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COVID-19 has remained a threat to world life despite a recent reduction in cases. There is still a possibility that the virus will evolve
and become more contagious. If such a situation occurs, the resulting calamity will be worse than in the past if we act irresponsibly.
COVID-19 must be widely screened and recognized early to avert a global epidemic. Positive individuals should be quarantined
immediately, as this is the only effective way to prevent a global tragedy that has occurred previously. No positive case should go
unrecognized. However, current COVID-19 detection procedures require a significant amount of time during human examination
based on genetic and imaging techniques. Apart from RT-PCR and antigen-based tests, CXR and CT imaging techniques aid in the
rapid and cost-effective identification of COVID. However, discriminating between diseased and normal X-rays is a time-consuming
and challenging task requiring an expert’s skill. In such a case, the only solution was an automatic diagnosis strategy for identifying
COVID-19 instances from chest X-ray images. This article utilized a deep convolutional neural network, ResNet, which has been
demonstrated to be the most effective for image classification. The present model is trained using pretrained ResNet on ImageNet
weights. The versions of ResNet34, ResNet50, and ResNet101 were implemented and validated against the dataset. With a more
extensive network, the accuracy appeared to improve. Nonetheless, our objective was to balance accuracy and training time on a
larger dataset. By comparing the prediction outcomes of the three models, we concluded that ResNet34 is a more likely candidate for
COVID-19 detection from chest X-rays. The highest accuracy level reached 98.34%, which was higher than the accuracy achieved by
other state-of-the-art approaches examined in earlier studies. Subsequent analysis indicated that the incorrect predictions occurred
with approximately 100% certainty. This uncovered a severe weakness in CNN, particularly in the medical area, where critical
decisions are made. However, this can be addressed further in a future study by developing a modified model to incorporate
uncertainty into the predictions, allowing medical personnel to manually review the incorrect predictions.

1. Introduction

COVID-19 belonged to the “coronavirus” (CoV) lineage
when it was discovered for the first time in December of this
year. The World Health Organization (WHO) reclassified the

“severe acute respiratory syndrome coronavirus 2” (SARS-
CoV-2) to COVID-19 in February of this year. On March 11,
2020, the World Health Organization (WHO) announced
COVID-19 as a pandemic, and it was designated as a Public
Health Emergency of International Concern [1]. Fever,
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coughing, and respiratory sickness (similar to the flu) may
occur in some people exposed to the COVID-19. In contrast,
no symptoms will be present in many others [2]. Pneumonia,
difficulty breathing, organ failure, and even death are po-
tential indications of this condition [3, 4]. According to the
study’s findings, the COVID-19 can spread between persons.
As a consequence of the virus’ development, there have been
variations in the symptoms and transmission rates of SARS-
CoV-2 throughout time. This is why it is important to identify
the problem as soon as possible.

Those afflicted with COVID-19 must be separated and
treated separately from the rest of the population if the
illness is defeated. With the advent of diagnostic testing
(current infection) and antibody tests, COVID-19 may
now be diagnosed in infected individuals (past infection).
Antigen tests and RT-PCR may be used to swiftly detect
COVID-19 by evaluating short RNA sequences for the
presence of coronaviruses, as opposed to other methods
[5, 6]. False positives (FPs) are more likely to occur if you
utilize antigen testing rather than RT-PCR when diag-
nosing a disease. It is possible that using current ap-
proaches, the detection of COVID-19 will be impeded by
the following issues: RT-PCR findings that are negative for
COVID-19 infection are not considered to rule out the
possibility of infection. Additional inquiry is necessary to
rule out the possibility of a false-negative situation [7, 8].
It is necessary to use highly specialized materials,
equipment, and staft to get outcomes in a matter of hours
or days.

Furthermore, early detection of the virus is critical be-
cause COVID-19-induced pneumonia is more likely to be
lethal in some groups of people than in others. However,
early diagnosis is not always possible or practical because of
the incubation period, which may last days. These limita-
tions need the development of novel COVID-19 detection
technologies.

