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Abstract

Neurons in the dorsolateral prefrontal cortex (DLPFC) encode a diverse array of sensory and 

mnemonic signals, but little is known about how this information is dynamically routed during 

decision making. We analyzed the neuronal activity in the DLPFC of monkeys performing a 

probabilistic reversal task where information about the probability and magnitude of reward was 

provided by the target color and numerical cues, respectively. The location of the target of a given 

color was randomized across trials, and therefore was not relevant for subsequent choices. DLPFC 

neurons encoded signals related to both task-relevant and irrelevant features, and task-relevant 

mnemonic signals were encoded congruently with choice signals. Furthermore, only the task-

relevant signals related to previous events were more robustly encoded following rewarded 

outcomes. Thus, multiple types of neural signals are flexibly routed in the DLPFC so as to favor 

actions that maximize reward.

INTRODUCTION

While many studies emphasized the role of dorsolateral prefrontal cortex (DLPFC) in 

working memory1–6, neurons in DLPFC also encode a highly heterogeneous set of signals, 

reflecting the stimulus features or cognitive processes related to the particular tasks 

performed by the animals7,8. DLPFC neurons can encode both the attended and remembered 

locations9,10, as well as experienced or expected outcomes11–13, temporally discounted 

values14,15, and other properties of rewards, such as their probabilities, magnitudes, and the 

effort necessary to acquire them16. While the heterogeneity of signals present in the DLPFC 

suggests that it may play an important role in integrating different sources of information to 

aid in decision-making, this region has also been shown to encode information that is 

irrelevant for the tasks that animals are trained to perform17,18. This poses a problem as to 
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how signals that are most relevant in a particular context might gain priority over other less 

relevant signals.

We trained monkeys on a probabilistic reversal task where they had to estimate the reward 

probabilities based on their recent experience, and combine them with magnitude 

information that varied independently across trials. Reward probabilities were associated 

with the colors of the targets, while their spatial positions were randomized across trials. 

Therefore, the animals had to associate previous outcomes with the colors of chosen targets 

and ignore their spatial locations. Indeed, animals displayed a strong tendency to choose the 

target colors rewarded previously. We also found that rewards in the previous trial enhanced 

the encoding of task-relevant information. In addition, only the information about the task-

relevant events in the previous trial was encoded congruently with the choice signals in the 

DLPFC. In contrast, reward did not influence the encoding of task-irrelevant signals. Thus, 

task-relevant and irrelevant signals in the DLPFC might be differentially integrated such that 

task-relevant information can bias behavior towards the selection of actions that maximize 

reward.

RESULTS

Behavioral effects of rewarded and unrewarded outcomes

The animals were trained on a probabilistic reversal task in which the magnitude of reward 

available from each target was independently varied across trials (Fig. 1a; see Online 

Methods). After achieving fixation on the central target, the animals were presented with a 

red target and a green target (target period). One of the target colors was associated with a 

high reward probability (80%) and the other was associated with a low reward probability 

(20%). After an additional delay (0.5 s), small yellow tokens appeared around each target 

indicating the magnitude of available reward (magnitude period). The animals were then 

required to shift their gaze towards one of the targets. The reward probabilities for red and 

green targets were fixed within a block and underwent un-signaled reversals so that the 

animals had to estimate them through experience.

The task required the animals to associate the colors of previously chosen targets (relevant 

information) with their outcomes and ignore previously chosen locations (irrelevant 

information), since target locations were randomized across trials. To examine how the 

animals were influenced by task-relevant versus task-irrelevant information, we examined 

the win-stay and lose-stay behavior in a color and spatial reference frame (Fig. 1b). We 

found that in 117/118 (99.2%) of the sessions there was a significant difference between 

win-stay and lose-switch behavior in terms of chosen colors. In contrast, none of the 

sessions showed a significant influence of previously chosen location. These results indicate 

that the animals correctly used task-relevant information from previous trials to make their 

choices.

To determine how the animals integrated all of the information required to make their 

decisions, we compared a series of reinforcement learning models19 that addressed three 

important issues (Supplementary Table 1; see Online Methods). First, we examined how 

rewarded and unrewarded outcomes differentially affected learning on subsequent trials. 
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Second, we examined whether the animals used information about the anti-correlated 

structure of reward probability reversals in this task. Finally, we examined whether the 

animals combined probability and magnitude information additively or multiplicatively. To 

systematically address these issues, we explored all possible models where these three 

factors were independently manipulated. The result was consistent across both animals. We 

found that the models with 2 learning rates in which target values were updated reciprocally 

(coupled) were superior in both monkeys. In both monkeys, the learning rates associated 

with rewarded trials was significantly larger than the learning rates associated with 

unrewarded trials (monkey O, α = 0.65 and 0.05; monkey U, α = 0.64 and 0.04, for 

rewarded and unrewarded outcomes, respectively). These results suggest that the animals 

updated their value functions more after rewarded trials than when after unrewarded trials, 

and that this updating took into account the anti-correlated structure of reward probability 

reversals. We also found that the additive model (P+M) provided a better fit to the data than 

the model in which they were combined multiplicatively (EV) in every session for both 

monkeys. Thus, both animals might in fact have relied more on a suboptimal additive 

strategy rather than calculating expected values. When the performance of this additive 

model was evaluated using a leave-one-session-out cross-validation, the animal’s choice 

could be predicted correctly in 91.0 ± 2.3% of the trials. For comparison, the clairvoyant 

model in which the animal always chooses the target with the higher expected value 

correctly predicted the animal’s choices in 79.8 ± 2.8% of the trials.

