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Sequential Neural Activity in Primary Motor Cortex during
Sleep

Wei Xu,* Felipe de Carvalho,* and Andrew Jackson
Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, United Kingdom

Sequential firing of neurons during sleep is thought to play a role in the consolidation of learning. However, direct evidence for such
sequence replay is limited to only a few brain areas and sleep states mainly in rodents. Using a custom-designed wearable neural data
logger and chronically implanted electrodes, we made long-term recordings of neural activity in the primary motor cortex of two female
nonhuman primates during free behavior and natural sleep. We used the local field potential (LFP) spectrogram to characterize sleep
cycles, and examined firing rates, correlations, and sequential firing of neurons at different frequency bands through the cycle. Slow-wave
sleep (SWS) was characterized by low neural firing rates and high synchrony, reflecting slow oscillations between cortical down and up
states. However, the order in which neurons entered up states was similar to the sequence of neural activity observed at low frequencies
during waking behavior. In addition, we found evidence of brief bursts of theta oscillation, associated with non-SWS states, during which
neurons fired in strikingly regular sequential order phase-locked to the LFP. Theta sequences were preserved between waking and sleep,
but appeared not to resemble the order of neural activity observed at lower frequencies. The sequential firing of neurons during slow
oscillations and theta bursts may contribute to the consolidation of procedural memories during sleep.
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Introduction
Brain activity during sleep is implicated in stabilizing, consolidat-
ing, and reorganizing daytime learning, but the neural mecha-
nisms remain unclear. One influential theory states that the
reactivation of specific sequences of neural firing observed during

the day (sleep “replay”) drives synaptic changes through spike-
timing-dependent plasticity, which depends critically on the
temporal order of presynaptic and postsynaptic activity (Kruskal
et al., 2013). Sequential replay was first reported in the hippocam-
pus of sleeping rats (Wilson and McNaughton, 1994), and has
since been observed the striatum (Pennartz et al., 2004) and pre-
frontal cortex (Euston et al., 2007; Peyrache et al., 2009), spawn-
ing a wealth of literature concerning the consolidation of spatial
and rule learning. However, while sleep is also implicated in con-
solidation and off-line gains following motor learning (Walker et
al., 2002; Nitsche et al., 2010; Tucker et al., 2017), there has been
considerably less investigation of single-unit activity in motor
areas during sleep. Synchronous reactivation in rodent slow-
wave sleep has been linked to consolidation of forelimb reaching
behaviors (Ramanathan et al., 2015), but there have been no
reports of sequential firing similar to that observed in the episodic
memory system. We have previously shown in monkeys that
delta oscillations in local field potentials (LFPs) during anesthesia
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Significance Statement

Replay of sequential neural activity during sleep is believed to support consolidation of daytime learning. Despite a wealth of
studies investigating sequential replay in association with episodic and spatial memory, it is unknown whether similar sequences
occur in motor areas during sleep. Within long-term neural recordings from monkey motor cortex, we found two distinct patterns
of sequential activity during different phases of the natural sleep cycle. Slow-wave sleep was associated with delta-band sequences
that resembled low-frequency activity during movement, while occasional brief bursts of theta oscillation were associated with a
different order of sequential firing. Our results are the first report of sequential sleep replay in the motor cortex, which may play an
important role in consolidation of procedural learning.
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and slow-wave sleep share a common structure with 2–3 Hz cortical
cycles during awake movements (Hall et al., 2014a). Since neural
firing rates exhibit consistent cyclical structure at these frequencies
across different awake behaviors (Churchland et al., 2012; Russo et
al., 2018), we speculated that the same sequences might also occur at
delta frequencies during cortical cycles in slow-wave sleep. In addi-
tion, we sought evidence for sequential activity at other frequencies
during other phases of the natural sleep cycle.

To examine patterns of neural correlation across the sleep cycle,
we used a wearable data logger for recording long-term multichan-
nel spiking activity in the motor cortex of monkeys during free be-
havior and natural sleep. During slow-wave sleep, the dominant
pattern was broad synchrony between neurons reflecting the slow
oscillation between cortical down and up states. However, neurons
entered the up state at slightly different times, leading to sequential

activation at low frequencies. This order re-
sembled that seen during awake behavior,
suggesting that the same intrinsic dynamics
govern both states. Outside of slow-wave
sleep, and occasionally in awake states, we
observed brief epochs of theta oscillation
during which neurons fired rhythmically in
consistent sequences. Interestingly, the or-
der of neural firing during theta bursts was
unrelated to that seen at lower frequencies,
and we suggest that this represents a differ-
ent network state that may be well-suited to
drive neuroplasticity of motor cortical
circuits.

Materials and Methods
Wearable neural data logger
We developed a custom wearable neural data log-
ger (Fig. 1). This enabled us to record long-term
neural activity during wake and sleep in nonhu-
man primates without the constraints imposed
by physical tethers or the limited transmission
ranges and battery lifetimes associated with wire-
less telemetry. The device incorporates two mul-
tichannel bioamplifiers (gain, �192; Intan
Technologies, RHD2132) configured to record
eight channels of wideband neural signals (0.1
Hz–7.5 kHz bandwidth, 20 kHz sampling rate)
and 32 channels of LFP signals (0.1–300 Hz band-
width, 1 kHz sampling rate). The 16-bit digitized
samples were sent via a serial peripheral interface
to a low-power microcontroller (STMicroelec-
tronics, STM32F407), which packaged and re-
layed the data in time-stamped 16 KB blocks to a
64 GB microSD card.

The neural logger was implemented on three
printed circuit boards (one 30 � 30 mm digital
board and two 30 � 20 mm headstages), which
were mounted inside a titanium head casing
that also contained a 3.7 V, 5200 mAh re-
chargeable battery. This system was capable of
recording for �24 h, thereby providing contin-
uous monitoring of neural data with only a
daily replacement of the microSD card and
battery.

