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1. Introduction

The investigation of ionic liquids, which are organic salts with

low melting points, has exhibited a dramatic growth over the
past decade.[1] Since ionic liquids possess many fascinating and

unique properties, such as very low vapour pressures, high
thermal stability and excellent solvation properties, they have

been under investigation with a great deal of interest for

chemical synthesis, electrochemistry, lubrication and catalysis.
To date, the majority of the research work, particularly in the

fields of surface characterisation and ultra-high-vacuum (UHV)
studies, has been mainly focused on imidazolium-[2] and pyrro-

lidinium-based ionic liquids.[3] Pyridinium-based ionic liquids
have attracted more interest recently, mainly because of their
proposed application in many processes, such as chemical re-

actions,[4] lubricant additives,[5] CO2 capture[6] and fuel desulfuri-
zation.[7] They are considered as low-cost alternatives to imida-
zolium-based ionic liquids.[8] Compared to imidazolium-based
ionic liquids, pyridinium-based ionic liquids exhibit better ther-

mal stabilities,[9] higher viscosities,[7] slightly lower densities and

similar surface tensions.[10] The excellent thermal stability is the

huge advantage of pyridinium-based ionic liquids,[9, 11] which
also suggests that they may be investigated using a wide

range of UHV techniques.
X-ray photoelectron spectroscopy (XPS) is now accepted as

a reliable method for the characterisation of ionic-liquid-based

systems.[2h] The focus of XPS studies is mainly the confirmation
of the surface composition of ionic liquids and the identifica-

tion of the electronic environments of certain elements present
in the sample.[12] Binding energies, which give the experimen-

talist a measureable indicator of charge density, and hence
charge distribution, can be easily determined for simple ionic
liquids, mixtures and also for solutions, as long as the solute

concentration is sufficient to be detectable by XPS.[2g, i–k, 3a, 13] In
particular, cation–anion interactions of both simple ionic liq-
uids and mixtures have been probed by using XPS.[2g, k, 3a] These
results have successfully been correlated with NMR spectrosco-

py[2g] and Kamlet–Taft parameters[2i, 14] to aid in understanding
the ionic liquid properties. Surface charging, as a result of the

outgoing photoelectron flux, has been noted in the measure-
ment of XP spectra of more viscous ionic liquids, and hence
the development of robust fitting models and reliable charge-

correction strategies has become essential to allow an inter-
system comparison.[2i,j, 3a]

In this study, we investigate eight 1-alkylpyridinium-based
ionic liquids ([CnPy][A]) by using XPS (see Table 1). We also in-

vestigate a mixture. A reliable fitting model is developed for

the C 1s region of [CnPy][A] , which applies to all ionic liquids
studied here—and that we believe will apply to all ionic liquids

of this type. Shake-up/off phenomena are determined for both
C 1s and N 1s spectra. Cation–anion interactions are investigat-

ed for both simple ionic liquids and an ionic liquid mixture;
the effect of the anions on the electronic environment of the
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cation is explored in detail. Throughout the study, comparisons
are made to imidazolium-based and pyrrolidinium-based ionic

liquids. In particular, a detailed comparison is made between
[C8Py][A] and 1-octyl-3-methylimidazolium ([C8C1Im][A]) and 1-

octyl-1-methylpyrrolidinium ([C8C1Pyrr][A]) based analogues,
where A is common for all samples.

Experimental Section

Materials

All chemicals were obtained from Sigma–Aldrich or Alfa Aesar and
were used as received. Lithium bis[(trifluoromethane)sulfonyl]imide
(3 m) was used as received. All the ionic liquids investigated herein
were prepared following established synthetic protocols,
[C8Py]Br,[15] [C8Py][PF6] ,[15] [CnPy][Tf2N],[8a] where n = 2, 4, 6, 8, 10 and
12. The structures of the individual cations and anions investigated
in this study are shown in Table 1.

Unless otherwise stated, all ionic liquids were characterised by 1H
and 13C NMR spectroscopy. The spectra were recorded on a Bruker
DPX-300 spectrometer at 300 and 75 MHz, respectively, as solu-
tions in CDCl3 or [D6]DMSO. If anion exchange was one of the syn-
thetic steps, ion chromatography showed that the halide concen-

tration was <10 ppm. No halide signal was observed by XPS analy-
sis, that is, the concentration was below the limit of detection in
every case. Full data for all the materials studied in this work ap-
pears in the Supporting Information.

XPS Data Collection

All XP spectra were recorded using a Kratos Axis Ultra spectrome-
ter employing a focused, monochromated Al Ka source (hn=
1486.6 eV), hybrid (magnetic/electrostatic) optics, hemispherical an-
alyser and a multi-channel plate and delay line detector (DLD) with
an X-ray incident angle of 308 and a collection angle of 08 (both
relative to the surface normal). The X-ray gun power was set to
100 W. All spectra were recorded using an entrance aperture of
300 Õ 700 mm with a pass energy of 80 eV for survey spectra and
20 eV for high-resolution spectra. The instrument sensitivity was
7.5 Õ 105 counts s¢1 when measuring the Ag 3d5/2 photoemission
peak for a clean Ag sample recorded at a pass energy of 20 eV and
450 W emission power. Ag 3d5/2 full-width-half-maximum (FWHM)
was 0.55 eV for the same instrument settings. Binding-energy cali-
bration was made using Au 4f7/2 (83.96 eV), Ag 3d5/2 (368.21 eV)
and Cu 2p3/2 (932.62 eV). The absolute error in the acquisition of
binding energies was �0.1 eV, as quoted by the instrument’s man-
ufacturer (Kratos). Consequently, any binding energies within

Table 1. Structure of the ionic liquids investigated in this study.