DLPFC activity related to multiple features

Single-unit activity was recorded from a total of 226 neurons in the DLPFC of both monkeys 

(77 neurons in monkey O; 149 neurons in monkey U). We used a multiple linear regression 

model (see Online Methods) to characterize neural signals related to various events in 

current and previous trials and to identify how task-relevant (i.e. previously chosen color, 

previous outcome) and task-irrelevant features (previously chosen target location) are 

encoded. Overall, significant proportions of DLPFC neurons encoded both task-relevant and 

task-irrelevant features related to events from the previous trial (Fig. 2a). For example, 

during the interval surrounding the target onset (–250 to 250 ms relative to target onset), the 

proportion of neurons encoding information about the outcome in the previous trial (33.2%) 

and the previously chosen color (10.6%) were significantly greater than expected from 

chance (binomial test, p<10−3). Task-irrelevant information about the previously chosen 

location was even more strongly represented in the population than information about 

previously chosen color (28.3% vs. 10.6%; 2 proportion z-test, p<10−5). Three examples of 

neurons encoding each of these features are shown in Figs. 2b–d.

Neurons in DLPFC also encoded multiple types of information presented in the current trial 

(Fig. 3a). For example, in the epoch following target onset (250 to 750 ms following target 

onset), 29.2% of neurons encoded the relative positions of the red and green targets. The 

neuron shown in Fig 3b increased its activity more when the red target appeared on the left 

than it appeared on the right (t-test, p<10–7). In the epoch following the onset of magnitude 

information (750–1250 ms following target onset), a significant fraction of neurons also 

encoded the animal’s chosen color (15.0%), chosen target location (34.1%), and reward 
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magnitudes (31.9%). Single neuron examples for each of these signals are shown in Figs. 

3c–e.

Next, we examined how signals related to the previous trial’s events were integrated with 

information from the current trial. In particular, we tested how various task-related signals 

were combined so as to allow the animal to identify the high-value target location (HVL) in 

the current trial, namely the location of the target with the higher reward probability. To 

identify the HVL, the animals need to integrate three different pieces of information: the 

previously chosen color, the previous outcome, and the configuration of target positions on 

the current trial. During the target period, we found that 18.1% (binomial test, p<10−12) of 

the neurons encoded a 3-way interaction between these three factors, and therefore provided 

the specific information about the HVL (Fig. 4a). For example, the neuron in Fig. 4b 

increased its firing rate when the animal was rewarded in the previous trial and the 

previously chosen color was currently displayed on the right. In contrast, its firing rate 

decreased if the animal was rewarded in the previous trial and the previously chosen color 

was currently on the left. During the magnitude period, activity was significantly influenced 

by the HVL in 29 neurons (12.8%), and 16 neurons among them (55.2%) showed significant 

effects of both HVL and choice, suggesting that HVL and choice signals might co-exist in 

the DLPFC.

Neurons that integrated individual elements of the HVL signal were also present. For 

example, prior to the onset of magnitude cues (–250 to 250 ms relative to target onset), 

10.2% of the neurons integrated signals related to the previously chosen color and previous 

outcome. The single neuron example shown in Fig. 4c reached its highest firing rate when 

the animal previously chose the red target and was rewarded. The integration and 

maintenance of such signals during the inter-trial interval might provide the animals with the 

information needed to determine the HVL once the target location information is presented. 

Since we defined the HVL as the 3-way interaction among the previously chosen color, 

previous outcome, and current target configurations, we also used a decoding analysis to test 

whether HVL signals could be decoded from a population of neurons with multiple main 

effects of these 3 variables (3 groups with different pairs of main effects and another group 

with all three main effects) or their 2-way interactions, but without the significant 3-way 

interaction (see Online Methods). When corrected for multiple comparisons, none of these 7 

groups showed significant encoding of HVL signals, whereas as expected, HVL signals 

were reliably decoded from the neurons with significant 3-way interactions (t-test, p<10−5).