Surgical procedures
Experiments were approved by local ethics
committee and performed under appropriate
United Kingdom Home Office licenses in ac-
cordance with the Animals (Scientific Proce-
dures) Act of 1986. Two purpose-bred female

rhesus macaques (O: 9 years old, 6.8 kg; U: 6 years old, 7.2 kg) were used
for this study. Surgeries were performed in sterile conditions under sevo-
flurane anesthesia with appropriate postoperative analgesics and antibi-
otics. The animals were implanted with custom arrays comprising 12
moveable 50-�m-diameter tungsten microwires (impedance, �200 k�
at 1 kHz) and four 16-channel linear microelectrode arrays (LMAs; Mi-
croprobe). Our moveable microwire array, described in detail previously
(Jackson and Fetz, 2007), allows electrodes to be individually positioned.
We find that these arrays yield stable recordings of the same single units
over multiple days to several months. The LMAs were incorporated to
provide depth profiles of LFPs, and comprised 16 evenly spaced contacts
(separation: 250 �m for short LMAs, 500 �m for long LMAs). Monkey O
received two such combined arrays, implanted bilaterally in the primary motor
cortex (M1). Monkey U received a single array implanted in the right M1. Im-
plantation was guided by a prior structural MRI scan and intraoperative identi-
fication of the central sulcus.

Figure 1. Wearable neural data logger. A, System schematic showing main components including two RHD2132 amplifiers
(Intan Technologies) amplifiers connecting via a serial peripheral interface (SPI) to a STM43F4 microcontroller unit (MCU; STMi-
croelectronics). B, Top, Neural data logger printed circuit boards fixed to the support cradle. Bottom right, The device fitted inside
a titanium headpiece similar to the one used in the monkeys. Bottom left, The lid holds the battery and protects the electronics and
connectors. The total weight of the electronics plus battery is 152 g.
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Additionally, Monkey U was implanted with electromyogram (EMG)
electrodes in six left-arm muscles (extensor carpi radialis, extensor carpi
ulnaris, flexor carpi radialis, flexor carpi ulnaris, biceps, triceps), com-
prising pairs of insulated stainless steel wire (Cooner, AS632) sutured to
the muscle fascia and routed subcutaneously to the head-mounted tita-
nium casing that contained connectors, electronics, and a battery.

Home-cage recordings
Overnight recordings were taken following conventional recording ses-
sions in the laboratory, 4 d per week, over a period of 5 months. Here we
report only data from recordings that captured a full night of sleep and
were not corrupted by excess noise (large artifacts or line noise associated
with broken connections). Recordings usually began in the late after-
noon and lasted on average 20.9 � 3.8 h (46 nights for Monkey O) and
20.4 � 2.3 h (99 nights for Monkey U). Variations in the recording period
are accounted by different lengths of laboratory sessions and different
start times for those sessions.

Spike sorting and spike discrimination
All analyses were performed in Matlab (Mathworks). Data were initially
decoded and saved to a computer using custom scripts. Spike discrimi-
nation was performed offline using Wave_clus (Quiroga et al., 2004),
configured with a 1– 8 kHz bandpass filter and an amplitude threshold of
four SDs above signal mean for spike detection. From the 12 microwire
electrodes, we were able routinely to discriminate several single-unit and
multiunit spikes per recording session [example spike waveforms and
interspike interval (ISI) histograms are shown in Fig. 2E]. Analysis is
based only on single units exhibiting a clear peak in the ISI histogram. We
obtained 0 –7 such units per session. For Monkey O, we recorded 70 M1
single units. For Monkey U, we recorded 184 single units.

Experimental design and statistical analysis
Assessing stability of spike waveforms. To verify that the Neurochip was
able to record the same neurons throughout these long sessions, we
assessed the similarity between the average waveforms of the first 1000
spikes and last 1000 spikes within each session using a coefficient of
determination (CoD; Eq. 1):

CoD � 1 �
�t

�s1�t� � s2(t�)2

�t
�s1�t� � s̄1)

2

where s1(t) and s2(t) are the mean waveforms at the start and end of the
session, and s̄1 is the mean value of s1(t). Note that a CoD close to 1
indicates a similar waveform, suggesting that same neuron has been
maintained throughout. To compare our experimental CoD values
against what would be expected if the neurons were not the same at the
beginning and end of recordings, we bootstrapped the distribution of
CoD values obtained by comparing spike waveforms recorded at the
beginning of sessions with spike waveforms for a different neuron at the
end of recordings. We performed 1000 iterations of this shuffling proce-
dure to test the overall significance of our mean CoD value.

Defining sleep periods. Data were down-sampled to 250 Hz before
performing a fast Fourier transform (FFT) using a 512-point (2.048 s)
window. We defined sleep periods based on the onset and offset of high-
amplitude LFP activity averaged over 5 min windows (assessed by eye
from power spectrograms; Fig. 2A), and validated these judgements in
Monkey O with simultaneously acquired video recordings. The times of
falling asleep and waking up judged from electrophysiological and video
recordings were not statistically different (paired t test, p 	 0.57 and 0.91
for sleep onset and offset respectively, n 	 22).

Defining sleep-cycle phase. Conventionally, human sleep periods have
been separated into different phases by visual examination of the EEG
(Berry et al., 2015). Different sleep phases are associated with relative
increases or decreases in power at different frequency bands of the EEG
and/or LFP (Iber et al., 2007; Destexhe et al., 1999), but there is no
consensus on the number of identifiable discrete sleep states in animals
(Kleinlogel, 1990; Gottesmann, 1992). To provide a simple and consis-
tent characterization of the sleep cycle, we used the periodic fluctuations
in the power of low-frequency (
1 Hz) LFPs (Achermann and Borbély,

1997; Steriade et al., 1993a,b; Destexhe et al., 1999) to derive a continuous
measure of sleep phase (Fig. 3A). We low-pass filtered and averaged the
low-frequency power in all channels, and applied a Hilbert transform to
extract an instantaneous phase that varied from �� to � (where zero-
phase corresponds to maximal low-frequency power, i.e., slow-wave
sleep). Sleep phase was divided into 10 equal bins for subsequent cycle-
aligned analyses of activity patterns.