Abbreviation Structure Name

[C2Py][Tf2N] 1-ethylpyridinium bis[(trifluoromethane)sulfonyl]imide

[C4Py][Tf2N]
1-butylpyridinium bis[(trifluoromethane)sulfonyl]imide

[C6Py][Tf2N] 1-hexylpyridinium bis[(trifluoromethane)sulfonyl]imide

[C8Py][Tf2N] 1-octylpyridinium bis[(trifluoromethane)sulfonyl]imide

[C10Py][Tf2N] 1-decylpyridinium bis[(trifluoromethane)sulfonyl]imide

[C12Py][Tf2N] 1-dodecylpyridinium bis[(trifluoromethane)sulfonyl]imide

[C8Py]Br 1-octylpyridinium bromide

[C8Py][PF6] 1-octylpyridinium hexafluorophosphate

[C8C1Pyrr][Tf2N] 1-octyl-1-methylpyrrolidinium bis[(trifluoromethane)sulfonyl]imide

[C8C1Im][Tf2N] 1-octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide
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0.2 eV can be considered the same, within the experimental error.
Charge neutralisation methods were not required (or employed) in
the measurement of these data. Sample stubs were earthed via
the instrument stage using a standard BNC connector.

Samples were prepared by placing a small drop (�20 mg) of the
ionic liquid into a depression on a stainless-steel sample stub (de-
signed for powders) or on a standard stainless-steel multi-sample
bar (both Kratos designs). The ionic-liquid samples were presented
as thin films (approx. thickness 0.5–1 mm), thereby avoiding experi-
mental complications associated with variable sample height. Initial
pumping to high-vacuum pressure was carried out in a preparation
chamber immediately after thin film preparation to avoid signifi-
cant absorption of volatile impurities. Pumping of ionic liquids was
carried out with care as the high viscosities associated with these
samples meant that significant bubbling due to removal of volatile
impurities was observed. The pumping down process was conse-
quently carried out slowly to avoid contamination of the UHV
chamber by bumping/splashing of the ionic liquid samples. The
preparation chamber pressure achieved was �10¢7 mbar. Pumping
times varied (1–3 hrs total) depending upon the volume, volatile
impurity content and viscosity of the sample, that is, viscous ionic
liquids were found to require longer pumping times. The samples
were then transferred to the main analytical vacuum chamber. The
pressure in the main chamber remained �1 Õ 10¢8 mbar during all
XPS measurements, suggesting that all volatile impurities, such as
water, were removed, leading to high-purity samples.[16] For clarity,
a full description of the data analysis is included below; full experi-
mental details and a discussion of a modified fitting procedure are
also included.

Information Depth of XPS

The information depth (ID) of the XPS experiments may be defined
as the depth, within the sample, from which 95 % of the measured
signal will originate. The ID is assumed to vary mainly with the
cos q, where q is the electron emission angle relative to the surface
normal. If we assume that the inelastic mean free path (l) of pho-
toelectrons in organic compounds is of the order of ~3 nm, at the
kinetic energies employed here, we can estimate the ID in this ge-
ometry. If q= 08, ID = 7–9 nm. Consequently, these data may be
considered as representative of the bulk composition and do not
reflect any local enhancements of concentration near the surface.

XPS Data Analysis

For data interpretation, a two
point linear background subtrac-
tion was used; for [Tf2N]-based
ionic liquids, the C 1s XP spectra
were subtracted using a linear
spline to allow for the CF3 substitu-
ent. Peaks were fitted using GL(30)
lineshapes; a combination of
a Gaussian (70 %) and Lorentzian
(30 %).[17] This lineshape has been
used consistently in the fitting of
XP spectra, and has been found to
match experimental lineshapes for
ionic-liquid systems.[2i, 3a] The
FWHM of each component was ini-
tially constrained to 0.8�FWHM�
1.5 eV. All XP spectra where n = 8

were charge-corrected by setting the binding energy of the ali-
phatic C 1s photoemission peak (Caliphatic 1 s) equal to 285.0 eV. For
all the other values of n (i.e. when n = 2, 4, 6, 10 and 12), the spec-
tra were charge-corrected by setting the measured binding energy
of the cationic nitrogen photoemission peak (Ncation 1 s) equal to
402.6 eV.[2g, i, 3a, 12a, 18] Relative sensitivity factors (RSF) were taken
from the Kratos Library (RSF of F 1s = 1) and were used to deter-
mine the atomic percentages.[19] It should be noted that there was
no evidence of either Li or halide contamination carried over from
ion-exchange chemistries employed in synthesis, or additional hy-
drocarbon/oxygen impurities in the XP spectra of any of the ionic
liquids studied herein. The experimental stoichiometries, deter-
mined from high-resolution XP spectra for each of the ionic liquids
studied herein, were within the experimental error of nominal stoi-
chiometries determined from the empirical formulae of the
sample.

2. Results and Discussion

2.1. The Electronic Environment of Carbon: Fitting Model

The C 1s XP spectra of [CnPy][Tf2N] are generally characterised
by two distinct photoemission envelopes. The largest one ap-

pears to be composed of at least three identifiable contribu-
tions, which can be identified as distinct sets of contributions

from the C atoms nearest to the charge carrier, that is, three

different chemical environments within the pyridinium ring.
The first component, Chetero, is the carbon bonded to nitrogen;

all [CnPy]+ contain three such atoms, labelled (C2 + C6 + C7).
The second component, Cinter, corresponds to the remaining

three carbons within the pyridinium head group, labelled (C3 +

C4 + C5), the final and largest component, Caliphatic, corresponds

to the sp3 hybridised carbon that is bonded to carbon and hy-

drogen only; the size of this component varies depending on
the magnitude of n (see Figure 1 a [C8Py][Tf2N] as an example).

It must be noted that the shake-up/off phenomenon is
more pronounced in the carbon (taking [C8Py][Tf2N] as an ex-

ample, see Figure 1 a) and nitrogen regions (see Figure 1 b) for
pyridinium-based ionic liquids. The observation of a shake-up

satellite is due to the p–p* excitation of a valence electron

after the photoemission involved in multiple bonding and/or
aromatic compounds.[17, 20] During this process, the photoelec-

tron will lose some of its kinetic energy, and thus shows
a higher binding energy. Moreover, in a process similar to

Figure 1. a) C 1s and b) N 1s XP spectra with component fittings and shake-up of [C8Py][Tf2N]. All XP spectra were
charge-corrected by referencing the aliphatic C 1s component (Caliphatic 1 s) to 285.0 eV.
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a ‘shake up’, the valence electrons can be completely ionised,
that is, excited into an unbound continuum state. This ‘shake-

off’ process will leave an ion with vacancies in both the core
level and the valence band. During the ‘shake-off’ process, no

apparent signal will be observed, as the photoelectron will
lose most of its kinetic energy and thus contribute to the in-

elastic baseline.[21] Shake-off occurs parallel to the shake-up
process.[22] Both shake-up and shake-off result in an intensity
loss of the main photoemission peaks of 5–20 %.[23] The per-
centage of intensity loss depends on both the element and
the chemical environment itself.[24]

