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We aimed to identify the glucose metabolism statuses of nondiabetic Japanese adults using a machine learning model with a
questionnaire. In this cross-sectional study, Japanese adults (aged 20–64 years) from Tokyo and surrounding areas were
recruited. Participants underwent an oral glucose tolerance test (OGTT) and completed a questionnaire regarding lifestyle and
physical characteristics. They were classified into four glycometabolic categories based on the OGTT results: category 1: best
glucose metabolism, category 2: low insulin sensitivity, category 3: low insulin secretion, and category 4: combined
characteristics of categories 2 and 3. A total of 977 individuals were included; the ratios of participants in categories 1, 2, 3,
and 4 were 46%, 21%, 14%, and 19%, respectively. Machine learning models (decision tree, support vector machine, random
forest, and XGBoost) were developed for identifying the glycometabolic category using questionnaire responses. Then, the top
10 most important variables in the random forest model were selected, and another random forest model was developed using
these variables. Its areas under the receiver operating characteristic curve (AUCs) to classify category 1 and the others, category
2 and the others, category 3 and the others, and category 4 and the others were 0.68 (95% confidence intervals: 0.62–0.75),
0.66 (0.58–0.73), 0.61 (0.51–0.70), and 0.70 (0.62–0.77). For external validation of the model, the same dataset of 452 Japanese
adults in Hokkaido was obtained. The AUCs to classify categories 1, 2, 3, and 4 and the others were 0.66 (0.61–0.71), 0.57
(0.51–0.62), 0.60 (0.50–0.69), and 0.64 (0.57–0.71). In conclusion, our model could identify the glucose metabolism status
using only 10 factors of lifestyle and physical characteristics. This model may help the larger general population without
diabetes to understand their glucose metabolism status and encourage lifestyle improvement to prevent diabetes.

1. Introduction

The number of people with diabetes is increasing globally.
463 million people worldwide had diabetes as of 2019, and
this number is estimated to rise to 700 million by 2045 [1].
Lifestyle modifications and pharmacological interventions
can reduce the risk of developing diabetes in the future
[2–6]. Decreased insulin sensitivity and impaired insulin
secretion play a major role in the pathogenesis of diabetes
[7, 8]. Currently available data suggest that impaired insulin

secretion is primarily due to genetic factors and aging,
whereas decreased insulin sensitivity is primarily due to obe-
sity and low muscle mass [9–12]. Therefore, it is important
for individuals without diabetes to understand their glucose
metabolism status, i.e., insulin sensitivity and secretion, and
to take appropriate measures for preventing diabetes.

Oral glucose tolerance test (OGTT) is a standard method
for measuring glucose metabolism and diagnosing diabetes
and prediabetes [13]. In this test, a patient is loaded with
glucose solution, and multiple blood samples are drawn to
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measure changes in blood glucose levels. Therefore, it is
rarely performed on individuals without diabetes. Thus, sim-
pler tools have been developed to screen for prediabetes
more easily than the OGTT.

Table 1 shows a review of the recent and important stud-
ies on prediabetes screening tools. De Silva et al. [14] identi-
fied predictors of individuals with high fasting plasma
glucose level (FPG), high hemoglobin A1c (HbA1c), or high
plasma glucose level during OGTT. Combined use of the
feature selection and machine learning including random
forests (RF), gradient boosting machine (GBM), logistic
regression (LR), and artificial neural network (ANN)
selected 25 socioeconomic, clinical, and biochemical factors.
They used the dataset from the National Health and Nutri-
tion Examination Survey (NHANES). The predictors were
suitable when existing survey information was available.
However, it may incur effort and cost to obtain new survey
dataset for screening. In a similar technique in other fields,
Chang et al. [15] developed an efficient method for classify-
ing neonatal cry. They used RF for selecting the highly dis-
criminative acoustic features and then classified neonatal
cry using the extreme gradient boosting-powered grouped-