Analysis of firing rates through the sleep cycle. The modulation of aver-
age firing rates binned by phase through the sleep cycle was assessed using
a circular–linear correlation coefficient (Eq. 2):

r � �rxc
2 � rxs

2 � 2rxcrxsrcs

1 � rcs
2

where rxc, rxs, and rcs are the Pearson’s correlation coefficients between,
respectively, firing rate versus cosine of sleep phase, firing rate versus sine
of sleep phase, and cosine of sleep phase versus sine of sleep phase (which
equals zero for equally spaced phase bins). Significance testing was per-
formed using the circ_stats package in Matlab.

Time– domain correlation analyses. The recording period was divided
into consecutive 5 min windows. Within each window, we calculated
spike-triggered averages (STAs) of LFPs and cross-correlation histo-
grams (CCHs) between simultaneously recorded spike trains (using 10-
ms-wide bins). CCHs were normalized and expressed as the proportion
of excess spike pairs relative to that expected for uniform firing with the
same mean rate as the actual neurons within each 5 min window. STAs
and CCHs were then averaged over all 5 min windows during wake/sleep
periods, or divided according to the phase of sleep that each window
occurred in each window. The strength of spike–LFP correlation was
measured as the peak-to-peak amplitude of the STA, while the strength of
spike–spike correlation was measured as the zero-lag amplitude of the
CCH.

Spike–field coherence. Spike times were converted into quasicontinu-
ous firing rate signals by binning spikes into 4 ms bins, corresponding
to the sampling interval of LFPs at 250 Hz. Standard coherence anal-
ysis between firing rates and LFPs, Cohspike–LFP, was calculated as the
magnitude-squared of the normalized complex cross-spectrum,
Xspike–LFP (Eq. 3):

Xspike�LFP� f � �
�Fspike� f � � FLFP

�
� f �

���Fspike� f ��2��FLFP� f ��2

Cohspike�LFP� f � � �Xspike�LFP� f ��2

where Fspike( f ) and FLFP( f ) are the 512-point FFT coefficients of the
spike rate and LFP at frequency f, * denotes complex conjugation, and the
summation is performed over all windows within a particular interval of
the sleep cycle.

Spike–spike coherence. As with spike–LFP analyses, we also calculated
the normalized cross-spectrum between the firing rates of pairs of spikes
(Eq. 4):

Xspike�spike� f � �
�Fspike1� f � � Fspike2

�
� f �

���Fspike1� f ��2��Fspike2� f ��2
.

The phase of the cross-spectrum reflects the phase difference between
neural activity. Thus, a real value implies in-phase/antiphase firing while
a purely imaginary value implies a 90° phase shift between neurons. It is
convenient to decompose the total coherence between spike trains into
real and imaginary components (Eq. 5):

Cohspike�spike� f � � �Xspike�LFP� f ��2

� Re(Xspike�spike� f �)2 � Im(Xspike�spike� f �)2

� Cohreal� f � � Cohimag� f �.

Note that statistically significant, nonzero imaginary coherence,
Cohimag( f), implies that there is a consistent phase order to neural firing
at frequency f, although that phase difference not need to be exactly 90°.
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Figure 2. Example motor cortex spike and LFP signals for a typical overnight recording. A, Time–frequency spectrogram of LFP from a single cortical electrode. B, LFP waveform for the entire
recording period. C, 4 s windows showing LFP during sleep (top trace) and awake (lower trace) periods. The two time points corresponding to these traces are indicated with red lines in B. D, The same
LFP sections as in B, after bandpass filtering (1– 8 kHz) to show action potentials. E, ISI histograms (1 ms bin width) and action potential waveforms for four single-unit and one multiunit spike trains
discriminated in a single dataset. F, Left, Average waveform of the first and last 1000 spikes for two example sessions. Waveform stability is indicated by high CoDs. Right, Histogram of CoD for all
cells (blue trace). Also shown is the surrogate distribution generated by comparing waveform similarity of different neurons in the recording (red trace).
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Nonparametric significance testing of imaginary coherence was carried
by bootstrapping the expected distribution of imaginary coherence be-
tween neurons in the absence of a consistent phase order between them.
To achieve this, we used the same Fourier amplitudes as the real data but
randomly shuffled the phases of Fourier coefficients across neurons on a
window-by-window basis. We repeated this processes 1000 times and
calculated the 95th percentile value of the resultant distribution.

Sequence similarity. The sign of the (unsquared) imaginary component
of coherence, Im[Xspike–spike( f )], reflects the order of sequential firing
between neurons. This allows comparison of the sequence structure be-
tween different behavioral states (e.g., wake vs sleep). A conserved se-
quence (e.g., 1–�2–�3) would be one in which the imaginary coherence
between all neuron pairs ([1,2], [2,1], [1,3], [3,1], [2,3], [3,2]) would
have the same sign (�, �, �, �, �, �, respectively) in both behavioral
states. Therefore, we used correlation analysis over all neuron pairs be-
tween the different states as a measure of sequence preservation. Note
that the imaginary coherence between different pairs of neurons within
the same recording cannot be treated as independent observations (triv-
ially, for sessions with two neurons Cohimag[1,2] 	 �Cohimag[2,1], while
the number of pairwise values grows combinatorially as the number of
independent neurons increases). Therefore, we used a nonparametric
approach to significance testing, based on bootstrapping the expected
distribution of correlation values after shuffling the labeling of neurons
(not neuron pairs) within the dataset corresponding to one of the behav-

ioral states. Shuffling was performed within each recording session and
across sessions that contained the same number of neuron pairs. In this
way, we were able to bootstrap the expected range of correlation values
from 1000 surrogate datasets of pairwise imaginary coherence values
with the same statistical distribution as the original data but no system-
atic relationship between behavioral conditions.

Results
Continuous long-term recording during waking and sleep
Our wearable neural data logger (Fig. 1) provided stable, long-
term recordings from multiple motor cortical electrodes in unre-
strained monkeys. Figure 2A,B shows example LFP data from a
single electrode collected over a 22 h recording period, including
awake home-cage behavior and natural sleep. At expanded time
resolution (Fig. 2C), spiking activity is evident on top of the LFP,
and this is revealed more clearly after high-pass filtering (�1 kHz;
Fig. 2D). Example waveforms and ISI histograms for all single-
unit and multiunit activity captured in this recording session are
shown in Figure 2E.