We found that information about the previous trial’s chosen location and outcome were 

combined to indicate the previously rewarded location (PRL), even though this information 

was irrelevant in this task. In the epoch following target onset, 20.8% of the neurons 

encoded the PRL. The example neuron in Fig. 4d increased its activity more when the 

animal previously chose the right location and was rewarded. Thus, while a significant 

population of neurons in the DLPFC combined information at the single neuron level that 

was critical for performing this task (HVL), many DLPFC neurons still encoded 

conjunctions that were not useful to the animals (PRL).
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Congruency of task-relevant information and choice signals

Given that task-relevant and irrelevant variables were both encoded in the DLPFC, we tested 

how each of these signals might be combined with the signals related to the animal’s 

upcoming choice. We found that the task-relevant information (HVL) tended to be encoded 

in the same population of neurons that later encoded the animal’s upcoming choice. Neurons 

encoding HVL during the target period were more likely to encode the animal’s choice later 

during the magnitude period (24/41 neurons, 58.5%) than the neurons without HVL signals 

(53/185 neurons, 28.6%; χ2 test, p<10−3). We next compared the regression coefficients for 

HVL defined in the epoch following target onset and the regression coefficients for 

upcoming choice defined in the epoch following the onset of magnitude cues. These 

regression coefficients were strongly correlated (r=0.55, p<10−18), indicating that individual 

neurons encoded information about HVL and upcoming choice consistently (Fig. 5a). 

Namely, neurons that increased their firing rates when the HVL was displayed on the right 

also tended to increase their firing rates later in the trial when the animal made a rightward 

choice.

We also found that the DLPFC neurons encoding task-irrelevant information about the 

previously chosen target location (PRL) tended to encode the upcoming choice later in the 

trial. Neurons encoding PRL during the target period were more likely to encode the 

animal’s upcoming choice during the magnitude period (24/47 neurons, 51.1%) than those 

without PRL signals (53 neurons, 29.6%; χ2 test, p<0.01). However, there was no 

significant correlation between regression coefficients for PRL and upcoming choice (Fig. 

5b; r=0.01; p=0.93), and this was significantly smaller than the correlation for HVL and 

choice signals (p<10−10). These results revealed an important difference in the way that task-

relevant and irrelevant information are encoded. SAlthough both types of signals are present 

in the DLPFC, only task-relevant information was encoded congruently by the neurons 

encoding the animal’s choice later. However, not all task-relevant information was treated in 

the same manner. We found that the information about the difference in reward magnitude 

was not encoded consistently by the choice-encoding neurons. During the magnitude period, 

the regression coefficients for the magnitude difference and choice were not significantly 

correlated (r=0.02, p=0.78). The regression coefficients for the magnitude difference was not 

correlated with those for the HVL estimated during the target period, either (r=−0.02, 

p=0.60).

To further investigate how these signals were integrated in single neurons, we performed 

principal components analysis (PCA) on the regression coefficients (see Online Methods), 

and examined the weights assigned to the regression coefficients for the animal’s upcoming 

choice, HVL, and PRL. If these signals mix independently, we would expect the first 

principal component (PC1) to capture variability in the population activity related to only the 

variable associated with the largest changes in firing rate. We found that PC1 captured 

shared variance related to both choice and HVL (Fig. 5c). The maximum value of the 

weights related to HVL was significantly higher than observed after shuffling the 

relationship among the regression coefficients (p<10−4), but this was not true for the weights 

related to the task-irrelevant PRL (p=0.11). We repeated the same analysis on the absolute 

value of regression coefficients, and found that weights for both HVL and PRL were 
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significantly above the chance level (Fig. 5d; p<10−4). Thus, both HVL and PRL signals 

tended to combine in the same neurons that eventually signal the animal’s choice, but only 

task-relevant HVL signals and choice were encoded in the same spatial reference frame.

Effects of reward on DLPFC activity

Since we observed a strong behavioral asymmetry following rewarded versus unrewarded 

trials, we tested whether the outcome of the previous trial also asymmetrically influenced the 

way in which different task-related variables are encoded in the DLPFC. Indeed, we found 

that DLPFC neurons tended to encode the current location of previously chosen color more 

robustly following a reward. For example, the neuron shown in Figure 6a increased its firing 

rate during the target period, when the previously chosen and rewarded color was presented 

on the right. In contrast, it decreased its firing rate when the previously chosen and rewarded 

color was presented on the left. However, when the previous trial was unrewarded, the 

position of previously chosen color did not strongly affect the activity of this neuron. These 

effects were present regardless of whether the animal eventually chose the leftward or 

rightward target. Thus, the information pertaining to the location of the previously chosen 

color was more robustly encoded when the previous trial was rewarded (see also Figure 4b). 

Furthermore, this neuron also increased its firing rate when the animal chose the rightward 

target in the current trial, suggesting that the HVL and choice were encoded in the same 

frame of reference as described above.

To investigate whether these effects were consistent across the population, we applied a 

linear discriminant analysis to decode the current location of the color chosen in the last trial 

separately according to whether this was rewarded or not (Fig. 6b). During the target period, 

we found that this information was encoded more robustly following a reward in both 

monkeys (paired t-test, p<10−12). The position of the previously chosen color could not be 

reliably decoded after unrewarded trials (paired t-test, p=0.52). We also found that the 

average decoding accuracy for the color of the target chosen in the previous rewarded trial 

was significantly higher (0.52) than that in the unrewarded trial (0.50; paired t-test, p<0.05). 