support-vector network. The combination of variable selec-
tion and machine learning model resulted in high classifica-
tion accuracy. Birk et al. [16] developed a tool for screening
individuals with high FPG using global diet quality score
(GDQS) and lifestyle questionnaire responses. In this study,
RF, generalized linear mixed model (GLMM), least absolute
shrinkage and selection operator (LASSO), and elastic net
(EN) were used. They showed that dietary factors were
important for prediabetes screening. However, well-trained
interviewers were needed to obtain dietary information such
as GDSQ. Abbas et al. [17] reported a risk score for screen-
ing individuals with high HbA1c. They used only noninva-
sively measured factors, including age, sex, body mass
index (BMI), waist circumference, and blood pressure. The
algorithms utilized included RF, GBM, XGBoost (XGB),
LR, and deep learning (DL). Moreover, Dong et al. [18]
developed a risk assessment model to detect individuals with
high FPG or high HbA1c. Eight noninvasively measured risk
factors, including age, BMI, waist-to-hip ratio, systolic blood
pressure, waist circumference, sleep duration, smoking, and
recreational activity time were selected. The XGB model
showed superior performance than the LR model. The study

Table 1: Review of the recent and important studies on prediabetes screening.

Ref.
no.

Screening target Factors Models Tool challenges

[14]
FPG 100–125mg/dL, 120
mPG 100–125mg/dL,
or HbA1c 5.7–6.4%

25 of socioeconomic, clinical,
and biochemical factors

RF, GBM, LR, and
ANN

Invasive measurement factors
were required for screening

[16] FPG≥100mg/dL

Global diet quality score, age,
smoking, alcohol drinking, unable
to walk, use of rations card, time

spent in sedentary activities

RF, GLMM,
LASSO, and EN

Well-trained interviewers were
needed to obtain dietary

information

[17] HbA1c 5.7–6.4%
Age, sex, BMI, waist circumference,

and blood pressure
RF, GBM, XGB, LR,

and DL

Lack of individuals with high blood
glucose levels from screening targets

Some of factors could not be
answered

on the spot and may require the
linkage of the laboratory data

[18]
FPG 110–125mg/dL or

HbA1c 5.7–6.4%

Age, BMI, waist-to-hip
ratio, systolic blood pressure,

waist circumference, sleep duration,
smoking status, and vigorous

recreational activity time per week

XGB and LR

Lack of individuals with
hyperglycemia after glucose

loading from screening targets
Some of factors could not be

answered
on the spot and may require the
linkage of the laboratory data

[19]
FPG≥110mg/dL or 120

mPG≥140mg/dL

Age, sex, BMI, smoking, FPG,
fasting plasma triglyceride level,

and history of high FPG
LR

Research participants were limited
to

staffs in an oil field in China invasive
measurement factors were required

for screening

[20]
FPG 100–125mg/dL, HbA1c

5.7–6.4%, or 120 mPG
140–199mg/dL

Semiquantitative food frequency
questionnaire answers

and clinical and anthropometric
measurements scores

LR

Well-trained interviewers were
needed

to obtain dietary information
Invasive measurement factors were

required for screening

Abbreviation: FPG: fasting plasma glucose level; 120 mPG: 120-min postload plasma glucose level during OGTT; HbA1c: hemoglobin A1c; BMI: body mass
index; RF: random forest; GBM: gradient boosting machine; LR: logistic regression; ANN: artificial neural network; GLMM: generalized linear mixed model;
LASSO: least absolute shrinkage and selection operator; EN: elastic net; XGB: XGBoost; DL: deep learning.
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characteristically used indicators of sleep and exercise in
addition to clinical factors. However, in these two studies,
individuals with high blood glucose level after glucose load-
ing were not included in the screening target. In addition,
some of the factors could not be evaluated on the spot and
may require laboratory data. Tian et al. [19] developed a risk
score for prediabetes and diabetes using questionnaires and
blood test results using LR model. Age, sex, BMI, smoking,
FPG, fasting plasma triglyceride level, and history of high
FPG were used as factors. However, research participants
were limited to the staff of an oil field in China. In addition,
invasive measurement factors were required for screening.
Shen et al. [20] analyzed the association between dietary pat-
terns and prediabetes risk using the validated semiquantita-
tive food frequency questionnaire (SQFFQ). Multivariate
logistic regression analysis showed that the dietary Western
pattern score and grains-vegetables pattern score predicted
prediabetes risk. However, clinical and anthropometric mea-
surements were also needed for adjustment. In addition,
well-trained interviewers were needed to obtain dietary
information. In these previous studies, machine learning
models were used more often than ANN, which is less inter-
pretable, to analyze the relationship between those factors
and the pathogenesis of prediabetes.