For [C8C1Im][Tf2N], shake-up/off is obscured by the more in-
tense signal from the photoelectrons of the -CF3 group[2i] (see

Figure S10). For [C8C1Pyrr][Tf2N], no shake-up/off phenomenon
could be observed, as there is no multiple-bond character

present, and therefore, the positive charge is localised only on

the nitrogen atom (see Figure S11). For [C8Py][Tf2N], it is appar-
ent that a shoulder can be observed, which overlaps with the

signal from the -CF3 group (Figure 1 a). The shake-up/off reduc-
tion was determined for a series of pyridinium-based ionic liq-

uids in this study, see Table 2. An average value of 10 % was
used to describe the shake-up/off losses and ensured that the

area ratios of the components in the C 1s fitting model were

accurate.

Taking into account the 10 % shake-up/off loss, it is finally
concluded that the area ratios of the three [CnPy]+-based com-
ponents were constrained to Chetero :Cinter :Caliphatic = 2.8:2.7:(n-1),
when n = 2–12. The FWHM of Chetero and Cinter were constrained

to be equal to each other. It should be noted that the FWHM
ratio of (Caliphatic 1s):(Chetero 1s) was 1.08, when n = 2–12, which il-

lustrates that all carbon atoms labelled as Caliphatic are in very
similar environments. Application of these constraints gave rise

to a satisfactory fit when n = 2–12.

For [C8Py][PF6] (see Figure S7) and [C8Py]Br (see Figure S8),
three [CnPy]+ components were also employed, although only

two distinct peaks could be observed for [C8Py]Br. The key as-
sumption for a satisfactory three-component fitting model was

that the FWHM ratio of (Caliphatic 1 s):(Chetero 1 s) was 1.08, as de-
termined for [CnPy][Tf2N], where n = 2–12 (see Figure S1–S6).

2.2. The Electronic Environment of Nitrogen and Other
Anion Regions

The N 1s XP spectra of [CnPy][Tf2N], where n = 2–12, contain

two peaks (Figure 2), whereas the N 1s XP spectra of [C8Py][PF6]
and [C8Py]Br both contain one peak only (see Figures S7 and

S8). The peak at higher binding energies, that is, 402.4 to
402.7 eV, can therefore be assigned to the nitrogen atom from
the pyridinium headgroup, and is labelled Ncation 1 s. The peak

at lower binding energy for [CnPy][Tf2N], ~399.5 eV, can be as-
signed to the nitrogen atom from the [Tf2N]¢ anion, labelled

Table 2. Shake-up/off of C 1s and N 1s photoelectron losses compared to
all carbon and nitrogen atoms within the pyridinium headgroup, respec-
tively.

Cation Anion Shake-up/off % per Py C
atom

Shake-up/off % per Py N
atom

[C2Py]+ [Tf2N]¢ 12.3 9.7
[C4Py]+ [Tf2N]¢ 10.9 10.0
[C6Py]+ [Tf2N]¢ 9.7 10.2
[C8Py]+ [Tf2N]¢ 10.0 9.8
[C10Py]+ [Tf2N]¢ 9.3 8.4
[C12Py]+ [Tf2N]¢ 10.3 9.7
[C8Py]+ [PF6]¢ 8.5 5.7
[C8Py]+ Br¢ 9.7 8.4
Average 10.1 9.0

Figure 2. XP spectra for [CnPy][Tf2N] where n = 2–12 for: a) C 1s, b) N 1s. The
intensities are normalised to the intensity of the Ncation 1s fitted peak for
[C8Py][Tf2N]. For n = 8, the XP spectra were charge-corrected by referencing
the aliphatic C 1s component (Caliphatic 1s) to 285.0 eV. For other n values, the
XP spectra were charge-corrected by referencing the Ncation 1s to the value
for n = 8. c) Binding energy shifts relative to [C8Py][Tf2N] as a function of the
aliphatic chain length, n = 2–12. It should be noted that the experimental
error associated with the measurement of binding energies is of the order
�0.1 eV.
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Nanion, as assigned previously for [CnC1Im][Tf2N] and [CnC1Pyrr]
[Tf2N] ionic liquids.[2i, 3a, 18, 25] As the binding energy of Ncation 1s is

far greater than that of Nanion 1s, the nitrogen atom of the pyri-
dinium cation is more electropositive than the nitrogen atom

of the [Tf2N]¢ anion. The peak intensity ratio is ~0.9:1 for all
[CnPy][Tf2N] ionic liquids, considering the shake-up/off loss.

The fluorine, oxygen and sulfur regions of [CnPy][Tf2N] all
show one electronic environment, as expected based on previ-
ous XPS studies of [CnC1Im][Tf2N] and [CnC1Pyrr][Tf2N] (see Fig-
ures S1 to S6).[2i, 3a] The six fluorine atoms are indistinguishable
by XPS, and the same is true for the four oxygen atoms and
two sulfur atoms. It must be noted that the observed double-
peak structure of the S 2p level is due to spin-orbit splitting

into the S 2p1/2 and S 2p3/2 levels (in a ratio of 1:2). For [C8Py]
[PF6] , the F 1s XP spectrum gives a single peak, showing that

all six fluorine atoms are indistinguishable by XPS (see Fig-

ure S4). The P 2p spectrum shows two peaks due to the spin-
orbit splitting, and only one phosphorus electronic environ-

ment was observed. For [C8Py]Br, the Br 3d spectrum shows
two peaks in a ratio of 2:3; these peaks are also due to the

spin-orbit splitting (see Figure S8). Therefore, there is only one
bromide electronic environment present, as expected.