To ensure we were recording the same individual neurons
across such long sessions, we assessed the similarity between av-
erage spike waveforms at the beginning and end of recordings

Figure 3. LFP power modulation through the sleep cycle. A, LFP power 
1 Hz (top, black line) was smoothed (top, white line) and used to derive the instantaneous phase of sleep via a Hilbert
transform (bottom). B, LFP power in different frequency bands and associated sleep phase. C, LFP power averaged through the sleep cycle (normalized as a proportion of the mean power across the
sleep cycle at that frequency). D, LFP power averaged through the sleep cycle (normalized as a proportion of the mean power across all frequencies for that sleep phase).
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(Fig. 2F, left) using a CoD. Values close to 1 indicate that we were
able to maintain highly stability recordings (Fig. 2F, right). To
ensure that these high CoD values were not simply the result of
general features shared by all neurons, we calculated the distribu-
tion of CoDs between waveforms of different neurons in our
dataset. CoDs for the same neuron at the beginning/end of re-
cordings were significantly greater than CoDs between different
neurons (p 
 0.001 for both animals).

LFP oscillations across the sleep cycle
Evident in the LFP time–frequency spectrogram (Fig. 2A) is a
cyclical variation in LFP power during the night, between periods
of slow-wave activity and periods of higher-frequency oscillation.
To characterize these sleep cycles, we used the time-varying low-
frequency (
1 Hz) power (Fig. 3A) to define an instantaneous
phase that varied from �� to � (where zero-phase corresponds
to maximal slow-wave activity). The mean (�SE) duration of
sleep cycles was 60 � 3 min (Monkey O, 46 sessions) and 55 � 1
min (Monkey U, 99 sessions), which is consistent with previously
reported sleep cycles of 40 – 60 min for macaques (Campbell and
Tobler, 1984; Jackson et al., 2007). The mean power of 
1 Hz was
significantly lower in the second half of the sleep duration com-
pared to the first (paired t test, Monkey O: p 	 0.003; Monkey U:
p 	 2.20e-9), in keeping with a homeostatic decrease in sleep
pressure (Vyazovskiy et al., 2007).

Figure 3B shows example modulation of power in other LFP
bands corresponding to delta (1– 4 Hz), theta (4 –7 Hz), alpha
(7–15 Hz), beta (15–31 Hz), and gamma (�31 Hz) bands. Using
the instantaneous measure of sleep phase derived from 
1 Hz
power, we averaged the modulation of power at other frequencies
over the sleep cycle. We normalized power either as a proportion
of the average power at that frequency across the sleep cycle (Fig.

3C), or as a proportion of total power across all frequencies for
that sleep phase (Fig. 3D). These sleep cycle-averaged power
spectrograms revealed clearly the reciprocity between LFP activ-
ity at low (
4 Hz) frequencies associated with phases of maximal
slow-wave activity, and high (�7 Hz) frequencies during lighter
sleep phases. For the theta (4 –7 Hz) band, absolute power was
highest during slow-wave phases (Fig. 3C), but this represented a
smaller proportion of total power than during lighter sleep (Fig.
3D).

Single-unit firing rates and EMG activity across the
sleep cycle
The firing rates of single neurons also varied during the sleep
cycle. For the example neuron shown in Figure 4A,B, firing de-
creased during slow-wave sleep (corresponding to sleep phases
around 0). Average normalized firing rates across the sleep cycle
(using our instantaneous sleep-phase measure) revealed this to
be the dominant pattern for most neurons (Fig. 4C). High firing
rates observed outside slow-wave sleep are indicative of rapid eye
movement (REM) periods, which are characterized by brain ac-
tivity resembling the waking state but profound paralysis of mus-
cles (Brooks and Peever, 2012; Steriade and McCarley, 1990). For
Monkey U, we were able to obtain simultaneous EMG recordings
from six muscles in the left forearm during sleep via implanted
EMG electrodes. We were also able to obtain from the same mon-
key simultaneous single-unit spiking in the M1 (Fig. 4D). As
reported previously (Jackson et al., 2007), periods of high cortical
firing rates were often associated with profoundly suppressed
EMG (Fig. 4E). We identified putative REM sleep as any 30 s
periods in which firing rates exceeded average waking levels while
average rectified EMG was 
2 �V (Berry et al., 2015). Such win-
dows tended to fall more often around instantaneous sleep phase

Figure 4. Motor cortex firing rates during sleep. A, Mean firing rate for an example neuron across the duration of an entire recording (divided into 5 min windows) showing periodic firing-rate
fluctuations during sleep. B, Firing rate (calculated over 2 s windows) for the same cell across a single sleep cycle. C, Mean normalized (relative to mean rate) firing for all cells and all sessions. A
significant modulation with sleep cycle is demonstrated using circular-to-linear correlation. D, Firing of an example neuron together with simultaneously recorded EMG during the night. E, Example
of period of putative REM sleep (indicated by shading) where spike firing is at frequencies higher than mean waking rates but not associated with muscle activity. F, Top, Histogram of the
instantaneous sleep phases corresponding to all putative REM windows. Bottom, Results of manually sleep-scored sample windows taken from different sleep phases.
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values of � and �� (Fig. 4F, top). Finally, we validated our sleep-
phase measure by having 300 randomly selected 10 s sections of
LFP and EMG data from Monkey U scored manually by an expe-
rienced EEG sleep technician blinded to our results (Fig. 4F, bot-
tom). Again, REM sleep was associated with sleep phases of � and
��, while sleep phases of zero tended to be scored as stage 2 and
3 of slow-wave sleep. This further supported our use of the in-
stantaneous phase of slow-wave power as a simple yet robust
method of characterizing the sleep cycle in nonhuman primates.