We next tested whether there were any differences in the ability to decode task-irrelevant 

information, namely previously chosen target location, following rewarded and unrewarded 

outcomes, and found that there was no significant difference (Fig. 6b; paired t-test, p=0.82). 

In addition, we found a significant interaction between information type (location of 

previously chosen color vs. previously chosen location) and previous outcome (2-way 

ANOVA: p=0.01).

We also found that there was no difference in the way the neurons encoded upcoming choice 

information as a function of the previous outcome (paired t-test, p=0.69; Fig. 6b). This 

confirmed that retrospective but not prospective task information was encoded more robustly 

following a rewarded outcome. Thus, task-relevant information (position of the color chosen 

in the previous trial) was encoded in a specific manner, becoming more robust following 

rewarded outcomes, while task-irrelevant information (previously chosen locations) was not 

influenced by the previous outcome. These results mirror the asymmetry in the behavior 

reported above, indicating that rewarded outcomes encouraged the animals to choose the 
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same color as in the previous trial and also enhanced the encoding of the corresponding 

information in the DLPFC.

Anatomical distributions

Neurons encoding HVL, choice, and PRL were broadly distributed throughout the DLPFC 

explored in this study (Supplementary Figure 1). We performed 1-way MANOVA to see 

whether neurons encoding these variables were differentially distributed in either the 

anterior-posterior or dorsal-ventral axis. While neither HVL nor PRL-coding neurons 

displayed a significant tendency to be located in any particular position (1-way MANOVA: 

p=0.19 and p=0.68, respectively), we found that neurons with choice-related activity tended 

to be located slightly more posteriorly (p=0.03). Neurons that conjunctively encoded both 

choice and HVL tended to be located more posteriorly and dorsally (p<0.01) while neurons 

that conjunctively encoded choice and PRL lacked any significant bias in their spatial 

distribution (p=0.40).

DISCUSSION

While neurons in the DLPFC encoded a diverse collection of signals related to both relevant 

and irrelevant aspects of the task, we found clear differences in how this information was 

integrated at the single neuron level. DLPFC neurons tended to encode information about 

the current position of the previously rewarded target color and the animal’s upcoming 

choice congruently. In contrast, irrelevant information related to previously rewarded 

locations were encoded largely independently of upcoming choice locations. In addition, 

consistent with the animal’s behavior, we found that only the signals relevant to the task 

were enhanced following a rewarded outcome. Thus, DLPFC might be a critical node in the 

network of brain areas that allows information from a variety of sources to get dynamically 

gated and transmitted to downstream neurons responsible for controlling the animal’s 

behavior.

Behaviors related to the previous outcome

Although it is optimal to combine reward probabilities and magnitudes multiplicatively for 

calculating expected values, we found that both animals tested in this study used a heuristic 

additive strategy. While previous work has examined potentially different anatomical 

substrates for processing reward probability and magnitude information20–26, relatively little 

is known about how these signals are combined to calculate expected value. While our 

results indicate that reward probability and magnitude signals are combined in the DLPFC, 

the animals did not use this information optimally. It is possible that the task design in this 

study did not provide sufficiently strong incentive to calculate the expected value of reward 

accurately, especially given that the animals also had to estimate reward probabilities.

We also found that rewarded outcomes had a much greater influence on the animals’ 

subsequent behavior than unrewarded outcomes. This asymmetry has been reported across a 

wide range of behavioral paradigms including a competitive game13,27 and a paired 

associate task28 in primates, as well as in a free choice task using probabilistic outcomes in 
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rodents29. This suggests that rewarded and unrewarded outcomes might contribute 

differently to the neural process of updating the animal’s decision-making strategies.

Lastly, we found that animals tended to update chosen and unchosen reward probabilities 

reciprocally in our task. This has potential implications for model-free versus model-based 

reinforcement learning19,30–32. In simple model-free reinforcement learning, animals update 

only the action values associated with chosen actions. In our task, the objective reward 

probabilities were anti-correlated for the two targets. Exploiting knowledge of this structure 

would allow the animal to improve the speed and accuracy of learning by reciprocally 

adjusting the value of both targets. Different striatal and cortical circuits have been 

associated with model-free and model-based reinforcement learning30–35. In addition, the 

prefrontal cortex might also play an important role in arbitrating the competition between 

multiple learning algorithms36,37. However, how prefrontal activity related to previous 

outcomes might be utilized to adjust the estimates of multiple reward probabilities 

simultaneously is not known, and should be investigated further.