In this study, we aimed to develop a machine learning
model to identify glucose metabolism status in nondiabetic
adults. The present study has two unique contributions.
First, the factors of the model include only lifestyle and
physical information that can be answered on the spot.
Because invasive measurement factors or several factors are
not needed, it can be easily and widely used by general pop-
ulation. Second, we identified glucose metabolism status
rather than prediabetes. No tools have been reported to
determine glucose metabolism status in nondiabetic individ-
uals. Previously, we classified glucose metabolism status of
nondiabetic individuals into four different categories based
on OGTT results [21]. Each category had clearly different
characteristics of insulin sensitivity and insulin secretion:
category 1: best glucose metabolism, category 2: low insulin
sensitivity, category 3: low insulin secretion, and category
4: combined characteristics of both categories 2 and 3. In
this study, we develop a model to identify these four catego-
ries of glucose metabolism status.

2. Materials and Methods

2.1. Study Design. In this cross-sectional study, we recruited
Japanese adults without diabetes aged 20–64 years in Tokyo
and the surrounding area in 2019. Those with cardiovascular
disorders, liver disorders, and kidney disorders and those
taking medication, pregnant women, and lactating women
were excluded. Diabetes was defined as a fasting plasma glu-
cose level≥126mg/dL, 120-min postload plasma glucose
level during the OGTT (120 mPG)≥200mg/dL, and/or the
use of antidiabetic medications [13]. Participants underwent
height and weight measurements and 75 g OGTT. Blood
sampling in the OGTT was performed before glucose load-
ing and 30, 60, 90, and 120 minutes after glucose loading.
Participants also completed a questionnaire on lifestyle and

physical characteristics. Those who did not answer the ques-
tionnaire and those who answered less than 90% of the ques-
tionnaire were excluded from the analysis. A total of 977
participants were suitable for the study. For external verifica-
tion data, we recruited Japanese adults without diabetes aged
20–64 years in Hokkaido, Japan, in 2021. The selection and
exclusion criteria were the same. The same examinations
and questionnaire were conducted on them. A total of 452
participants were suitable for the study. The Matsuda index
and homeostatic model assessment-insulin resistance
(HOMA-IR) were calculated as indices to reflect insulin sen-
sitivity. The Matsuda index was calculated as follows:
10,000/½square root of ðfasting glucose × fasting insulinÞ × ð
mean glucose × mean insulin during theOGTTÞ� [22].

These two studies were conducted in accordance with
the guidelines in the Helsinki Declaration (as revised by
the Fortaleza General Meeting of the World Medical Associ-
ation, Brazil, 2013). All participants provided written
informed consent. These two studies complied with the Eth-
ical Guidelines for Medical Research Involving Human Sub-
jects (2014 Ministry of Education, Culture, Sports, Science
and Technology and the Ministry of Health, Government
of Japan, Labour and Welfare Ministerial notification No.
3). All procedures were approved by the ethics committees
of Nihonbashi Egawa Clinic or Fukuhara Clinic Clinical trial
review committee. They were registered at the University
Hospital Medical Information Network-Clinical Trials Reg-
istry (UMIN-CTR) (registration number: UMIN000037674,
UMIN000044484).

2.2. Classification of Glycometabolic Category. Participants
were classified into the four glycometabolic categories based
on plasma glucose levels and Matsuda index during the
OGTT. The four categories were the objective variables of
the models in this study. The classification criteria were as
follows: condition A: 30 mPG <157mg/dL and condition
B: 120 mPG <126mg/dL and Matsuda index>4.97, category
1 satisfies conditions A and B, category 2 satisfies condition
A but not condition B, category 3 satisfies condition B but
not condition A, and category 4 satisfies neither condition
A nor condition B. The rationale for the categorization and
characteristics of each category were explained in our previ-
ous study [21].