2.3. Measurement of Accurate Binding Energies and the
Effect of the Aliphatic Chain Length on the Binding Energies

In the previous section, we described the development of a reli-

able fitting model for the C 1s region of ionic liquids of general

formula [CnPy][A] . The binding energies obtained for the
Caliphatic 1s component of this fit can be used as an internal

charge referencing by setting the observed Caliphatic 1s compo-
nent equal to 285.0 eV for [C8Py][A] . All other regions are sub-

sequently shifted by the same amount as the Caliphatic 1s compo-
nent. The binding energy of Ncation 1s for n = 8 (402.6 eV) can

then be used to charge-correct all [CnPy][A] ionic liquids,

where n = 2, 4, 6, 10 and 12, as the electronic environment of
Ncation is not expected to vary with n, as long as [A]- is un-

changed. Figures 2 a and 2 b show the charge-corrected C1s
and N 1s XP spectra for [CnPy][Tf2N]. All the binding energies

remain constant as n varies, apart from the Caliphatic 1s compo-
nent (Figure 2 c). The conclusion is that the length of the ali-

phatic chain makes little or no difference to the interaction of
the charged moieties of the cation and anion, and therefore,

to their electronic interaction. For n = 6, 8, 10 and 12, the bind-
ing energies of Caliphatic are the same, within the error of the ex-
periment. This observation shows that the Caliphatic component

for these ionic liquids is a good representation of aliphatic
carbon. For n = 4, clearly the binding energy of the Caliphatic 1s

component increases significantly relative to n = 8, indicating
that the three aliphatic carbons for [C4Py][Tf2N] are much more

electropositive than the aliphatic carbon atoms further away

from the nitrogen atom. For n = 2, as the only aliphatic carbon
is bonded b to the nitrogen atom within the cation head-

group, it is obvious that this carbon is more electron-poor and
therefore shows a higher binding energy. This difference is due

to the relative distance of the carbon atoms from the electro-
positive nitrogen atom. Therefore, Caliphatic 1s for n = 2 and 4

cannot be used for satisfactory charge correction, whereas
Caliphatic 1s for n�6 can be used. Throughout this contribution,

the binding energy of Caliphatic 1s for n = 8 was set to 285.0 eV.
As the binding energy for Ncation 1s is unaffected by n, this

value (402.6 eV) was used for charge correction of [CnPy][Tf2N],
where n = 2, 4, 6, 10 and 12. This procedure has been shown
to be robust for all families of ionic liquids when the alkyl sub-

stituents on the charge carriers are large (i.e. when
n�8).[2i,j, 3a, 14] All charge-corrected binding energies are present-

ed in Table S1.

2.4. Simple [C8Py][A] Based Ionic Liquids and Ionic-Liquid
Mixtures

Previous studies have suggested that cation–anion interactions
can be investigated by XPS.[2g, j,k, 3a] The binding energies of

Chetero 1s and Ncation 1s have been shown to correlate with the
anion basicity. For low-basicity anions such as [Tf2N]¢ , the

binding energies are relatively high, meaning that the cation is
relatively electropositive. Clearly, low-basicity anions transfer

less charge to the cation; the opposite is true for high-basicity

anions such as Cl¢ , Br¢ and [OAc]¢ .
The effect of the anion on the charge transferred to the

cation has been investigated for three [C8Py][A] ionic liquids„
where [A]¢= [Tf2N]¢ , [PF6]¢ and Br¢ (Figure 3). The binding en-

ergies of the N 1s and C 1s XP spectra are charge-corrected to
Caliphatic 1s = 285.0 eV. The areas are normalised to the area of

Figure 3. XP spectra for [C8Py][Tf2N], [C8Py][PF6] and [C8Py]Br of a) C 1s,
b) N 1s. The intensities are normalised to the intensity of the Ncation 1s fitted
peak for [C8Py][Tf2N]. All the XP spectra were charge-corrected by referenc-
ing the aliphatic C 1s component (Caliphatic 1s) to 285.0 eV.
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Ncation 1s. The binding energies for both Ncation 1s and Chetero 1s
follow the trend: [Tf2N]¢> [PF6]¢>Br¢ . The higher binding

energy corresponds to a more electropositive cation. There-
fore, more charge is transferred from the anion to the cation

for the more basic anion, Br¢ . These results are in agreement
with those for imidazolium-[2g, j] and pyrrolidinium-based ionic

liquids.[3a]

Mixtures of ionic liquids have previously been studied by
using XPS to investigate both surface composition[26] and bind-

ing energy shifts.[2k, 3a]

A 1:1 mixture of [C8Py][Tf2N]:[C8Py]Br was chosen because
firstly the simple ionic liquids have been studied, and secondly,
the anions have relatively different basicities. The differences in

basicity for the two anions are sufficiently large so that the dif-
ferences in binding energies of Chetero 1s and Ncation 1s are larger

than the magnitude of the error of the experiment. The same

cation was chosen to keep the number of variables at a mini-
mum and enable relatively simple and accurate charge refer-

encing. The XP spectra for C 1s, N 1s and Br 3d5/2 are given in
Figure 4. The binding energies of Chetero 1s and Ncation 1s for the

mixture are different to those of the simple ionic liquids, in be-
tween those for the two simple ionic liquids (Figures 4 a and

4 b). However, the peaks for Nanion 1s and Br 3d5/2 show no bind-

ing energy deviations for the mixture from the simple ionic liq-
uids (Figures 4 b and 4 c). These results show that the electron-

ic environment of the cation can be tuned to a desired value
by varying the amounts of different anions. However, within

the error of the experiment, one anion has no effect on anoth-
er anion, if the cation is the same. It is vital to point out that

the FWHM of Ncation 1s for the mixture is similar to that for the

simple ionic liquids. This observation demonstrates that for the
mixture, the cation is in one electronic environment, not a mix-

ture of two electronic environments (such a scenario would
likely give rise to a single peak with a significantly larger

FWHM than those of the simple ionic liquids). The conclusion
is that the ionic liquid mixture contains intimate mixtures of

cations and the different anions, not pockets of the cation and

one type of anion, with other pockets of the cation and the
other anion. These results agree with those obtained for pyrro-

lidinium-based ionic liquids.[3a]

Overall the results for both simple [C8Py][A] and the mixture
show that the anion can significantly influence the electronic
environment of the cation. This knowledge can be used to

tune the electronic environment of the cation, in particular by
selection of anions and using the appropriate mixture.