It is also possible to detect COVID-19 infection using a
wide range of nonlaboratory methods. As part of the
operation, chest X-ray data must be reviewed. Radiology
journal articles have claimed that chest X-rays may be
beneficial in determining whether or not a patient has
pneumonia. According to the research, emphysema and
chronic obstructive pulmonary disease (COPD) are life-
threatening in people with COVID-19 [9]. The X-ray
images of patients who have COVID-19 symptoms show
some significant abnormalities such as horizontal white
lines, bands, or reticular changes, as well as some visual
marks like ground-glass opacities—hazy darkened spots
that can distinguish those who have COVID-19 infection
from those who do not, according to several additional
studies [10, 11]. A chest X-ray system may be useful in
identifying, measuring, and following COVID-19 patients
due to this study. For example, the resolution of a CT scan
has significantly enhanced. Compared to other imaging
modalities, this imaging modality is less expensive and has
better sensitivity than other imaging modalities, such as
chest X-ray images. When testing kits and screening
stations are not accessible, X-ray equipment may be used
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to detect COVID-19. It is also fast since it uses several cases
at once.

When using the COVID-19 detection approach, which
depends on X-rays, radiologists must manually inspect and
delete abnormalities from each X-ray picture before using
the procedure. This would need the involvement of a group
of medical professionals. Patients with COVID-19 may be
detected from chest X-rays in a short period and with high
accuracy, making the diagnostic process easier [12]. Many
healthcare institutions utilize machine learning to detect
ailments and diseases [13, 14]. For example, in a patient’s
X-ray and computed tomography (CT) lung pictures, many
supervised learning algorithms, including logistic regres-
sion, random forests, and support vector machines (SVMs),
recognized it [15-18].

Deep learning systems outperform more time-consuming
and labor-intensive conventional techniques for producing
high-quality outcomes. This is because deep learning systems
extract features on their own. Using deep learning, it is now
possible to make scant contributions to interpreting medical
pictures and attaining excellent classification performance
with fewer time-consuming simulated workloads [19]. It is
possible to train a CNN; however, the dearth of publicly
accessible picture databases and the restricted quantity of
patient data provide significant challenges [20].

This research used a deep convolutional neural network
(CNN) model to categorize X-ray pictures into COVID-19
and healthy. There are 9803 COVID-19 photos and 8960
normal images from different public sources available as
training and testing images to train and test the model. In the
hopes of saving time and money, the solution created as a
result of this study will enable physicians to detect disease
earlier in the course of a patient’s illness. If this method is
perfected, it may be used in other types of medical images,
including CT, MRI, and MEG, to demonstrate signature
patterns in those images. In the course of this study, we may
be able to detect early indicators of lung, heart, and cancer
illness. This may have implications for how I treat patients
who have already been diagnosed with these diseases.

The contributions of this work are summarized as
follows.

(1) The current work developed a more generalized
model that could generate results across several
COVID-19 datasets along with performance supe-
rior to the many of the previous works which was
limited to one or two public datasets.

(2) Proposed a cutting-edge automated COVID-19 di-
agnosis system based on a pretrained deep learning
model to detect COVID-19 patients using chest X-ray
images. The created model uses multiple residual
network (ResNet) versions, spanning 34 to 101 layers.

(3) Comparative analysis of the performance of the
models ResNet34, ResNet50, and ResNet101 in terms
of training time and accuracy. The work also in-
vestigates whether accuracy improved with com-
plexity of the model.
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(4) The research also reveals a key fault in the CNN
architecture: the incorrect predictions were made
with 100% certainty. It is a question of the model’s
dependability, particularly when it comes to medical
diagnosis.

The remainder of the paper is organized as follows.
Section 2 provides a review of previous literature relevant to
our project. The technique is described in depth in Section 3,
which contains the dataset used in this study as well as
additional processes including the suggested network design
and the training pipeline. A summary of the findings was
presented in Section 4, followed by a discussion in Section 5.
The conclusions are included in Section 6, which is followed
by references.

2. Literature Review

A number of studies have shown that deep learning (DL)
technologies are the most promising technique for
dealing with disease diagnosis using medical imaging
[21, 22]. The detection of the COVID-19 from X-ray, CT
scan, and ultrasound images using deep learning algo-
rithms has been the subject of much investigation
[23-25]. There was no need to include previous research
on other types of chest images because our investigation
was solely focused on chest X-ray classification (COVID-
19 or healthy).