2.3. Model Development. For the explanatory variables, we
obtained a dataset that included age, sex, height, BMI, and
questionnaire responses. The questionnaire consisted of 309
questions that did not require clinical examination data and
could be answered easily on the spot (Supplementary
figure 1). The topics of the questions included exercise
habits, sleep habits, drowsiness, dietary habits, drinking,
family history, constitution, physical condition, and lifestyle.
As a pretreatment for the analysis, missing answers were
replaced with the mode. Questions with answers in the
nominal variable were split, and each answer was converted
to a dummy variable. To identify multicollinearity, the
correlations between all variables were evaluated. To ensure
that no variables had Spearman’s correlation coefficients
greater than 0.7, if two variables had a correlation coefficient
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greater than 0.7, one of them was excluded. Before inputting
the data into the support vector machine, training and
testing datasets were standardized (mean of 0 and variance
of 1), respectively.

Four different models (decision tree, support vector
machine, random forest, and XGBoost) were developed. We
used these models rather than deep learning models to inter-
pret the importance of variables and to develop a simpler
model by narrowing down the variables. The rpart package
of R ver. 4.1.0 was used for the decision tree. The tuned hyper-
parameters were the minimum number of observations in a
node and maximum depth of trees. The randomForest pack-
age of R ver. 4.1.0 was used for random forest. The tuned
hyperparameters were the number of variables randomly sam-
pled at each tree, minimum size of terminal nodes, and num-
ber of trees to grow. The kernlab package of R ver. 4.1.0 was
used for the support vector machine. The tuned hyperpara-
meter was the cost of constraints violation. The kernel func-
tion was set to linear kernel. The xgboost package of R ver.
4.1.0 was used for XGBoost. The tuned hyperparameters were
the subsample ratio to all variables at each tree, maximum
depth of trees, and learning rate. Figure 1 shows the training,
testing, and validation processes of the models. The original
dataset was randomly split into training (70%) and testing
(30%) datasets. The training dataset was undersampled
because four categories were imbalanced. 5-fold cross-
validation was performed to find the optimal hyperparameters
using the training dataset. Then, the models with the optimal
hyperparameters were trained using the training dataset. The
model performances were assessed using the testing dataset.

In addition, the top 10 most important variables in the
random forest model were selected. The importance of each
variable was assessed by the mean decrease in Gini coefficient.
It is the mean of the total decrease in node impurity by a var-
iable, weighted by the proportion of samples reaching that
node in each individual decision tree in the random forest.

Another random forest model with only these 10 variables as
explanatory variables was trained using the training dataset.
The model performances were assessed using the testing data-
set and verified using the external verification dataset.

2.4. Model Performances. The testing dataset was used to
assess the model performances. The performances were con-
sidered based on the areas under the receiver operating char-
acteristic curve (AUCs) for classifying category 1 and the
others, category 2 and the others, category 3 and the others,
category 4 and the others, and the mean of these AUCs. The
95% confidence interval of the AUC was computed with
2,000 stratified bootstrap replicates. We used Delong’s
method to calculate p values to compare the AUCs [23]. In
addition, the threshold was adjusted so that the sensitivity
for detecting categories 2, 3, and 4 (impaired glucose metab-
olism groups) was as close to 0.7 as possible. Then, the spec-
ificity was evaluated at that threshold.

2.5. Other Statistical Analysis. The characteristics of each gly-
cometabolic category and the OGTT values were compared
using analysis of variance (ANOVA) with Dunnett’s test for
multiple comparisons [24]. For the insulinogenic index and
disposition index, outliers were excluded by Smirnov–Grubbs
test. Spearman’s correlation test was used to calculate the rela-
tionships between the variables. A p value <0.05 was consid-
ered to indicate statistical significance. Statistical analysis was
performed using the statistical software package R ver. 4.1.0
(R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Participant Characteristics. Of the total of 977 eligible
participants in the original dataset, the glycometabolic cate-
gories 1, 2, 3, and 4 accounted for 46% (n = 448), 21%
(n = 206), 14% (n = 133), and 19% (n = 190), respectively

30%

70%

Testing dataset

Original dataset

Training dataset
processed

under-sampling

External validation
dataset

5-fold cross validation
 for parameters tuning of

 the models (RF, XGB, DT, SVM)

Assessing the model performances
(RF, XGB, DT, SVM) 