2.5. Comparison of [C8Py][A] versus [C8C1Pyrr][A] and
[C8C1Im][A]

Comparisons can now be made amongst binding energies of

pyridinium-based ionic liquids, pyrrolidinium-based ionic liq-

uids and imidazolium-based ionic liquids. A visual comparison
of [C8Py][Tf2N], [C8C1Pyrr][Tf2N] and [C8C1Im][Tf2N] for all regions

is given in Figure 5. The XP spectra are all charge-corrected to
the binding energy of Caliphatic 1s, and are normalised to the

area of the F 1s peak, as all ionic liquids contain six fluorine
atoms. The first observation is that the relative areas of the

components agree well, for example, S 2p, O 1s, CCF3 1s, Nanion 1s,
confirming the validity of normalising the areas of the XP spec-

tra. The second, more important, observation is that the bind-
ing energies of all the anion components match, within the

error of the experiment (Figures 5 a–e and Table S1). For exam-
ple, F 1s for [C8Py][Tf2N] is 688.8 eV, and for [C8C1Pyrr][Tf2N] and

[C8C1Im][Tf2N] 688.9 eV and 688.8 eV, respectively. In addition,

for [C8Py][PF6] , [C8C1Pyrr][PF6] and [C8C1Im][PF6] , the binding
energies of the P 2p3/2 and F 1s components are the same

(136.6 eV and 686.6/686.6/686.7 eV, respectively, see Table S1).
These observations indicate that changing the cation of the

ionic liquid has relatively little effect on the electronic environ-
ment of the anion.

Figure 4. C 1s, N 1s and Br 3d for a 1:1 [C8Py][A] mixture of [C8Py][Tf2N] and
[C8Py]Br. The intensities are normalised to the intensity of the Ncation 1s fitted
peak for [C8Py][Tf2N]. All the XP spectra were charge-corrected by referenc-
ing the aliphatic C 1s component (Caliphatic 1s) to 285.0 eV.
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However, there are significant differences in spectra when

comparing the binding energies of the peaks derived from the
cations, see Figures 5 a and 5 b. The binding energy of the

Ncation 1s for [C8Py][Tf2N] is 402.6 eV, which is the same as that
obtained for [C8C1Pyrr][Tf2N] (402.7 eV), within the experimen-
tal error, but different from that obtained for [C8C1Im][Tf2N]

(402.1 eV). In general, the Ncation 1s binding energies for [C8Py]
[A] and [C8C1Pyrr][A] are higher than those for [C8C1Im][A]

(0.5�0.1 eV) when [A]¢ is the same, see Table S1. The nitrogen
atom in [C8C1Pyrr][A] is in sp3 hybridisation whereas it is in sp2

hybridisation in the cases of [C8Py][A] and [C8C1Im][A] . The sim-
ilar binding energies measured for [C8C1Pyrr][Tf2N] and [C8Py]

[Tf2N] indicate that the nitrogen atoms, regarding hybridisa-
tion, are still in similar partial-charge environments. Since there
are two nitrogen atoms within the imidazolium cation head-

group, the partial positive charge over each atom is lower,
which gives rise to a noticeably higher electron density at each

atom, and thus to a lower binding energy. The binding ener-
gies of the carbon atoms within the cations can also be com-

pared. It is evident that [C8C1Im][Tf2N] contains a cation-based

C 1s component with a higher binding energy than those ob-
served for [C8C1Pyrr][Tf2N] and [C8Py][Tf2N] (Figures 5 a and 5f).

This component for [CnC1Im][A] has been identified as the
carbon within the imidazolium cation that is bonded to two ni-

trogen atoms, that is, at the C2 position.[2i, 12a] The C2 atom of
[CnC1Im]+ is more electron-poor than the Chetero atoms of

[CnC1Pyrr]+ and [CnPy]+ when
[A]¢ is common to all samples.

For example, the binding energy
of the C2 component for

[C8C1Im][Tf2N] is 287.7 eV,[2i]

whereas the binding energies of

Chetero 1s for [C8C1Pyrr][Tf2N] and
[C8Py][Tf2N] were found to be
286.8[3a] and 287.0 eV, respective-

ly. The similar binding energies
of the Chetero 1s in both [C8C1Pyrr]
[Tf2N] and [C8Py][Tf2N] further
supports the hypothesis that the

Chetero atoms of [C8C1Pyrr][Tf2N]
and [C8Py][Tf2N] are in very simi-

lar partial-charge environments.

However, the binding energies
of the Cinter atoms of [C8C1Pyrr]

[Tf2N] and [C8Py][Tf2N] are very
different from each other, that is,

285.5 and 286.1 eV respectively.
This observation illustrates that

the Cinter atoms for [C8Py][Tf2N]

are in a more electron-poor envi-
ronment due to the sp2 hybridi-

sation and thus the delocalisa-
tion of the positive charge

within the [C8Py]+ cation
headgroup.

Pyrrolidinium-based ionic liq-

uids have been investigated
with a great deal of interest for the use in electrochemistry

due to their greater stability when compared to imidazolium
analogues, in terms of cation electrochemistry reduction.[27]

Furthermore, pyridinium-based ionic liquids have also been re-
ported to be more thermally stable when compared to imida-

zolium analogues.[10] The differences in stability can be correlat-

ed to the ease of removal of the C2 proton within the imidazo-
lium cation.[28] The XPS results here confirm that the C2 carbon

within the imidazolium cation is more electron-poor than any
carbon atoms found within the pyrrolidinium and pyridinium

cations. Therefore, in the electrochemistry study, the C2 proton
can be easily removed. These results support the conclusion

that pyridinium-based ionic liquids are more stable than their
imidazolium analogues.

3. Conclusions

We have successfully measured the XP spectra of a range of

pyridinium-based ionic liquids, varying both the cation aliphat-

ic chain length and the anion. The electronic environments of
all the elements were identified. A reliable fitting model for the

carbon 1s region of the pyridinium-based ionic liquids is pro-
duced taking into account the shake-up/off phenomena. The

binding energy of the aliphatic carbon (Caliphatic 1s) moiety was
determined with high confidence. The charge-corrected bind-

Figure 5. XP spectra of [C8Py][Tf2N], [C8C1Pyrr][Tf2N] and [C8C1Im][Tf2N] for: a) C 1s, b) N 1s, c) F 1s, d) O 1s, e) S 2p
and f) C 1s with chopped x axis. The intensities are normalised to the intensity of the F 1s peak for [C8Py][Tf2N]. All
the XP spectra were charge-corrected by referencing the aliphatic C 1s component (Caliphatic 1s) to 285.0 eV.
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ing energies (absolute binding energies) for all the compo-
nents could then be obtained.