Integration of task-relevant signals in DLPFC

Decision-making in natural environments often requires animals to integrate various types of 

information over multiple timescales38–40. Indeed, persistent activity often carries 

information about actions and outcomes from previous trials in dynamic decision-making 

tasks13,39, as well as in tasks that require the use of abstract response strategies depending 

on events in the previous trial41,42. Neurons in the DLPFC are also capable of integrating 

information across multiple sensory modalities43. In the present study, we found that many 

DLPFC neurons encode signals related to task-irrelevant events in previous trials. Similarly, 

recent studies have shown that some DLPFC neurons encode task-irrelevant features of 

sensory stimuli presented previously18. Such encoding of task-irrelevant signals may be 

important for the behavioral flexibility often attributed to prefrontal cortex, since stimulus-

outcome or action-outcome contingencies can change unexpectedly in a dynamic 

environment. In particular, residual coding of task-irrelevant information in the DLPFC 

might facilitate the detection of changes in the animal’s environment. Consistent with this 

possibility, DLPFC neurons often encode task-irrelevant features during perceptual decision 

making17, 44. For example, in a recent study44, monkeys were required to integrate noisy 

sensory evidence related to the color or motion direction of stimuli during a perceptual 

decision-making task. The relevant sensory evidence was selectively integrated in the 

prefrontal cortex along the axis in the state space corresponding to the animal’s choice. In 

addition, the degree to which the neural activity in the state space deviates from the choice 

axis increased with the strength of sensory signals. The results in the present study suggest 

that during value-based decision-making task, task-irrelevant information from memory, 

such as the animal’s choices and their outcomes in preceding trials, might be encoded 

similarly in the DLPFC. In particular, DLPFC signals related to task-relevant information 

were integrated better with the choice signals than signals related to task-irrelevant 

information. Therefore, similar mechanisms might exist in the prefrontal cortex for gating 

and selection of task-relevant information regardless of whether such information originates 

from sensory stimuli or previous experience. Coding of task-relevant signals in the DLPFC 

might change adaptively during learning to promote behaviors leading to more favorable 
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outcomes in a particular context. Such flexible coding might not be unique to the DLPFC, 

since the directional tuning of neurons in the supplemental eye field (SEF) have been 

previously shown to shift while animals learn novel conditional visuomotor 

relationships45–47.

We also found that DLPFC signals related to the task relevant information, but not those 

related to task-irrelevant information, was selectively enhanced following a positive 

outcome. This tendency has been reported across a diverse set of brain regions, including 

DLPFC27,28, SEF and lateral intraparietal area27, striatum29, and hippocampus48. 

Interestingly, the nature of the behavioral task may dictate precisely what types of signals 

are enhanced. For example, we have previously shown that signals related to past actions but 

not upcoming actions were encoded more robustly following rewards in a computer-

simulated competitive game27, while another study found similar effects related to signals 

encoding upcoming actions28. In the present study, we found that signals related to neither 

past nor upcoming actions were influenced by the previous outcome. Instead, a more 

complex combination of signals corresponding to the location of the color chosen in the 

previous trial was enhanced following a rewarded outcome. This particular variable (HVL) 

indicated the position of the target with a high reward probability, and therefore was relevant 

for the task in the present study. DLPFC neurons with HVL signals tended to encode the 

animal’s choice once the information about the reward magnitude became available. 

Therefore, HVL signals might reflect the animal’s tentative choice that can be revised later. 

However, two lines of evidence suggest that HVL and choice signals are not equivalent. 

First, HVL signals were asymmetrically affected by the outcome of the animal’s choice in 

the previous trial such that information about the location of the previously chosen color was 

encoded in the DLPFC only after the rewarded trial. Second, even after the onset of 

magnitude cues, DLPFC neurons encoded HVL and choice signals concurrently, suggesting 

that the HVL signals were not merely temporary choice signals. Instead, reward-dependent 

enhancement of task-relevant signals in the DLPFC might be a general mechanism for 

learning to optimize the outcomes of the animal’s behavior.

In conclusion, these results suggest that despite the heterogeneity of signals represented in 

DLPFC, task-relevant and task-irrelevant signals might be processed differently. In addition, 

heterogeneous activity patterns in the DLPFC may actually provide computational 

advantages by broadening the possible range of information available in the DLPFC49. This 

diversity may enable a substrate for representations to be updated flexibly based on changing 

task demands49,50.

ONLINE METHODS

Animal preparation

Two male rhesus monkeys (O and U, body weight 9–11 kg) were used. Their ages at the 

time of recording were 5.8 years (monkey O) and 5.1 years (monkey U). Monkey O had 

been previously trained on a manual joystick task, but had not been used for 

electrophysiological recordings prior to this experiment. Monkey U had not been used for 

any prior experiments. Both animals were socially housed throughout these experiments. 

Eye movements were monitored at a sampling rate of 225 Hz with an infrared eye tracker 
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(ET49, Thomas Recording, Germany). All procedures were approved by the Institutional 

Animal Care and Use Committee (IACUC) at Yale University.

Behavioral task

The animals fixated a small white square at the center of a computer monitor to initiate each 

trial (Fig. 1a). Following a 0.5 s fore-period, two peripheral targets were simultaneously 

presented along the horizontal meridian. One of the targets was green, while the other target 

was red, and their positions were randomized across trials. After a 0.5 s interval (target 

period), a set of small yellow tokens were presented around each target, indicating the 

magnitude of available reward (magnitude period). The central fixation cue was extinguished 

after a random interval ranging from 0.5 to 1.2 s, chosen according to a truncated 

exponential distribution with a mean of 705 ms. The animals were then free to shift their 

gaze towards one of the two peripheral targets. After fixating the chosen target for another 

0.5 s, the animals received visual feedback. A red or green ring around the chosen target 

indicated that the animals would be rewarded, while a gray or blue ring indicated that they 

were not to be rewarded. An additional delay of 0.5 s (feedback period) separated the onset 

of the feedback ring from reward delivery. In trials where the animals were rewarded, they 

received the magnitude of juice associated with the chosen target. Each token corresponded 

to one drop of juice (0.1 ml).