Training the models (RF, XGB, DT, SVM)
with the optimal hyperparameters

Training the model (RF)
with top-10 important variables 

Assessing
the model performances (RF) 

External validation
of the model (RF)

Figure 1: Training, testing, and validation processes of the models. Abbreviations: RF: random forest; XGB: XGBoost; DT: decision tree;
SVM: support vector machine.
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(Table 2). Regarding the age, categories 3 and 4 were signif-
icantly higher than category 1. Regarding the BMI, catego-
ries 2 and 4 were significantly higher than category 1. The
questionnaire answers were obtained from 977 participants.
None of the subjects had more than 1% of missing answers.
Missing answers were replaced with the mode. Nominal var-
iable answers were split and converted to dummy variables.
If two variables had a correlation coefficient greater than
0.7, one of them was excluded. Supplementary Table 1
shows the characteristics of the preprocessed 279
questionnaire answers in each category.

3.2. Model Performances. Table 3 lists the performances of
the models. The random forest model had the highest per-
formance among the models in terms of AUCs. Its AUCs
(95% confidence intervals) to classify category 1 and the
others, category 2 and the others, category 3 and the others,
and category 4 and the others were 0.69 (0.63–0.75), 0.68
(0.61–0.75), 0.63 (0.55-0.72), and 0.67 (0.59-0.74). However,
there was no statistically significant difference from the
AUCs of the other models. Its specificity was 0.46 when
the threshold was adjusted so that the detection sensitivities
of categories 2, 3, and 4 (impaired glucose metabolism
groups) were set to 0.7.

3.3. Model Performance Using 10 Variables. In the random
forest model, the top 10 most important variables were
age, height, BMI, and the following questions: “Do you wake
up in the middle of the night,” “Which do you usually eat:
rice or bread,” “Frequency of tea intake per week at lunch,”

“Do you wake up late on nonworking day,” “Frequency of
mobile phone and tablet computer use at bedtime,” “Fre-
quency of soup intake,” and “Frequency of toothbrush
replacement.” Then, another random forest model was
developed using only these variables. Table 4 shows the per-
formance of the model. Its AUCs (95% confidence intervals)
to classify category 1 and others, category 2 and others, cat-
egory 3 and others, and category 4 and others were 0.68
(0.62–0.75), 0.66 (0.58–0.73), 0.61 (0.51–0.70), and 0.70
(0.62–0.77), respectively. The AUC to classify category 1
and others was not significantly different from that of the
previous random forest model shown in Table 3 (p value
was 0.86). Moreover, its AUCs to classify category 2 and
others, category 3 and others, and category 4 and others
were not significantly different from those of the previous
random forest model shown in Table 3 (p values were 0.33,
0.51, and 0.11). Figure 2 shows the receiver operating char-
acteristic (ROC) curves of the model. The AUC for classify-
ing category 4 and others was the highest among the AUCs
for classifying each category. Table 5 shows the importance
of the 10 variables in the model.

3.4. Model Performance in the External Validation. Of the
total of 452 eligible participants in the external validation
dataset, the glycometabolic categories 1, 2, 3, and 4
accounted for 47% (n = 213), 30% (n = 135), 7% (n = 32),
and 16% (n = 72), respectively (Supplementary Table 2).
The questionnaire answers were obtained from the
participants (Supplementary Table 3). The performance of
the previous random forest model using ten variables was

Table 2: Characteristics of the participants in each glycometabolic category.

Category 1 Category 2 Category 3 Category 4

n 448 206 133 190

Sex (% women) 53.1 56.3 40.6 44.2

Age (years) 42.3 (41.2–43.4) 43.8 (42.3–45.3) 46.7 (44.7–48.6)∗ 48.9 (47.4–50.4)∗

Height (m) 164.8 (164.1–165.6) 164.8 (163.6–166.0) 165.6 (164.2–166.9) 166.0 (164.9–167.1)

BMI (kg/m2) 21.4 (21.1–21.6) 23.5 (23.1–24.0)∗ 21.6 (21.2–22.0) 23.4 (22.9–23.8)∗

30 mPG (mg/dL) 129.5 (127.9–131.1) 139.5 (137.7–141.2)∗ 171.9 (169.7–174.2)∗ 178.1 (175.5–180.8)∗