Comparisons of the charge-corrected binding energies of
the pyridinium cation’s nitrogen atom, Ncation 1s (and also the

carbon atoms directly bonded to nitrogen, Chetero 1s) when the
anion is varied were carried out. The binding energy for

Ncation 1s decreases as the basicity of the anion increases, indi-
cating that more charge is transferred from the anion to the
cation for more basic anions such as bromide. In particular,

mixtures of anions can be used to tune the electronic proper-
ties of ionic liquids.

A comparison of the binding energies of the cationic com-
ponents for imidazolium-, pyrrolidinium- and pyridinium-based
ionic liquids revealed significant differences. The charge on the
nitrogen atoms in [C8Py][A] is significantly more electropositive

than that on the nitrogen atoms in [C8C1Im][A] but is found in

a similar electronic environment as the nitrogen atoms in
[C8C1Pyrr][A] . In addition, the C2 carbon in imidazolium is more

electropositive than any of the carbon atoms in the pyridinium
cation. This observation agrees with the relative cathodic sta-

bility of the cations; pyridinium-based ionic liquids are general-
ly more stable than their structurally related imidazolium

analogues.

Acknowledgements

We would like to thank the EPSRC (EP/K005138/1) and Nature

Science Foundation of Liaoning Province (2013020094) for finan-

cial support. PL acknowledges the EPSRC for the award of an
ARF (EP/D073014/1). The authors are grateful to Dr. Emily F

Smith for helpful discussions and critical advice.

Keywords: binding energy · fitting model · ionic liquids ·
pyridinium · X-ray photoelectron spectroscopy

[1] a) P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis WILEY-VCH, Wein-
heim, 2007; b) N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37,
123 – 150.

[2] a) E. F. Smith, I. J. Villar-Garcia, D. Briggs, P. Licence, Chem. Commun.
2005, 5633 – 5635; b) J. M. Gottfried, F. Maier, J. Rossa, D. Gerhard, P. S.
Schulz, P. Wasserscheid, H.-P. Steinrìck, Z. Phys. Chemie 2006, 220,
1439 – 1453; c) S. Caporali, U. Bardi, A. Lavacchi, J. Electron Spectrosc.
Relat. Phenom. 2006, 151, 4 – 8; d) O. Hofft, S. Bahr, M. Himmerlich, S.
Krischok, J. A. Schaefer, V. Kempter, Langmuir 2006, 22, 7120 – 7123;
e) C. Kolbeck, M. Killian, F. Maier, N. Paape, P. Wasserscheid, H.-P. Stein-
rìck, Langmuir 2008, 24, 9500 – 9507; f) V. Lockett, R. Sedev, C. Bassell, J.
Ralston, Phys. Chem. Chem. Phys. 2008, 10, 1330 – 1335; g) T. Cremer, C.
Kolbeck, K. R. J. Lovelock, N. Paape, R. Wçlfel, P. S. Schulz, P. Wassersc-
heid, H. Weber, J. Thar, B. Kirchner, F. Maier, H.-P. Steinrìck, Chem. Eur. J.
2010, 16, 9018 – 9033; h) K. R. J. Lovelock, I. J. Villar-Garcia, F. Maier, H.-P.
Steinrìck, P. Licence, Chem. Rev. 2010, 110, 5158 – 5190; i) I. J. Villar-
Garcia, E. F. Smith, A. W. Taylor, F. Qiu, K. R. J. Lovelock, R. G. Jones, P. Li-
cence, Phys. Chem. Chem. Phys. 2011, 13, 2797 – 2808; j) B. B. Hurisso,
K. R. J. Lovelock, P. Licence, Phys. Chem. Chem. Phys. 2011, 13, 17737 –
17748; k) I. J. Villar-Garcia, K. R. J. Lovelock, S. Men, P. Licence, Chem. Sci.
2014, 5, 2573 – 2579.

[3] a) S. Men, K. R. J. Lovelock, P. Licence, Phys. Chem. Chem. Phys. 2011, 13,
15244 – 15255; b) S. Men, B. B. Hurisso, K. R. J. Lovelock, P. Licence, Phys.
Chem. Chem. Phys. 2012, 14, 5229 – 5238.

[4] a) B. K. Ni, Q. Y. Zhang, A. D. Headley, Tetrahedron Lett. 2008, 49, 1249 –
1252; b) L. Ford, F. Atefi, R. D. Singer, P. J. Scammells, Eur. J. Org. Chem.
2011, 942 – 950.

[5] M. Mahrova, F. Pagano, V. Pejakovic, A. Valea, M. Kalin, A. Igartua, E.
Tojo, Tribol. Int. 2015, 82, 245 – 254.

[6] N. M. Yunus, M. I. A. Mutalib, Z. Man, M. A. Bustam, T. Murugesan, Chem.
Eng. J. 2012, 189, 94 – 100.

[7] B. Bittner, R. J. Wrobel, E. Milchert, J. Chem. Thermodyn. 2012, 55, 159 –
165.

[8] a) N. M. Yunus, M. I. A. Mutalib, Z. Man, M. A. Bustam, T. Murugesan, J.
Chem. Thermodyn. 2010, 42, 491 – 495; b) C. Cadena, Q. Zhao, R. Q.
Snurr, E. J. Maginn, J. Phys. Chem. B 2006, 110, 2821 – 2832.

[9] M. Vilas, M. A. A. Rocha, A. M. Fernandes, E. Tojo, L. Santos, Phys. Chem.
Chem. Phys. 2015, 17, 2560 – 2572.

[10] L. G. Sanchez, J. R. Espel, F. Onink, G. W. Meindersma, A. B. de Haan, J.
Chem. Eng. Data 2009, 54, 2803 – 2812.

