. Namely, the adenine or
guanine level in DNA is quantitatively predictive of the
level of thymines and cytosines, i.e. precisely those bases
which have affinity for adenines and guanines, respect-
ively. Similarly, here we show that the pyrimidine level
in mRNAs is quantitatively predictive of the
PR-weighted affinity for pyrimidine mimetics of cognate
protein sequences, hinting at a possibility of complemen-
tarity between the two.
To explore this idea more closely, we have evaluated

correlation coefficients between window-averaged pyrimi-
dine profiles of individual mRNA coding sequences and
PR profiles of cognate protein sequences for all 15 prote-
omes. We use the averaging window of 21 amino acids/
codons, but similar results are obtained for all other
windows above 16 (Figure 3A, inset). Remarkably, the
distributions of the thus-obtained correlations coefficients
for all 15 species show great similarity, with the average
correlation coefficient typically in excess of 0.7 in absolute
value (Figure 3A). For example, human mRNA pyrimi-
dine and protein PR profiles exhibit the average correl-
ation coefficient of �0.73 (median of �0.74), with 28.5%
of sequences (4953 out of 17 349 proteins) having a cor-
relation of jRj> 0.8! Again, these results are not affected if
the protein homology level within a given proteome is
lowered to 30%. For example, for the human proteome
the average correlation coefficient remains at �0.73 and
the median changes to �0.75 after homology filtering.
To illustrate what these correlation coefficients mean

when it comes to actual sequences of typical length, we
show the pyrimidine mRNA profile overlaid with the re-
spective protein PR profile for serine/threonine protein
kinase VRK1, a human cytosolic protein whose correl-
ation coefficient between the two profiles (R=�0.74) is
the same as the median over all proteins, i.e. the most
representative protein (Figure 3B, upper panel). Second,

Figure 2. Relationship between the average pyrimidine content of
mRNAs and the average PR of cognate proteins. Correlation
between the mRNA coding-sequence pyrimidine content and the
average PR of cognate protein sequences for the complete proteomes
of: (A) M. jannaschii, (B) B. subtilis and (C) H. sapiens. We indicate the
total number of proteins (all/cytosolic/membrane/other) and Pearson
correlation coefficients over all proteins for each organism.
Annotated cytosolic and membrane proteins are depicted in green
and red, respectively, while all other proteins are in black.
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we show the same superposition for the best cytosolic
protein sequence in this regard, cylicin-2, with
R=�0.96 (Figure 3B, lower panel). Likewise, in Figure
3C we do the same for the most representative (MHC class
I antigen B-14, R=�0.74, upper panel) and the
best-performing (translocation protein SEC62,
R=�0.96, lower panel) human membrane protein, re-
spectively. Clearly, both types of profiles exhibit strong
characteristic features with peaks and valleys on the

scale of tens to hundreds of residues/codons. More im-
portantly, there is a remarkable degree of matching
between mRNA coding-sequence pyrimidine profiles and
the respective protein PR profiles even for average human
proteins. Despite the completely different chemical nature
of mRNAs and proteins, these two key biopolymers
exhibit a striking complementarity when it comes to
their physico-chemical properties: sequence profiles of
pyrimidine density in mRNAs strongly mirror the
sequence profiles of cognate proteins capturing their
affinity for pyrimidine mimetics. Similar results are
obtained for all the species studied, except to a smaller
degree for M. tuberculosis where the average correlation
coefficient is reduced by �0.2 (Figure 3A). As M. tuber-
culosis utilizes the same universal genetic code as other
organisms, this difference attests to an important feature
of the above findings. Namely, it is a combination of the
genetic code together with codon usage bias and specific
sequence composition that all together determine the level
of matching seen in different cases. Finally, to further
illustrate the level of matching observed, in Figure 4 we
show the experimental NMR structure of the cytosolic
human protein S100-A1 (PDB code: 2L0P(34)) where we
color its residues according to either window-averaged
pyrimidine content of its mRNA or window-averaged
amino acid PR: the similarity between the two is evident
(Figure 4). A detailed analysis of the relationship between
the level of matching seen in different proteins and their
functional and structural characteristics or evolutionary
age will be presented elsewhere.