120 mPG (mg/dL) 94.4 (92.9–96.0) 127.6 (124.4–130.8)∗ 99.3 (96.3–102.3) 134.6 (130.5–138.6)∗

Matsuda index 9.8 (9.4–10.2) 5.8 (5.4–6.3)∗ 7.7 (7.3–8.1)∗ 5.0 (4.6–5.4)∗

Data are presented as mean (95% confidence interval), percentage, or number of individuals. ∗p < 0:05 vs. category 1. Abbreviations: BMI: body mass index; x
mPG: x-min postload plasma glucose level during the OGTT.

Table 3: Performances of the models for identifying glycometabolic category (95% confidence intervals).

Model

AUC for
classifying
category

1 and the others

AUC for
classifying
category

2 and the others

AUC for
classifying

category 3 and
the others

AUC for
classifying
category

4 and the others

Mean of
AUCs

Sensitivity to
detect

categories
2, 3, and 4

Specificity
to detect
category 1

Decision tree 0.63 (0.58-0.70) 0.68 (0.60-0.75) 0.56 (0.45-0.66) 0.61 (0.53-0.70) 0.62 0.71 0.41

Support vector
machine

0.64 (0.57-0.70) 0.65 (0.57-0.73) 0.58 (0.47-0.68) 0.55 (0.48-0.64) 0.61 0.70 0.55

Random forest 0.69 (0.63-0.74) 0.68 (0.61-0.76) 0.63 (0.55-0.72) 0.67 (0.59-0.74) 0.67 0.70 0.46

XGBoost 0.62 (0.56-0.68) 0.58 (0.50-0.66) 0.59 (0.49-0.69) 0.60 (0.52-0.68) 0.60 0.70 0.45
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verified using the external validation dataset. Its AUCs (95%
confidence intervals) to classify category 1 and others,
category 2 and others, category 3 and others, and category
4 and others were 0.66 (0.61–0.71), 0.57 (0.51–0.62), 0.60
(0.50–0.69), and 0.64 (0.57–0.71) (Table 6). Its AUC for
classifying category 1 and others was not significantly
different from that of the testing dataset shown in Table 4
(p value was 0.63). Moreover, its AUCs for classifying
category 2 and others, category 3 and others, and category
4 and others were not significantly different from those of
the testing dataset shown in Table 4 (p values were 0.06,
0.26, and 0.89). Figure 3 shows the receiver operating
characteristic (ROC) curves of the model. The AUC for
classifying category 1 and the others was the highest
among the AUCs for classifying each category.

4. Discussion

In this study, we identified the glucose metabolism status of
nondiabetic Japanese adults using a questionnaire. This
model had two unique features. The first is it identifies the
glucose metabolism status of individuals without diabetes.

In our previous study, we classified the Japanese population
without diabetes into four glycometabolic categories. Each cat-
egory had distinctly different insulin sensitivity and secretory
characteristics [21]. However, prediabetes presents overlap-
ping pathophysiology of impaired insulin sensitivity and
secretion [25, 26]. Although screening tools for prediabetes
have been developed [14, 16–20], this is the first study to
develop a model to identify the glucose metabolism status of
individuals without diabetes. This model encourages individ-
uals to understand their glucose metabolism status and learn
how they should change their lifestyle to prevent diabetes.

Second, the model requires only 10 questions about life-
style and physical information that can be answered easily.
Unlike diabetics who need to take their medications, nondia-
betic people have no strong motivation or coercion to take
screening tests. Clinical measurement values, such as fasting
plasma glucose and abdominal circumference, are valid predic-
tors of glucose metabolism status [14, 17–20]. However, the
need to link a tool to clinical laboratory data may limit their
scope of use.Moreover, in the questionnaire tool, variables that
the user cannot remember may reduce the user’s motivation.
The simplicity of our tool helps individuals expand their
opportunities to know their glucose metabolism status.

A systematic review of risk assessment tools for detecting
prediabetes reported a mean AUC of 0.7 (ranging from 0.66
to 0.75) [27]. Meanwhile, in this study, the AUC for

Table 4: Performance of the random forest model using the ten variables (95% confidence interval).