Correlations between spikes and LFPs during wake and sleep
To investigate how the dynamics of the neural population varied
across the sleep cycle, we first examined the relationship of single-
neuron spiking to the LFP. Previously, we have shown that spike-
triggered average LFPs reveal a low-frequency component
[termed the spike-related slow potential (SRSP)] with a similar
shape in both waking and light-sleep states (Hall et al., 2014a,b).
Note that the biphasic shape may be due to causal filtering by the
amplifiers of a monophasic trough (Okun, 2017). SRSPs were
also evident in our overnight recordings (Fig. 5A), with a magni-
tude that varied systematically through the sleep cycle (Fig. 5B)
and was largest during slow-wave sleep. Spike-field coherence
(Fig. 5C) confirmed strong phase-locking at slow oscillation fre-
quencies during slow-wave sleep, as well as weaker coherence at
alpha frequencies (7–15 Hz) during nonslow-wave phases.

Next we examined correlations between pairs of neurons us-
ing normalized CCHs (Fig. 5D; see Materials and Methods). The
majority of zero-lag cross-correlations were positive during sleep
(100% for Monkey O; 97% for Monkey U; Fig. 5E) and signifi-
cantly greater than during waking (p 
 0.05, paired t test for both
monkeys). Correlated neural firing was also modulated across the

sleep cycle, with the highest synchrony occurring during slow-
wave sleep (Fig. 5F).

In summary, motor cortical neurons are broadly synchro-
nized during slow-wave sleep, and strongly phase-locked to low-
frequency LFP. The shape of the SRSP suggests neurons are
maximally active during the negative-going LFP. This likely re-
flects the known relationship between cortical up/down states
(characterized by high/low firing rates, respectively) and the slow
oscillation observed in the LFP (Steriade et al., 1993b, 2001).
Outside slow-wave sleep, neural activity is less synchronized, but
weakly phase-locked to LFP activity in the alpha frequency band
(7–15 Hz), which may correspond to sleep spindles.

Sequential neural firing during slow-wave sleep
Although the dominant pattern of correlation between neurons
during sleep was broadly synchronous, we examined whether
there was evidence for sequential activity at any frequency. Since
spike-triggered averages suggested that neural firing was modu-
lated with the slow LFP oscillation, we first examined the firing
rates of multiple neurons aligned to the trough of the low-
frequency LFP. The example in Figure 6A clearly shows an in-
crease in firing rates (the up state) occurring during the falling
phase of the slow LFP oscillation. Note, however, that this firing-
rate increase occurs at a slightly different latency for each neuron,
leading to a sequential transition into the up state.

A convenient way to quantify such sequential firing in the
frequency domain uses the imaginary coherence between pairs of
spike trains. Conventional coherence is expressed as the magni-
tude squared of the (complex) normalized cross-spectrum, but
this can be decomposed into the sum-squared of real (in-phase/
antiphase) component and imaginary (quadrature-phase) com-

Figure 5. Spike–LFP and spike–spike correlations during wake and sleep. A, Spike-triggered average of an LFP showing a similar profile but increased magnitude during sleep versus awake
periods. Shaded regions represent SE. B, Mean SRSP magnitude against sleep phase for all cells and all sessions for both monkeys. Horizontal lines represent mean � SEM of magnitudes during
waking. r and P values derived from circular-to-linear correlation analysis. C, Mean magnitude squared coherence between spikes and LFPs for frequencies �50 Hz as a function of sleep phase. D,
Normalized CCH for an example cell pair during all wake (red line) and sleep (black line) periods of the recording. E, Strength of zero-lag correlations between all cell pairs during wake and sleep. F,
Mean normalized CCH as a function of sleep phase.
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Figure 6. Real and imaginary coherence between cell pairs. A, Average raw (left) and filtered/normalized (right) spike firing frequency aligned to the trough of low-frequency LFP for six neurons
recorded in a single session. B, Magnitude squared, real squared, and imaginary squared coherence for an example pair of neurons during sleep (left) and waking (right). C, D, Top row, Total, real,
and imaginary squared coherence for all cell pairs averaged across the sleep cycle for both monkeys. Bottom row, Proportion of cell pairs exhibiting significant ( p
0.05) coherence at each frequency
across the sleep cycle.
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ponents. Nonzero imaginary coherence implies that for a given
frequency, the activity of one neuron consistently lags or leads the
other (although not necessarily by exactly 90°). Figure 6B shows
the decomposition of coherence into real and imaginary squared
components for an example spike pair. At very low frequencies,
coherence was dominated by a large, real component reflecting
correlated in-phase modulation. However, a peak in imaginary
coherence around 2–3 Hz revealed consistent sequential activity
in the delta band. Note that sequential firing at this frequency was
observed during both waking and sleeping states.

We next examined how real and imaginary coherence be-
tween neurons was modulated through the sleep cycle (Fig. 6C).
Real squared coherence was dominant at low frequencies and was
highest during slow-wave sleep. Additionally, during slow-wave
sleep, a statistically significant (albeit weak) imaginary compo-
nent at delta frequencies was observed, indicating sequential ac-
tivation through the slow oscillation.

Sequential firing during theta bursts
The previous analysis suggests that when averaged across the en-
tire day or night, sequential firing of neurons (indicated by imag-
inary squared coherence) is weak and limited to the delta band.
However, visual inspection of the raw data revealed occasional
distinctive bursts of highly rhythmical theta-band oscillations at
around 4 –5 Hz (Fig. 7A). During these theta bursts, multiple
neurons were phase-locked to the oscillation but fired in se-
quence with different preferred phases.

To quantify this phenomenon, we focused our analysis on
only 60 time windows (length, 2.048 s) from each recording that
had the highest relative (proportion of total) LFP power at theta
frequencies. CCHs compiled between spike trains for these theta
burst windows showed clear oscillatory correlations, with peaks
at nonzero time lags revealing sequential activation (Fig. 7B). As
before, we used the imaginary coherence between spike trains to
assess the consistency of the sequence structure within theta
bursts. Clear peaks around 4 –5 Hz were evident when we re-
stricted our analysis to only the 60 time windows characterized by
highest relative theta LFP power (Fig. 7C, left). Note that such
sequential theta firing was a relatively rare occurrence through-
out a single recording. We chose 60 windows because including
more windows tended to reduce the strength of imaginary coher-
ence at theta frequencies. When we analyzed a different subset of
60 windows ranked 121–180th in relative theta power, no imag-
inary coherence was observed (Fig. 7C, right). Analysis of
windows ranked 61–120th in relative theta power yielded incon-
sistent results with only small peaks in imaginary coherence in
some sessions.