How optimized is the universal genetic code to preserve
the above relationships between mRNA pyrimidine
content and protein sequence PR? To study this, for
each proteome we have generated 106 randomized
genetic codes, and evaluated the above correlations for
each one of them, both on the level of sequence-averages
and complete sequence profiles (Figure 5A and B).
Remarkably, for human proteome, not one out of 106

randomized genetic codes results in higher correlations
than the natural genetic code (i.e. P-value< 10�6) in
either of the two cases. In Figure 5A (inset), we show
for H. sapiens the distribution of correlation coefficients
for sequence-averages obtained for all randomized genetic

Figure 3. mRNA coding-sequence pyrimidine profiles mirror protein
sequence PR profiles. (A) distributions of correlation coefficients R
between window-averaged pyrimidine-content profiles of individual
mRNA-coding sequences and window-averaged PR sequence profiles
of the respective proteins for all 15 proteomes (window size=21). In
the inset, we show the dependence of the average R for the human
proteome on the size of the averaging window. (B) Typical and
best-matching pairs of mRNA pyrimidine-content and protein PR
profiles for human cytosolic proteins. (C) Same as in 3B, but for
human membrane proteins. All proteins in B and C were chosen to
be of similar, representative length (300–400 residues).

Figure 4. Structure-mapped sequence profiles. NMR structure of
protein S100-A1 (PDB code: 2L0P) colored according to the window-
averaged mRNA coding-sequence pyrimidine content (left) or window-
averaged protein-sequence PR (right), together with the superimposed
sequence profiles of the two variables.
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codes, with the value obtained for the natural genetic code
indicated with an arrow. Similar results are found for all
other species, with the weakest level of significance
obtained for M. tuberculosis, where still the natural
genetic code is in the top 99.9% of all codes (P-value of
1.2� 10�3) (Figure 5A). Finally, an even more dramatic
picture is seen if one looks at average correlation coeffi-
cients between mRNA and protein sequence profiles for
natural and randomized genetic codes (Figure 5B): the
natural code is highly optimized with respect to
maximizing this correlation, with more than half of the
organisms exhibiting P-values< 10�6.

In addition to PR, are there other protein sequence
properties that are equally well predicted by the cognate
mRNA’s pyrimidine content? We have repeated the above
analyses using 538 additional amino acid property scales
describing inter alia various geometric features, secondary
structure propensities and, as arguably the most studied
amino acid property, hydrophobicity (23,27–31). In
Figure 5C, we present the distribution of the thus-
obtained correlation coefficients for sequence-average
analysis, while in Figure 5D we show the same for the
mean correlation coefficients for sequence profile compari-
son, both for H. sapiens, including in the analysis also

both PR scales (for a total of 540 scales). We divide
amino acid properties into a set related to hydrophobicity
(152 scales, see ‘Materials and Methods’ section for defin-
ition), and a set containing all the remaining scales (388
scales). Note that the exact partitioning depends on how
one defines hydrophobicity: in Supplementary Table S2
we give the sequence-average correlation coefficients for
all 540 scales. Significantly, mRNA pyrimidine content
appears to be predictive of the hydrophobic properties
of cognate protein sequences as captured by a number
of different hydrophobicity scales, as was noticed before
(1,4–6,35). However, the optimized PR scale (23) in both
types of analyses exhibits higher correlation with the
mRNA pyrimidine content than any of the other 538
amino acid property scales, with the experimental PR
scale (22) closely following (Figure 5C and D and
Supplementary Tables S2 and S3). In other words, it is
the affinity for pyrimidine mimetics of cognate protein
sequences that appears to be best encoded by mRNA pyr-
imidine content, rather than just hydrophobicity in
general. In fact, there is a number of widely-used hydro-
phobicity scales that result in little correlation with the
mRNA pyrimidine content, such as the Radzicka-
Wolfenden scale (36) or the Nozaki-Tanford scale (37)

Figure 5. Randomized genetic codes and analysis of different amino acid scales. (A) probability that a randomized genetic code gives stronger
correlation in terms of |R| between average mRNA pyrimidine content and average protein PR for different proteomes (P-values) with empty circles
with arrows denoting P-value< 10�6. Inset: distribution of R for randomized genetic codes, with the same value for the natural genetic code
indicated with a red arrow (P-value< 10�6) for H. sapiens. (B) same as in 5A, but calculated for the means of distributions of sequence-profile
correlation coefficients <R>. (C) Probability density distributions of R2 for 152 hydrophobicity-related (red) and 388 non-hydrophobicity-related
(blue) amino acid properties for H. sapiens (17 349 sequences) for sequence-average analysis. Inset: the same for correlation coefficients R. Values of
R2 for some notable scales and their correlation coefficients are indicated explicitly: PR—Mathew et al. PR scale (23); PR’—Woese PR scale (22);
ENG—Engelman et al. hydrophobicity scale (35); EIS—Eisenberg et al. hydrophobicity scale (36); KYT—Kyte-Doolittle hydrophobicity scale (37);
RAD—Radzicka-Wolfenden scale (33); NOZ—Nozaki-Tanford scale (34). (D) same as in C, but for sequence-profile analysis.
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(Figure 5C and D). On the other hand, as an important
part of amino acid/pyridine interactions is of hydrophobic
nature, it is not surprising that one also sees correlations
with a number of other hydrophobicity-related scales, but
this is arguably just one aspect of the issue.
We have also zeroed in on individual mRNA nitrogen-