Model

AUC for
classifying

category 1 and
the others

AUC for
classifying

category 2 and
the others

AUC for
classifying
category 3

and the others

AUC for
classifying category
4 and the others

Mean of
AUCs

Sensitivity to
detect categories

2, 3, and 4

Specificity
to detect
category 1

Random forest
using 10 variables

0.68 (0.62–0.75) 0.66 (0.58–0.73) 0.61 (0.51–0.70) 0.70 (0.62–0.77) 0.66 0.70 0.41

ROC curve for classifying
category 1 and the others

ROC curve for classifying
category 2 and the others

ROC curve for classifying
category 3 and the others

ROC curve for classifying
category 4 and the others

Se
ns

iti
vi

ty

1.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0.0

0.0 1.0
1–specificity

Figure 2: Receiver operating characteristic (ROC) curves of the
random forest model using the ten variables.

Table 5: Ten most important variables of the model and their
importances.

Variable
Mean decrease in
Gini coefficient

Body mass index 10.3

Age 8.1

Height 3.3

Do you wake up in the
middle of the night?

3.1

Which do you usually eat:
rice or bread?

2.5

Frequency of tea intake per
week at lunch

2.1

Do you wake up late on
nonworking day?

1.9

Frequency of mobile phone and
tablet computer use at bedtime

1.4

Frequency of soup intake 1.4

Frequency of toothbrush
replacement

0.8
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classifying category 1 (the best glucose metabolism group)
and the other categories (impaired glucose metabolism
groups) was 0.68 in the random forest model using 10 vari-
ables. In the external validation, the AUC was 0.66. How-
ever, due to the aforementioned differences from previous
studies, this model has its own merits. In addition, some pre-
vious tools used the history of hyperglycemia and hyperten-
sion as variables [19, 28–31]. These have a clear association
with diabetes risk and may contribute to improving the
model performance. However, the population of this study
excluded patients with hyperglycemic and hypertensive,
which may also have affected the performance of the models.
The AUC for classifying category 1 and the AUC for classi-
fying category 4 were higher than those for classifying cate-
gories 1 and 4. Category 1 has the best glucose metabolism
status, while category 4 has the worst glucose metabolism
status with low insulin secretion and sensitivity [21]. Catego-
ries 2 and 3 are intermediate. Therefore, categories 1 and 4
may have been easier to identify.

Ten variables used in the random forest model are sug-
gested to be associated with glucose metabolic status and
diabetes risk. Variables included age, BMI, and height. Aging

diminishes the ability to secrete insulin [11, 32], whereas
obesity decreases insulin sensitivity [10, 33–35]. Cohort
studies in Europe and Israel reported that height and risk
of type 2 diabetes are inversely correlated [36, 37]. Sleep,
diet, and lifestyle variables were also employed; laboratory
interventions of circadian disruption were found to attenu-
ate insulin sensitivity and insulin secretion [38–40]. Sleep
duration is related to the risk of developing type 2 diabetes.
Sleeping 7–8 hours per day has the lowest risk. [41]. Insom-
nia disorder with short sleep duration is associated with a
higher risk of type 2 diabetes [42]. In addition, bedtime
mobile phone use decreases sleep quality [43, 44]. Therefore,
screen time at bedtime may be associated with glucose
metabolism. However, the association has not been reported.
This study is the first to suggest an association between glu-
cose metabolic status and mobile phone and tablet computer
use at bedtime. Preference for rice or bread is a question that
reflects an individual’s dietary styles. Rice is the primary
source of carbohydrates for Asians. There is a positive asso-
ciation between rice intake and the development of type 2
diabetes [45]. Replacing refined grains with whole grains is
recommended for diabetes prevention [46]. The relationship
between diabetes and various dietary styles, such as the Med-
iterranean diet and vegetarian diet, has been studied [47, 48].
However, there is no single optimal dietary style [49, 50].
Further research is needed to determine the appropriate die-
tary style for each person. The frequency of soup intake may
also be a factor related to dietary style. Tea is rich in poly-
phenols and caffeine. Several in vitro studies have shown
that tea components enhance insulin sensitivity and insulin
secretion [51–54]. Multiple epidemiological studies have
shown that habitual consumption of tea decreases the risk
of type 2 diabetes [55–58]. On the contrary, intervention tri-
als have reported inconsistent results regarding the effects of
tea on glucose metabolism [59–62]. Periodontal disease and
oral inflammation worsen glycemic control and increase dia-
betes risk [63, 64]. Therefore, oral hygiene habits, such as
frequency of toothbrush replacement, may be important in
maintaining glucose metabolism status. However, their asso-
ciation has not been reported [65]. This study suggests for
the first time that oral hygiene habits may be associated with
glucose metabolism status. In this study, we developed
models using a wide range of lifestyle and physical informa-
tion, including unknown diabetes risk factors. From the
aforementioned considerations, the 10 variables selected
for the random forest model are reasonable. However, some
lifestyles do not clearly present an association with glucose
metabolism status. Further studies should clarify the causal
relationship and molecular mechanism.