Next, we examined whether this sequential firing phenome-
non was restricted to the theta band, or if it could be observed
during epochs of LFP oscillation at other frequencies. Therefore,
we repeated our analysis of imaginary coherence using 60 win-
dows selected to have the highest relative LFP power at a range of
frequencies �20 Hz. The results for one session are shown in the
two-dimensional color plot on the left of Figure 7D. The vertical
axis shows the LFP frequency selected, while the horizontal axis
shows the frequency of spike–spike imaginary coherence. The
dominant feature is a peak in theta coherence, occurring only
when windows are selected for high theta LFP power. As before,
this peak disappeared when windows ranked 121–181th in rela-
tive LFP power were analyzed (Fig. 7D, right). We summarized
the entire dataset by plotting the proportion of statistically signif-
icant imaginary coherence values in each frequency bin across all
sessions for both animals (Fig. 7E; see Materials and Methods).

Sequential firing during theta bursts was a consistent finding in
most sessions, occurring most commonly during windows se-
lected for high LFP power at 4 Hz. Although theta power during
these selected windows was �4 times greater than average, firing
rates were only slightly higher than those of other windows at the
same sleep phase. Theta bursts predominantly occurred during
nonslow-wave sleep around sleep phases of �� (Fig. 7F), consis-
tent with REM and/or light-sleep states, which in humans are
characterized by theta oscillation. Note, however, that a propor-
tion of theta bursts in both animals also occurred during periods
of awake recording (14% for Monkey O; 29% for Monkey U).

Sequential orders are preserved across sleeping and
waking periods
The unsquared imaginary coherence between pairs of spike trains
provides an indication of not only the strength (magnitude), but
also the order (sign) of sequential firing. This enabled us to ex-
amine whether the sequence of firing was preserved at given fre-
quencies between waking and sleep. We first assessed whether
any sequential order was preserved between the entire durations
of wake and sleep periods. Figure 8A (top row) shows example
signed imaginary coherence spectra for three cell pairs during
waking and sleep. If there were no relationship between sequen-
tial firing in wake and sleep, we would expect the sign of imagi-
nary coherence in each state to be unrelated. However, the strong
resemblance between delta frequency components in each con-
dition (negative, positive, positive, respectively, for pairs 1, 2, and
3) suggests that if pairs of cells that fire in consistent order during
sleep also tend to fire in the same order during waking.

We also calculated signed imaginary coherence spectra for
only those 60 windows (in either waking or sleep) that had the
highest relative LFP power at theta frequency (Fig. 8A, bottom
row). In this case a (negative) trough was observed for all three
cell pairs in each condition. This again suggests a conserved order
of firing between waking and sleep, but one that is different dur-
ing theta bursts to that seen at delta frequencies. Note that this
difference can also be seen by comparing the examples in Figures
6A and 7A (lower plot), which come from the same session and
have the same color-coding of neurons. The order of firing dur-
ing the up state (Fig. 6A) differs clearly from the order seen dur-
ing theta bursts (Fig. 7A, lower plot).

To assess the conservation of sequences across the entire da-
taset, we calculated the correlation between signed imaginary
coherence values in wake and sleep periods at each frequency for
all cell pairs in both animals (Fig. 8B). Because pairwise coher-
ence values are not statistically independent samples, the signifi-
cance of these correlation coefficients was tested using shuffling
(over neurons rather than neuron pairs; see Materials and Meth-
ods) to bootstrap the 95% confidence interval (gray lines).

Statistically significant similarity between waking and sleeping
sequential relationships was observed across the delta band in
both animals. The bottom panels of Figure 8B show scatter plots
of wake/sleep imaginary coherence between all cell pairs in each
animal for an example frequency of 2 Hz.

We also repeated this analysis for the subset of 60 windows in
wake and sleep characterized by high LFP theta power (Fig. 8C).
In this case, significant sequential similarity between wake and
sleep was restricted to only the theta frequency. The bottom pan-
els of Figure 8C show scatter plots of wake/sleep imaginary co-
herence between all cell pairs in each animal at 4 Hz. Finally, we
asked whether the sequence of firing during theta bursts was
related to the delta-band sequential firing during waking. Figure
8D shows the relationship between 4 Hz imaginary coherence
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Figure 7. Sequential firing during theta bursts. A, Examples of LFP theta bursts with corresponding neural spiking shown in the expanded traces below. Note that different neurons
are plotted in order of firing during the theta cycle. B, Example CCHs during periods of high LFP theta. Cross-correlations for all cells relative to a single reference cell are shown. C, Left,
Imaginary coherence between spike trains during the top 60 windows of highest LFP theta. Colored lines correspond to the CCHs shown above (Monkey O), while gray lines show all other
cell pairs in this recording. The black trace shows the average over cell pairs. Right, The corresponding analysis applied to windows ranked 121–180th in LFP theta. D, Mean imaginary
coherence for the same session computed over windows sorted according to a range of LFP frequencies (0 –20 Hz). E, Proportion of all datasets exhibiting significant imaginary coherence
at each firing-rate frequency, when calculated over windows sorted according to all LFP frequencies. Significant sequential firing at theta frequencies is a consistent finding, but only for
windows exhibiting high LFP theta. F, Left, Solid lines indicate mean theta power and mean spike firing rate as a function of sleep and high theta power. Error bars represent SD. Dots
indicate theta power and firing rate associated with the top 60 windows of highest LFP theta for an example session in Monkey U. Right, Sleep phase associated with the top 60 windows
of highest LFP theta over all sessions.
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during theta bursts in sleep and 2 Hz imaginary coherence during
the entire waking period. It can be seen that these sequential
relationships are unrelated, suggesting that delta-band sequential
firing and theta bursts reflect different phenomena.