[11] a) J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson, J. F. Bren-
necke, J. Chem. Thermodyn. 2005, 37, 559 – 568; b) A. Deyko, K. R. J.
Lovelock, J.-A. Corfield, A. W. Taylor, P. N. Gooden, I. J. Villar-Garcia, P. Li-
cence, R. G. Jones, V. G. Krasovskiy, E. A. Chernikova, L. M. Kustov, Phys.
Chem. Chem. Phys. 2009, 11, 8544 – 8555.

[12] a) E. F. Smith, F. J. M. Rutten, I. J. Villar-Garcia, D. Briggs, P. Licence, Lang-
muir 2006, 22, 9386 – 9392; b) K. R. J. Lovelock, E. F. Smith, A. Deyko, I. J.
Villar-Garcia, P. Licence, R. G. Jones, Chem. Commun. 2007, 4866 – 4868;
c) K. R. J. Lovelock, C. Kolbeck, T. Cremer, N. Paape, P. S. Schulz, P. Was-
serscheid, F. Maier, H.-P. Steinrìck, J. Phys. Chem. B 2009, 113, 2854 –
2864.

[13] S. Men, K. R. J. Lovelock, P. Licence, RSC Adv. 2015, 5, 35958 – 35965.
[14] A. W. Taylor, S. Men, C. J. Clarke, P. Licence, RSC Adv. 2013, 3, 9436 –

9445.
[15] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker,

R. D. Rogers, Green Chem. 2001, 3, 156 – 164.
[16] A. W. Taylor, K. R. J. Lovelock, A. Deyko, P. Licence, R. G. Jones, Phys.

Chem. Chem. Phys. 2010, 12, 1772 – 1783.
[17] D. Briggs, J. T. Grant, Surface Analysis by Auger and X-ray Photoelectron

Spectroscopy, IMPublications, Manchester 2003.
[18] C. Kolbeck, T. Cremer, K. R. J. Lovelock, N. Paape, P. S. Schulz, P. Was-

serscheid, F. Maier, H.-P. Steinrìck, J. Phys. Chem. B 2009, 113, 8682 –
8688.

[19] C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, L. H.
Gale, Surf. Interface Anal. 1981, 3, 211 – 225.

[20] G. Beamson, D. Briggs, Mol. Phys. 1992, 76, 919 – 936.
[21] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray

Photoelectron Spectroscopy : a reference book of standard spectra for
identification and interpretation of XPS data, Physical Electronics, 1995.

[22] a) V. Yarzhemsky, V. I. Nefedov, M. B. Trzhaskovskaya, I. M. Band, R. Szar-
gan, J. Electron Spectrosc. Relat. Phenom. 2002, 123, 1 – 10; b) S. Svens-
son, B. Eriksson, N. Martensson, G. Wendin, U. Gelius, J. Electron Spec-
trosc. Relat. Phenom. 1988, 47, 327 – 384.

[23] a) D. Briggs, G. Beamson, Anal. Chem. 1993, 65, 1517 – 1523; b) B. Sjog-
ren, S. Svensson, A. N. Debrito, N. Correia, M. P. Keane, C. Enkvist, S.
Lunell, J. Chem. Phys. 1992, 96, 6389 – 6398.

[24] T. Robert, Chem. Phys. 1975, 8, 123 – 135.
[25] T. Cremer, M. Killian, J. M. Gottfried, N. Paape, P. Wasserscheid, F. Maier,

H.-P. Steinrìck, ChemPhysChem 2008, 9, 2185 – 2190.
[26] F. Maier, T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, P. S. Schulz, P.

Wasserscheid, H.-P. Steinrìck, Phys. Chem. Chem. Phys. 2010, 12, 1905 –
1915.

[27] R. Wibowo, S. E. W. Jones, R. G. Compton, J. Chem. Eng. Data 2010, 55,
1374 – 1376.

[28] a) M. C. Kroon, W. Buijs, C. J. Peters, G. J. Witkamp, Green Chem. 2006, 8,
241 – 245; b) P. Bonhúte, A. P. Dias, N. Papageorgiou, K. Kalyanasundar-
am, M. Gr�tzel, Inorg. Chem. 1996, 35, 1168 – 1178.

Received: March 17, 2015

Published online on May 7, 2015

ChemPhysChem 2015, 16, 2211 – 2218 www.chemphyschem.org Ó 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim2218