Table 6: Performance of the random forest model using the ten variables in the external validation (95% confidence interval).

Model

AUC for
classifying

category 1 and
the others

AUC for
classifying

category 2 and
the others

AUC for
classifying

category 3 and
the others

AUC for
classifying

category 4 and
the others

Mean of
AUCs

Sensitivity to
detect categories

2, 3, and 4

Specificity
to detect
category 1

Random forest
using 10 variables

0.66 (0.61–0.71) 0.57 (0.51–0.62) 0.60 (0.50–0.69) 0.64 (0.57–0.71) 0.62 0.70 0.55

ROC curve for classifying
category 1 and the others

ROC curve for classifying
category 2 and the others

ROC curve for classifying
category 3 and the others

ROC curve for classifying
category 4 and the others
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Figure 3: Receiver operating characteristic curves of the random
forest model using the ten variables in the external validation.
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This study had some limitations. First, the study was
aimed at Japanese people, and its application to other coun-
tries and ethnic groups is limited. In particular, the questions
regarding diet correspond to Japanese food. Further research
is needed to expand the scope of application. Second, the
participants were recruited volunteers rather than randomly
selected population-based samples. Third, the questionnaire
was not validated, so measurement errors may have
occurred. Nevertheless, the model was validated by external
validation using data of people from another region of
Japan. Therefore, the robustness of the model was con-
firmed. Notably, this model should be used for screening,
and accurate diagnosis should be made by clinical tests, such
as OGTT [13]. Despite the increasing number of patients
with diabetes worldwide [1], impaired glucose metabolism
is being overlooked because of its asymptomatic nature
[66]. Understanding one’s glucose metabolism status may
provoke stronger behavioral motivation than vague
lifestyle-related improvement suggestions.

5. Conclusions

In this study, we developed a model to identify glucose
metabolism status of nondiabetics using a simple question-
naire. The model had the following two features. (i) It iden-
tified glucose metabolism status, i.e., insulin sensitivity and
secretion, rather than prediabetes. (ii) It required only 10
factors, which were only questions about lifestyle and phys-
ical information that could be answered on the spot. These
variables were selected using a random forest. The 10 factors
were age, height, BMI, and the following questions: “Do you
wake up in the middle of the night,” “Which do you usually
eat: rice or bread,” “Frequency of tea intake per week at
lunch,” “Do you wake up late on nonworking day,” “Fre-
quency of mobile phone and tablet computer use at bed-
time,” “Frequency of soup intake,” and “Frequency of
toothbrush replacement.” Some factors do not have previ-
ously reported associations with glucose metabolism status.
Thus, this study suggested new factors that can be associated
with glucose metabolism status. The AUC for identifying
categories with impaired glucose metabolism was 0.68. In
the external validation, the AUC was 0.66, and the robust-
ness of the model has been demonstrated. This model can
be used by anyone, anywhere, by answering simple ques-
tions. This model provides an opportunity for many nondi-
abetic individuals to identify their glucose metabolism
status. That can lead them to start improving their lifestyle
to reduce their diabetes risk. The questionnaire of this study
was aimed at Japanese people. In particular, the dietary
questions were based on Japanese food. Therefore, the
model’s application to other countries and ethnic groups
may be limited. Further research is needed to acquire and
analyze data from different populations in order to expand
the scope of application.
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