The reward magnitudes associated with each target color were drawn from the following 10 

possible pairs: {1,1}, {1,2}, {1,4}, {1,8}, {2,1}, {2,4}, {4,1}, {4,2}, {4,4}, {8,1}. Each 

magnitude pair was counter-balanced across target locations, yielding 20 unique trial 

conditions (10 magnitude combinations × 2 target locations). At the beginning of a session, 

one trial condition was randomly selected without replacement from the pool of 20. After 

completing 20 trials, the set of trial conditions was replenished to assure even sampling.

The red and green targets were associated with different reward probabilities, which were 

fixed within a block of trials and alternated across blocks that consisted of 20 or 80 trials. 

One target color was associated with a high reward probability (80%), and the other was 

associated with a low reward probability (20%). These reward probabilities underwent un-

signaled reversals across blocks so that the animals had to learn them through experience. 

Target reward probabilities were anti-correlated such that the reversals for the two targets 

always occurred simultaneously. We did not find any systematic differences in either 

animal’s behavior or in neural activity related to different block lengths. Therefore, the data 

from all blocks were combined in the analyses.

Analysis of behavioral data

The optimal strategy in this task is to multiply estimated reward probabilities with 

magnitudes to calculate expected values. To investigate how estimated reward probabilities 

and magnitudes were combined, we first tested a series of models to empirically estimate 

reward probabilities. Specifically, we examined variations of reinforcement learning (RL) 

models19 in which the reward probabilities were updated using either one learning rate used 

for all outcomes, or two learning rates that were allowed to differ depending on whether the 

outcome was rewarded or unrewarded. In the RL model with a single learning rate (RL1),
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where Pc(t) is the estimated reward probability of the chosen target on trial t, α is the 

learning rate, and R(t) is the trial’s outcome on trial t (1 if rewarded, 0 otherwise). Similarly, 

in the RL model with double learning rates (RL2),

where αrew is the learning rate associated with rewarded outcomes, and αunr is the learning 

rate associated with unrewarded outcomes. δ(x)=1, if x=0, and 0 otherwise.

We also tested models to assess whether the animals might have had knowledge that the 

reward probabilities of the targets were anti-correlated. That is, we tested models where only 

the reward probability of the chosen target, Pc(t), was updated (uncoupled), against models 

where the chosen target was updated as above, while the reward probability for the unchosen 

target was determined as = 1– Pc(t).

Using these estimates of reward probabilities, we proceeded to test whether they were 

combined multiplicatively with the reward magnitude, as would be expected if the animal 

made its choice according to the expected value of reward. To achieve this aim, we directly 

compared several variations of models in which probabilities and magnitudes were 

combined either additively or multiplicatively, or both. In the additive model (P+M),

where ΔPRG(t) = Pred(t)–Pgreen(t) is the difference in estimated reward probabilities of the 

red and green targets, and ΔMRG(t) = Mred(t)–Mgreen(t) is the difference in magnitudes of 

the targets. In the multiplicative or expected-value model (EV),

where p(Red) denotes the probability of choosing the red target, and ΔEVRG(t) = Pred(t)

×Mred(t) –Pgreen(t)×Mgreen(t) is the difference in estimated expected values of the targets on 

trial t. The full model (P+M+EV) combined additive and multiplicative components:

Maximum likelihood estimates for model parameters were estimated using the fminsearch 

function in Matlab (Mathworks, Inc. MA) by combining trials across all sessions. Since the 

models differed in the number of free parameters, we used the Bayesian information 

criterion (BIC) for model comparison which penalized the use of additional parameters. We 
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tested all 12 combinations of models based on the three different factors described above, 

namely, the number of learning rates (RL1 or RL2), whether the animals exploited the 

correlation in reward probabilities (coupled or uncoupled), and how probability and 

magnitude information was combined (P+M, EV, or P+M+EV). These models were 

separately fit to the behavioral data in each monkey. We also performed a leave-one-out 

cross-validation to compare the performance of the models across individual sessions 

(Supplementary Table 1).

Neurophysiological recording

Activity of individual neurons in the DLPFC was recorded extracellularly (left hemisphere 

in both monkeys) using a 16-channel multielectrode recording system (Thomas Recording, 

Germany) and a multichannel acquisition processor (Plexon, TX). Based on magnetic 

resonance images, the recording chamber was centered over the principal sulcus and located 

anterior to the genu of the arcuate sulcus (monkey O, 4 mm; monkey U, 10 mm). All 

neurons selected for analysis were located anterior to the frontal eye field, which was 

defined by eye movements evoked by electrical stimulation in monkey O (current<50 uA). 