ous bases and combinations thereof to analyze which of
them are most responsible for the sequence-average and
sequence-profile correlations. As demonstrated in
Supplementary Table S4 for H. sapiens, the content of
individual bases (e.g. A-content for all proteins or
U-content for membrane proteins in some cases) already
alone gives sizable correlations in some cases, but overall,
pyrimidine content significantly outperforms all individual
mRNA nitrogenous bases and combinations thereof when
it comes to sequence-average and sequence-profile correl-
ations with protein PR, both for cytosolic and membrane
proteins (Supplementary Tables S2 and S4).

DISCUSSION

If one assumes that the interaction of amino acids with
pyridines is analogous to their interaction with pyrimi-
dines (21), the strong correlation between mRNA
coding-sequence pyrimidine content and protein-sequence
PR (Figures 2 and 3) gives support to an
experimentally-testable hypothesis that mRNA-coding
regions may be physically complementary to cognate
protein regions, especially if both are unstructured.
Here, direct interaction between the two is facilitated
through direct pairing between pyrimidine-rich mRNA
regions and amino acid stretches, encoded by them,
which at the same time exhibit high propensity to
interact with pyrimidines (Figure 6). Consequently, our
results give strong support to the idea that the universal
genetic code reached most of its present-day features in the
era before the development of tRNA-based
ribosomal-decoding machinery (15,22,41). In this frame-
work, ancient proteins were directly templated off of
cognate mRNAs, but the code was ‘fuzzy’, i.e. the exact
nature of bases and amino acids was not fully defined, but
their general physico-chemical characteristics were. A
stretch of pyrimidine-rich bases on mRNA would code
for different protein sequences, but all of them would
have low PR in common, and vice versa as suggested in
Carl Woese’s ‘translation error’ model for the evolution of
the code (15,22).
In all previous formulations of the stereo-chemical hy-

pothesis concerning the origin of the genetic code, the
focus has been exclusively on the interactions between in-
dividual amino acids and individual codons or anti-codons
(2,15–19). Contrary to this, our results support a more
coarse-grained picture of these interactions, whereby the
direct complementarity between mRNAs and proteins
may exists predominately on the level of: (i) longer se-
quences and (ii) general physico-chemical characteristics
of participating groups, i.e. nitrogenous bases and amino
acids. Although our results leave room for well-defined,
rigid, stereospecific interactions between amino acids and
individual codons, as proposed before (2,15–19,42), we

suggest that they could also be more general, dynamic
and liquid-like. In this model, pyrimidine-rich regions in
mRNAs, which are physically significantly larger (the
contour length of an mRNA coding region is
approximately 4.5 times longer than that of a cognate
protein), solubilize the complementary stretches of
pyrimidine-soluble protein sequence in a partially
non-specific way. The very key element in our model is
that amino acids with similar properties (e.g. low PR) tend
to come in longer, contiguous stretches (such as in block
copolymers) (Figure 3B and C), which could then interact
with the corresponding mRNA stretches, themselves built
of similar codons when it comes to pyrimidine content. It
is the cooperative interaction between these longer
stretches that is the essence of the present model (Figure
6). Note also that our hypothesis may be generalized to
interactions between proteins and DNA-coding strands as
their pyrimidine profiles are the same as those of cognate
mRNAs. What is more, similar complementarity may
exist for any protein and nucleic acid whose PR and pyr-
imidine profiles match, and not just cognate protein and
mRNA or DNA pairs. This makes the present model po-
tentially generalizable to the level of all protein–nucleic
acid interactions including, for instance, those between
proteins and long non-coding RNAs. Finally, we see
strong matching when it comes to primary-sequence
profiles of mRNAs and cognate proteins, suggesting that
the proposed model may be particularly relevant in those
situations where both biopolymers are unstructured.
Consistent with this idea, we see a statistically significant
enrichment of disordered proteins in the top 10% of
human proteins when it comes to the level of matching
(P< 0.0001, Pearson’s chi-squared test, Supplementary
Table S5) as well as their slight depletion in the bottom
10% (P< 0.02, Pearson’s chi-squared test, Supplementary
Table S5). However, the model may apply even to situ-
ations where otherwise natively structured mRNAs and
proteins are largely unstructured, such as during transla-
tion or upon thermal stress, and we also do not exclude
the possibility of similar interactions even in the folded
state.