Articles

http://dx.doi.org/10.1039/B006677J
http://dx.doi.org/10.1039/B006677J
http://dx.doi.org/10.1039/B006677J
http://dx.doi.org/10.1039/B006677J
http://dx.doi.org/10.1039/b512311a
http://dx.doi.org/10.1039/b512311a
http://dx.doi.org/10.1039/b512311a
http://dx.doi.org/10.1039/b512311a
http://dx.doi.org/10.1524/zpch.2006.220.10.1439
http://dx.doi.org/10.1524/zpch.2006.220.10.1439
http://dx.doi.org/10.1524/zpch.2006.220.10.1439
http://dx.doi.org/10.1524/zpch.2006.220.10.1439
http://dx.doi.org/10.1016/j.elspec.2005.09.010
http://dx.doi.org/10.1016/j.elspec.2005.09.010
http://dx.doi.org/10.1016/j.elspec.2005.09.010
http://dx.doi.org/10.1016/j.elspec.2005.09.010
http://dx.doi.org/10.1021/la801261h
http://dx.doi.org/10.1021/la801261h
http://dx.doi.org/10.1021/la801261h
http://dx.doi.org/10.1039/b713584j
http://dx.doi.org/10.1039/b713584j
http://dx.doi.org/10.1039/b713584j
http://dx.doi.org/10.1002/chem.201001032
http://dx.doi.org/10.1002/chem.201001032
http://dx.doi.org/10.1002/chem.201001032
http://dx.doi.org/10.1002/chem.201001032
http://dx.doi.org/10.1021/cr100114t
http://dx.doi.org/10.1021/cr100114t
http://dx.doi.org/10.1021/cr100114t
http://dx.doi.org/10.1039/C0CP01587C
http://dx.doi.org/10.1039/C0CP01587C
http://dx.doi.org/10.1039/C0CP01587C
http://dx.doi.org/10.1039/c1cp21763a
http://dx.doi.org/10.1039/c1cp21763a
http://dx.doi.org/10.1039/c1cp21763a
http://dx.doi.org/10.1039/c4sc00106k
http://dx.doi.org/10.1039/c4sc00106k
http://dx.doi.org/10.1039/c4sc00106k
http://dx.doi.org/10.1039/c4sc00106k
http://dx.doi.org/10.1039/c1cp21053j
http://dx.doi.org/10.1039/c1cp21053j
http://dx.doi.org/10.1039/c1cp21053j
http://dx.doi.org/10.1039/c1cp21053j
http://dx.doi.org/10.1039/c2cp40262a
http://dx.doi.org/10.1039/c2cp40262a
http://dx.doi.org/10.1039/c2cp40262a
http://dx.doi.org/10.1039/c2cp40262a
http://dx.doi.org/10.1016/j.tetlet.2007.12.024
http://dx.doi.org/10.1016/j.tetlet.2007.12.024
http://dx.doi.org/10.1016/j.tetlet.2007.12.024
http://dx.doi.org/10.1002/ejoc.201001468
http://dx.doi.org/10.1002/ejoc.201001468
http://dx.doi.org/10.1002/ejoc.201001468
http://dx.doi.org/10.1002/ejoc.201001468
http://dx.doi.org/10.1016/j.triboint.2014.10.018
http://dx.doi.org/10.1016/j.triboint.2014.10.018
http://dx.doi.org/10.1016/j.triboint.2014.10.018
http://dx.doi.org/10.1016/j.cej.2012.02.033
http://dx.doi.org/10.1016/j.cej.2012.02.033
http://dx.doi.org/10.1016/j.cej.2012.02.033
http://dx.doi.org/10.1016/j.cej.2012.02.033
http://dx.doi.org/10.1016/j.jct.2012.06.018
http://dx.doi.org/10.1016/j.jct.2012.06.018
http://dx.doi.org/10.1016/j.jct.2012.06.018
http://dx.doi.org/10.1016/j.jct.2009.11.004
http://dx.doi.org/10.1016/j.jct.2009.11.004
http://dx.doi.org/10.1016/j.jct.2009.11.004
http://dx.doi.org/10.1016/j.jct.2009.11.004
http://dx.doi.org/10.1021/jp056235k
http://dx.doi.org/10.1021/jp056235k
http://dx.doi.org/10.1021/jp056235k
http://dx.doi.org/10.1039/C4CP05191B
http://dx.doi.org/10.1039/C4CP05191B
http://dx.doi.org/10.1039/C4CP05191B
http://dx.doi.org/10.1039/C4CP05191B
http://dx.doi.org/10.1016/j.jct.2005.03.013
http://dx.doi.org/10.1016/j.jct.2005.03.013
http://dx.doi.org/10.1016/j.jct.2005.03.013
http://dx.doi.org/10.1039/b908209c
http://dx.doi.org/10.1039/b908209c
http://dx.doi.org/10.1039/b908209c
http://dx.doi.org/10.1039/b908209c
http://dx.doi.org/10.1021/la061248q
http://dx.doi.org/10.1021/la061248q
http://dx.doi.org/10.1021/la061248q
http://dx.doi.org/10.1021/la061248q
http://dx.doi.org/10.1039/b711680b
http://dx.doi.org/10.1039/b711680b
http://dx.doi.org/10.1039/b711680b
http://dx.doi.org/10.1021/jp810637d
http://dx.doi.org/10.1021/jp810637d
http://dx.doi.org/10.1021/jp810637d
http://dx.doi.org/10.1039/c3ra40260f
http://dx.doi.org/10.1039/c3ra40260f
http://dx.doi.org/10.1039/c3ra40260f
http://dx.doi.org/10.1039/b103275p
http://dx.doi.org/10.1039/b103275p
http://dx.doi.org/10.1039/b103275p
http://dx.doi.org/10.1039/b920931j
http://dx.doi.org/10.1039/b920931j
http://dx.doi.org/10.1039/b920931j
http://dx.doi.org/10.1039/b920931j
http://dx.doi.org/10.1021/jp902978r
http://dx.doi.org/10.1021/jp902978r
http://dx.doi.org/10.1021/jp902978r
http://dx.doi.org/10.1002/sia.740030506
http://dx.doi.org/10.1002/sia.740030506
http://dx.doi.org/10.1002/sia.740030506
http://dx.doi.org/10.1080/00268979200101761
http://dx.doi.org/10.1080/00268979200101761
http://dx.doi.org/10.1080/00268979200101761
http://dx.doi.org/10.1016/S0368-2048(01)00367-X
http://dx.doi.org/10.1016/S0368-2048(01)00367-X
http://dx.doi.org/10.1016/S0368-2048(01)00367-X
http://dx.doi.org/10.1016/0368-2048(88)85020-5
http://dx.doi.org/10.1016/0368-2048(88)85020-5
http://dx.doi.org/10.1016/0368-2048(88)85020-5
http://dx.doi.org/10.1016/0368-2048(88)85020-5
http://dx.doi.org/10.1021/ac00059a006
http://dx.doi.org/10.1021/ac00059a006
http://dx.doi.org/10.1021/ac00059a006
http://dx.doi.org/10.1016/0301-0104(75)80099-1
http://dx.doi.org/10.1016/0301-0104(75)80099-1
http://dx.doi.org/10.1016/0301-0104(75)80099-1
http://dx.doi.org/10.1002/cphc.200800300
http://dx.doi.org/10.1002/cphc.200800300
http://dx.doi.org/10.1002/cphc.200800300
http://dx.doi.org/10.1039/b920804f
http://dx.doi.org/10.1039/b920804f
http://dx.doi.org/10.1039/b920804f
http://dx.doi.org/10.1021/je9005568
http://dx.doi.org/10.1021/je9005568
http://dx.doi.org/10.1021/je9005568
http://dx.doi.org/10.1021/je9005568
http://dx.doi.org/10.1039/B512724F
http://dx.doi.org/10.1039/B512724F
http://dx.doi.org/10.1039/B512724F
http://dx.doi.org/10.1039/B512724F
http://dx.doi.org/10.1021/ic951325x
http://dx.doi.org/10.1021/ic951325x
http://dx.doi.org/10.1021/ic951325x
http://www.chemphyschem.org