The recording chamber in monkey U was located sufficiently anterior to the frontal eye field, 

so stimulation was not performed in this animal. Each neuron in the dataset was recorded for 

a minimum of 320 trials (77 and 149 neurons in monkeys O and U, respectively), and on 

average for 518.8 trials (SD = 147.2 trials). We did not preselect neurons based on activity, 

and all neurons that could be sufficiently isolated for the minimum number of trials were 

included in the analyses.

Analysis of neural data

Linear regression analyses—A linear regression model was used to investigate how 

each neuron encoded both task-relevant and task-irrelevant information from the current and 

previous trials. Some of this information relied on the integration of simpler, more basic 

elements. For example, task-irrelevant information about the location of the rewarded target 

in the previous trial required knowledge of both the previously chosen location and previous 

outcome. Therefore, to analyze these higher-order features, we used the following multiple 

linear regression model which included simpler potentially confounding terms:

where CLR(t) is the position of the chosen target on trial t (1 if right, −1 otherwise), R(t) is 

the outcome on trial t (1 if rewarded, −1 otherwise), POSRG(t) is the positions of the red and 

green targets on trial t (1 if red is on the right, −1 otherwise), MR(t) and ML(t) are the 

magnitudes of rewards available from the right and left targets on trial t, respectively, and 

CRG(t) is the color chosen by the animal on trial t (1 if chose red, −1 if chose green). In this 

model, task-irrelevant information related to the previously rewarded location, abbreviated 

hereafter as PRL(t), is given by the interaction between the previously chosen location and 

previous outcome, namely PRL(t) = CLR(t–1)×R(t–1). Task-relevant information 

corresponding to the high-value target location, HVL(t), is defined as the current position of 
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the target color that was rewarded in the previous trial. This corresponds to a 3-way 

interaction between the previously chosen color, previous outcome, and current color 

locations, namely, HVL(t) = CRG(t–1)×R(t–1)×POSRG(t). To test whether signals related to 

reward magnitude and choice are encoded consistently across different DLPFC neurons, we 

have also test the same regression model in which the two terms related to reward magnitude 

(MR and ML) were replaced by their difference (ΔM = MR − ML).

Correlation and principal components analyses—As described in the Results, 

partially overlapping populations of neurons encoded task-relevant information related to 

HVL and task-irrelevant information related to PRL. To investigate how these populations 

were related to the neurons that encoded the animal’s choice location, we examined the 

correlation between the regression coefficients calculated in non-overlapping 500 ms time 

bins. The use of non-overlapping bins was necessary for avoiding biases related to 

correlations between the regressors themselves. Therefore, the regression coefficients 

corresponding to HVL and PRL were estimated for the epoch following target onset (250 to 

750 ms after target onset) while the regression coefficients for choice were taken from the 

period following magnitude onset (750 to 1250 ms relative to target onset).

We performed principal components analysis (PCA) to examine this further. PCA is an 

orthogonal linear transform used to find the axes that maximize the variance explained in the 

data. Since we found that the regression coefficients corresponding to HVL were strongly 

correlated with choice signals, it suggests that a mixture of signals related to HVL and 

choice may be present in the first principal component (PC1). Therefore, we constructed a 

matrix based on the regression coefficients derived from each variable. Rows were made up 

of each neuron, and columns were comprised of each variable’s regression coefficient as a 

function of time. We applied PCA to this matrix and plotted the time course of loadings for 

PC1 corresponding to choice, HVL, and PRL. To assess the statistical significance of 

observed loadings revealed by this analysis, we randomly shuffled labels corresponding to 

the identities of different neurons independently for different variables 10,000 times. Next, 

we determined where the maximum value corresponding to each regression coefficient was 

relative to the shuffled distribution. Values corresponding to α=0.05 were used to determine 

whether the loadings for the PC1 were statistically significant or not.

We tested whether the regression coefficients for magnitude difference (ΔM) during the 

magnitude period were correlated with those for the HVL during the target period. We also 

examined how the regression coefficients for magnitude difference and choice were 

correlated during the magnitude period. However, the value of correlation coefficient 

between regression coefficients can be biased due to the correlation between the regressor 

themselves, when they are estimated from the same data. Therefore, to test the statistical 

significance of the correlation between the regression coefficients estimated for the same 

time interval, we randomly split the trials into two halves and examined the correlation 

coefficient between the regression coefficients estimated from two separate groups of trials.

Decoding analysis—To test whether signals related to the position and color of the target 

chosen by the animal was enhanced after a reward or not, we applied a linear discriminant 

analysis with 5-fold cross-validation separately for each neuron. As in our previous study27, 
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the training set was balanced according to the current location of the previously chosen 

target, the upcoming choice location, and the previous outcome (yielding 8 different 

categories). In order to assure an unbiased classifier, we randomly removed trials until each 

category had the same number of trials. We first used the classifier to see whether we could 

extract information about HVL using the firing rates of neurons in the current trial for 

previously rewarded and unrewarded trials separately. We applied a 500 ms sliding window 

advanced in 50 ms increments from 500 ms before target onset to 1500 ms after target onset. 