It is intriguing to speculate that a similar correspond-
ence to what we have observed might be obtained when it
comes to purines on the side of mRNA and purine-affinity

Figure 6. Model of mRNA–protein complementarity. Pyrimidine-rich
regions in mRNA correspond to pyrimidine-soluble regions in protein,
facilitating their complementary interactions. Hypothetically, an analo-
gous effect might be observed for purine-rich regions. Note: polymer
sizes not drawn to scale.
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when it comes to amino acids. It is already known that
arginines (which exhibit high PR, i.e. have low pyridine
affinity) interact directly with their codons and especially
purine-only AGG (18,19), lending support to this possi-
bility. Although at present we do not see any biologically
relevant reason for an asymmetry between pyrimidines
and purines in this context, it is also possible that
pyrimidine-based interactions might alone be sufficient
to stabilize binding between mRNAs and cognate
proteins. Furthermore, our analysis is based on the as-
sumption that amino acid interactions with pyridines are
a quality proxy for their interactions with pyrimidines, as
has been suggested before (21). Given the close chemical
similarity between the two species and the large success
of PR in explaining the structure of the genetic code
(21,22) and its robustness towards random mutations
(2,13,14,43), this assumption appears reasonable. In fact,
it would be difficult to explain the strength of the correl-
ations observed herein (Figures 1–3) if pyridines and pyr-
imidines interacted very differently with amino acids.
However, future work should examine the validity of
this assumption in more detail, as well as analyze
PR-like scales for specific pyrimidines (U, T or C) and
purines (A or G).

Previous computational analyses have shown that the
genetic code is robust to random point mutations and
translational errors, such that hydrophobicity of the
original and the mutated amino acids differs to a
minimal degree (‘error-minimization’ hypothesis)
(2,13,43). Given the fact that the PR scale is related to
hydrophobicity, one might argue that our present
findings could be explained as a consequence of the
error-minimization idea. However, one must recognize
that PR is first and foremost a measure of amino acid
affinity for pyrimidine-like nitrogenous bases, and for all
of our principal conclusions it is secondary what the
physical basis of this interaction is. In fact, we would
like to suggest that error-minimization could naturally
arise as a consequence of evolutionary optimization of
mRNA–protein-binding interactions. Namely, a genetic
code, which assigns similar codons to amino acids with
similar PR, i.e. with similar affinity for pyrimidines, will
also be error-minimizing in terms of hydrophobicity
change of amino acids upon random mutation. What is
more, the fact that of all the 152 hydrophobicity-related
scales examined, the PR scales result in the best matching
with mRNA pyrimidine content (Figure 5C and D),
strongly suggests that the underlying physical causes are
more specific than what is just encompassed by the general
term ‘hydrophobicity’.

Finally, it should be emphasized that the fact that all of
our analysis was performed on present-day sequences
suggests that the complementarity between mRNAs and
cognate proteins, particularly under destabilizing condi-
tions, may still have a vital biological function. This po-
tentially concerns all facets of mRNA and protein biology
including transcriptional and translational control,
splicing, cellular localization, structure and function of
ribonucleoprotein complexes and others, and will be
explored elsewhere. It is already known that binding of
several specific proteins to their cognate mRNAs (44–46)

has functional importance. While the modes of binding
could and have been shown to be variable, our mechanism
opens up the possibility that this might be a much more
widespread phenomenon, especially under conditions
where both proteins and mRNAs are unstructured.
Alternatively, it is possible that the correlations we
observe are entirely a remnant of an era preceding the
development of ribosomal-decoding machinery. In either
case, it appears reasonable to suggest that our findings
must somehow be related to mRNA–protein complemen-
tarity, be it exclusively ancient or both ancient and
present-day. As a whole, our results are consistent with
the RNA world hypothesis (47) and provide a framework
for connecting it with the protein-dominated biology of
today. Future work should elucidate the full biological
significance of this connection, when it comes to both its
evolutionary as well as present-day aspects.
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