Sequential strength is preserved through first and second
halves of the night
We were interested in whether the proportion of theta bursts
and/or the strength of sequential activity at either delta or theta
frequencies changed systematically through the night. Therefore,
we divided the night-time recording into two equal halves and
compared the average number of high theta windows that fell
within each half. In addition, we used the average imaginary co-
herence between neuron pairs as a measure of the strength of
sequential activity and compared this between first and second
halves of the night in the delta and theta bands, as well as for only
high-theta windows. We found no significant changes in any of
these metrics in either animal (Fig. 9), suggesting that sequences
occur equally often and equally strongly throughout the night.

Inconsistent sequential spike firing during sleep spindles
The LFP during lighter sleep states contained clear spectral peaks
at frequencies close to the alpha/sigma band (7–15 Hz; Fig. 3C,D)
and neural firing was phase-locked to this rhythm (Fig. 5C). We
were therefore interested in whether there was evidence for se-
quential firing associated with these putative sleep spindles. The
peak frequency was slightly different in each animal, as revealed
by the averaged power spectrum of LFPs in Figure 10A. There-
fore, to isolate epochs most likely to contain sleep spindles, we
selected windows with proportionally high power at these specific
frequencies (7.3 Hz for Monkey O;11.7 Hz for Monkey U). Figure
10B (left) shows an example event recorded from Monkey U, in
which a burst of high spindle-frequency LFP is associated with
rhythmic firing in three neurons. CCHs for 60 such windows
show that these neurons fire in sequence (Fig. 10B, right). We
applied the same approach as previously to select windows asso-
ciated with high proportional LFP power at a range of frequencies
between 7 and 15 Hz. Across all the data in Monkey U, there was
a clear peak in imaginary coherence at �12 Hz when windows
with high LFP power at this frequency were isolated (Fig. 10C).
Note, however, that the magnitude of imaginary coherence was
substantially lower than at theta frequencies, and statistically sig-
nificant in only �15% of sessions. In Monkey O, we did not
observe consistent sequential spiking at any frequency in the
spindle range. Figure 10D shows an example spindle event with
associated neural firing. In this case, the pattern of correlation
between neurons was synchronous. Analysis across all sessions
revealed no clear or significant imaginary coherence within the
spindle band. Therefore, we conclude that sequential spiking
during sleep spindles is at best a rare and inconsistent phenome-
non that varied across animals.

Figure 8. Consistent sequential firing between sleep and waking. A, Signed imaginary co-
herence spectra for three example neuron pairs during sleep (left) and waking (right) periods,
calculated for all windows (top) and during theta bursts (bottom). B, Top row, Correlation
coefficient between pairwise imaginary coherence values in wake and sleep (all windows),
across all neuron pairs for both monkeys. Gray lines indicate 95% significance thresholds

4

obtained by shuffling across neurons. Bottom row, Scatter plot of sleep versus awake imaginary
coherence at an example frequency of 2 Hz. C, Top row, Correlation coefficient between pairwise
imaginary coherence values in wake and sleep (during theta bursts), across all neuron pairs for
both monkeys. Gray lines indicate 95% significance thresholds obtained by shuffling across
neurons. Bottom row, Scatter plot of sleep versus awake imaginary coherence at an example
frequency of 4 Hz. D, Scatter plot of imaginary coherence values at 4 Hz (during theta bursts)
against imaginary coherence at 2 Hz (during all waking periods).
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Discussion
Two distinct patterns of sequential firing in motor cortex
during sleep
Despite good evidence for a role in sleep rhythms in procedural
learning (Nitsche et al., 2010; Walker et al., 2002), there have been
few detailed studies on the structure of motor cortical activity
during sleep (but see Ramanathan et al., 2015). Studies in non-
human primates have mainly focused on neuronal correlations
during awake motor tasks in which the dominant pattern is syn-
chronous discharge in the beta band (Baker et al., 2001; Jackson et
al., 2003) and sequential activity at lower frequencies (Church-
land et al., 2012), while observations of precise firing sequences
(Prut et al., 1998) have subsequently been questioned (Baker and
Lemon, 2000). Hoffman and McNaughton (2002) observed se-
quential reactivation of neural ensembles in monkeys during rest
following a maze task but did not study sleep. Our principal aim
was therefore to examine correlations between motor cortical
neurons at different frequencies across the sleep cycle, and relate
these patterns to those seen during waking behavior.

We quantified sequential activity as consistent, nonzero phase
relationships between oscillatory firing patterns (measured by

imaginary spike–spike coherence), and therefore cannot dis-
count the further presence of nonoscillatory sequences. Never-
theless, using long datasets recorded in monkeys during natural
sleep, we were able to identify two distinct patterns of sequential
activity, at delta and theta frequencies, occurring at different
phases of the sleep cycle. These may correspond to “slow” and
“fast” modes of oscillatory dynamics that have been observed
across multiple memory systems (Headley and Paré, 2017).

Delta sequences
During slow-wave sleep, we observed sequential activation in the
delta band as neurons entered cortical up states in a conserved
order. The sequential order (established by the sign of imaginary
coherence between neuron pairs) was significantly similar to that
seen at 2–3 Hz during awake behavior. The peak in imaginary
coherence around 2–3 Hz corresponds to the frequency of
movement-related cyclical dynamics observed in two-dimen-
sional projections of the high-dimensional trajectories of neural
firing (Churchland et al., 2012) and LFPs (Hall et al., 2014a).
Note that imaginary coherence and rotational state-space dy-
namics are essentially the same phenomenon; state-space rota-
tion implies that neurons are consistently active at different
phases of a cycle and therefore exhibit imaginary coherence. Con-
versely, a consistent nonzero phase difference between neurons
yields consistently rotating trajectories in state-space projections.

Previously, we have shown that the phase structure of such
cyclical LFP dynamics is conserved between movement and sleep
(Hall et al., 2014a). Our present results extend this finding by
demonstrating that the sequential structure of single neurons is
similarly constrained across waking and slow-wave sleep. The
ubiquity and consistency of these cycles further strengthens the
hypothesis that low-frequency dynamics do not reflect any par-
ticular sensorimotor context, but are instead an intrinsic prop-
erty of motor networks. We suggest that the neural activity
associated with specific behavior is constrained by this sequential
structure, which demarcates many possible patterns within
which specific neural strategies are embedded. It is interesting to
note that a similar theory has already been proposed in the sen-
sory domain (Luczak et al., 2009).