Trials were randomly assigned to 5 different subgroups (for 5-fold cross validation). Each 

subgroup served as a test set, and the combined trials from the 4 remaining subgroups served 

as a training set which was used to find the firing rate boundary that maximally separated 

rightward and leftward categories. We then calculated how well we could classify the trials 

in the test set given this firing rate boundary. The process was repeated for each subgroup 

and the results averaged to obtain a time course for decoding accuracy for each neuron. 

Population means were constructed by averaging over all neurons. The same decoding 

procedure was repeated for decoding PRL and the animal’s upcoming choice. In the process 

of balancing the decoder, the number of trials available was not sufficient (<5 trials in one 

category) for a small fraction of neurons (10/226) to allow for proper cross validation. We 

removed these neurons from the analysis and ran the decoder on the remaining 216 neurons 

that survived this criterion (77/77 neurons in monkey O; 139/149 neurons in monkey U).

Statistical analysis

Binomial tests (one-tailed) were used to determine whether the fraction of neurons encoding 

a particular signal was significantly greater than chance (5%). Paired t-tests (two-tailed) 

were used to test whether means for firing rates or decoding accuracy significantly differed 

between experimental conditions. χ2-tests were used to test whether neurons independently 

encoded choice and HVL or PRL. The statistical significance of specific regressors in the 

multiple linear regression analysis was assessed with a two-tailed t-test. Data distribution 

was assumed to be normal but this was not formally tested.

All neurons that could be isolated for at least 320 trials were included in this dataset, and 

there was no blinding for data collection or analysis. Trials were pseudorandomly presented 

such that one trial condition was randomly chosen without replacement from a pool of 20 

possible conditions, balancing across target magnitudes and positions. Following successful 

completion of all trial conditions, the set was replenished to assure even sampling. The same 

size in the present study was not based on any statistical test, but is comparable to that of our 

previous studies14,35.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Behavioral task and performance. (a). Probabilistic reversal task, and magnitude 

combinations used (inset). (b) The proportion of trials in which the animal chose the same 

target color or location as in the previous trial after the previous choice was rewarded (win-

stay) or unrewarded (lose-stay) (n=45 sessions in monkey O and 73 sessions in monkey U).
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Figure 2. 
Population summary and single neuron examples for activity related to events in the 

previous trial. (a) Fraction of neurons significantly encoding outcomes, chosen locations, 

and chosen colors in the previous trial (n=226 neurons; 77 and 149 neurons from monkeys O 

and U, respectively). (b) Example neuron showing effect of outcome in the previous trial. (c) 

Example neuron showing effect of previously chosen location. (d) Example neuron showing 

effects of previously chosen color. Gray background, target period; shaded areas, ±SEM.
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Figure 3. 
Population summary and single neuron examples for activity related to events in the current 

trial. (a) Fraction of neurons significantly encoding the chosen target location, chosen color, 

target color positions, and magnitudes in the current trial (n=226 neurons). (b) Example 

neuron showing effect of target position. (c) Example neuron showing effect of chosen color. 

(d) Example neuron showing effect of chosen location. (e) Example neuron encoding reward 

magnitude of the rightward target. Same format as in Fig. 2.
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Figure 4. 
Population summary and single neuron examples related to interaction effects. (a) Fraction 

of neurons showing effects of previously rewarded location (PRL), previously chosen color 

and outcome, and their interaction corresponding to the high-value location (HVL) (n=226 

neurons). (b) Example neuron showing encoding of HVL. (c) Example neuron encoding 

previously chosen color × previous outcome interaction. (d) Example neuron encoding PRL. 

Same format as in Fig. 2.
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Figure 5. 
Congruent coding of HVL and choice. (a) Relationship between regression coefficients for 

HVL versus choice. (b) Relationship between regression coefficients for PRL versus choice 

(n=226 neurons). (c) Time course of first principal component (see Online Methods) related 

to choice, HVL, and PRL using signed regression coefficients. (d) Same result for unsigned 

regression coefficients. The arrow indicates chance levels based on 10,000 random shuffles 

(p<0.05).
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Figure 6. 
Effects of reward on task-relevant and irrelevant signals in the DLPFC. (a) Example neuron 

encoding the high-value location (HVL), shown separately for leftward and rightward 

choices in the current trial. (b) Decoding accuracy for the current location of the previous 

chosen color, previous chosen location, and current chosen location, shown separately for 

previously rewarded and unrewarded trials (n=216 neurons that survived our criterion for 

cross-validation; see Online Methods). Shaded areas, ±SEM. The scatterplots in the bottom 

display the fraction of correct classifications for each neuron during the target period. Colors 

indicate whether neither, one, or both decoding analyses applied to previously rewarded and 

unrewarded were significantly above chance (p<0.05), and large symbols indicate that the 

difference between rewarded and unrewarded trials was statistically significant (z-test, 

p<0.05).
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