Theta sequences
Our second finding was more unexpected: namely, that motor
cortex neurons fire in strikingly regular sequences during brief
bursts of theta-band oscillations. These bursts were a rare but
robust and statistically significant phenomenon in both animals,
clearly evident in the raw recordings.

In rodents, theta oscillations are normally associated with the
hippocampus and implicated in spatial navigation and memory
(Buzsáki, 2002; Colgin, 2013). Tonic theta oscillations are observed
during exploration, and the sequence of place cell firing within the
theta cycle is thought to represent the temporal order of experience
(Gupta et al., 2012). Theta is rarely investigated in motor areas, al-
though a previous study has described sequential activity at theta
frequencies in rodent motor cortex during reaching behavior (Iga-
rashi et al., 2013), possibly reflecting the coupling of hippocampal
theta to limb movements (Semba and Komisaruk, 1978). Theta os-
cillations are also observed in the hippocampus during REM sleep
(Colgin, 2013), during which place cells fire in sequences that resem-
ble those seen in awake exploration (Louie and Wilson, 2001). Gen-
erally, theta activity is thought to have a role in facilitating
communication between areas (Jones and Wilson, 2005) and/or in
driving plastic changes to network connectivity via spike timing-
dependent plasticity (Sadowski et al., 2016).

Figure 9. No evidence for change in theta and delta sequence strength during sleep. A, Number of
high-power theta windows in first and second half of sleep. B, Mean theta imaginary squared coherence
values during theta bursts in the first and second half of sleep. C, Mean delta imaginary squared coherence
values in the first and second half of all windows during sleep. D, Mean theta imaginary squared coherence
values inthefirstandsecondhalfofallwindowsduringsleep(P valuesfrompaired t test).
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In humans, theta oscillations comprise
shorter, discrete events, and it is thought
that multiple independent mechanisms
contribute to the generation of these bursts
in the hippocampus and cortex (Cantero et
al., 2003). Theta is generally investigated in
relation to working-memory (Raghavachari
et al., 2001) or spatial-memory tasks (Ka-
hana et al., 1999; Bush et al., 2017) and not
generally associated with motor areas. Nev-
ertheless, theta burst stimulation is a reliable
way to induce plasticity in the motor cortex
(Teo et al., 2011), and some evidence sup-
ports a role for REM sleep in the consolida-
tion of procedural memory (Nitsche et al.,
2010). Theta oscillations have been ob-
served in prefrontal and anterior cingulate
cortices in humans during REM sleep by Vi-
jayan et al. (2017), who suggested roles in
consolidation of procedural and emotional
memories. Such a hypothesis is supported
by our present results, which show that cor-
tical theta in nonhuman primates is associ-
ated with sequential neuronal activity
similar to that seen in the hippocampus of
rodents. The temporal asymmetries ��50
ms that we observed in CCHs (Fig. 7B) are
within the time window known to drive
known spike timing-dependent plasticity
mechanisms in vivo (Jackson et al., 2006).
Interestingly, the sequences of neural firing
observed at theta frequencies bore no re-
semblance to that seen at lower delta fre-
quencies during waking and sleep. These
activity patterns would thus seem to reflect a
different network state and one that, specu-
latively, may have appropriate properties to
drive neuroplastic changes in motor net-
works. We were not able to observe a change
in sequential strength from the first to the
second half of the night. However, further
studies involving training on specific behav-
ioral tasks in association with long-term
neural recordings may be required to pro-
vide evidence for such a role of these theta
sequences in neural plasticity motor
learning.

Advantages of long-term recording
with a neural data logger
Chronic electrode techniques, such as our
moveable microwire arrays, enable the
same neurons to be stably monitored long
term, allowing comparison between activ-
ity patterns during both waking behavior

Figure 10. Inconsistent sequential firing during high-power alpha windows. A, Averaged power spectrum of all LFPs in both
monkeys during sleep showing peaks at different frequencies in the alpha/sigma-frequency range. B, Left, Example LFP from
Monkey U showing putative sleep spindle and concurrent spikes from three neurons. Right, Example CCH showing sequential firing
during spindles. C, Left, Mean imaginary squared coherence for all spike pairs during 60 windows with highest relative power at
frequencies from 7 to 20 Hz during sleep for Monkey U. Right, Proportion of sessions exhibiting significant imaginary coherence for
Monkey U. D, Left, LFP segment from Monkey O showing putative sleep spindle and concurrent spike firing. Right, Example CCH

4

showing only synchronous firing during spindles. E, Left, Mean
imaginary squared coherence for all spike pairs during high-
est 60 windows with highest relative power at frequencies
from 7 to 20 Hz during sleep for Monkey O. Right, Propor-
tion of sessions exhibiting significant imaginary coherence
for Monkey O.
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and natural sleep states. However, for nonhuman primates in
particular, such experiments require a wireless approach to data
recording. One method is to use radio-frequency telemetry, but
the wide bandwidth of neural data and large transmission dis-
tances within home cages necessitates high power consumption,
thus quickly consuming battery life and making long recording
impossible (Yin et al., 2014). An alternative solution, as in our
present study, is to record data locally on the implant (Mavoori et
al., 2005; Zanos et al., 2011). With the growing capacity of com-
mercial nonvolatile memory cards, this approach is increasingly
enabling many neurons to be continuously recorded via wide
band with only a daily battery recharge. The length of our multi-
neuron datasets proved particularly advantageous in this study.
For example, the theta bursts that we found to be associated with
sequential firing were observed very rarely and comprised only
0.1– 0.2% of the total duration of each recording. Such events
might easily be missed in shorter datasets. In future, the number
of channels that can be monitored simultaneously may be in-
creased (theoretically by several orders of magnitude) by incor-
porating spike sorting to compress the data before storage (Luan
et al., 2018). We hope these technologies will provide an unprec-
edented window into how firing is coordinated within distrib-
uted neural networks during waking and sleeping.
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