Researchers at the University of California, Los Angeles
(UCLA), have built a deep convolutional neural network
model utilizing digitized chest X-rays to identify COVID-
19 pneumonia patients automatically. The researchers who
conducted the research published the findings in Nature
Communications journalist of three publicly accessible
datasets, and a GitHub repository was used in this inquiry
[26]. It is possible to get chest X-ray images using one of
two databases: ChestX-ray8 [27] and Chest X-Ray Images
(Pneumonia). Their study discovered that the ResNet50
model outperformed the other models, with 96.1% of all
models achieving the best overall performance. Train and
evaluate the model throughout its development; just a small
quantity of data was needed to do so (50 COVID-19 and 50
normal chest X-rays).

A new model, established by [28], was designed to
predict the outcome of patients who had their X-ray pic-
tures obtained by themselves. This study included the
analysis of 100 chest X-ray pictures taken from 70 COVID-
19 patients and 1431 chest X-ray images taken from
pneumonia patients who did not have COVID-19. The
findings were published in the journal Chest. The classi-
fication head is one of the three primary components of this
paradigm. The other two components are anomaly de-
tection and classification. Backbone networks, classifica-
tion heads, and anomaly detection heads are some of the
other components of the system. The core network, pre-
trained on ImageNet, comprises 18 layers of residual
CNN . ImageNet is the name of this massive generalized
dataset for picture classification that has been created. This
model has the potential to properly detect COVID-19 and

non-COVID-19 patients with 96% and 70.65% accuracy,
respectively.

[29] also used deep learning to identify COVID-19
patients from a limited number of chest X-ray scans, which
they found effective. Their results were obtained using
ResNet50, a pretrained network with an accuracy of 89.2%.

[18] have also used deep features to diagnose corona-
virus illness. It was discovered in this study that utilizing
ResNet50 and the support vector machine (SVM)-based
model with 95.38% accuracy and 91.41% F1-score could be
built.

The authors [30] previously used transfer learning to
classify images into good and bad health using a combi-
nation of three datasets [26, 31] and from Kaggle. They
found that transfer learning effectively categorized pho-
tographs into good and bad health. The researchers utilized
224 chest X-ray images of COVID-19-infected persons, 714
images of people suffering from pneumonia, and 504 im-
ages of healthy people to train their computer model. In a
recent study, the researchers discovered that transfer
learning might identify errors in limited medical imaging
datasets. The findings demonstrate that deep learning used
in X-ray imaging can consistently detect important bio-
markers associated with COVID-19 disease, with a preci-
sion of 96.78%.

[32] constructed their DarkNet model in 2020 using the
widely used dataset [26], which Cohen, 2020, provided.
Leaky ReLU is used to activate all 17 convolution layers in
their model, resulting from a bug in the algorithm. The
model was trained and evaluated using 127 COVID-19 chest
X-ray pictures collected from participants and 500 normal
chest X-ray photos acquired from the same subjects. When it
comes to binary classification, this model has an average
overall accuracy of 98.08%; however, when it comes to
multi-class classification, it only has an average overall ac-
curacy of 87.02%.

According to [33], transfer learning and image aug-
mentation were used to identify COVID-19 in chest X-ray
pictures of healthy patients. COVID-19, viral pneumonia,
and COVID-19 are all employed in this study to classify
patients into one of two categories: I, “normal,” and II,
“COVID-19,” according to the researchers. They employed
423 COVID-19 images for training and validation, 1485
images of viral pneumonia, and 1579 photos of normal chest
X-rays among the images they used for training and vali-
dation. A 99.70% accuracy rate and an Fl-score of 99.70%
were achieved by this group in binary classification, indi-
cating that they did very well.

[34] developed a deep convolutional neural network
(CNN) model for classifying three forms of pneumonia:
bacterial, viral, and COVID-19 pneumonia. The research is
based on two datasets: [26] and “Chest X-Ray Images
(Pneumonia)” [31], and achieved accuracy of 89.6% and
95%, respectively.

[35] drew on a repository hosted by Kaggle and dubbed
the “COVID-19 Radiography Database,” for their research.
The HSGO algorithm and the SVC classifier will construct
the suggested pipeline. To establish how many COVID-19
images impacted the model’s accuracy, scientists analyzed



three separate sets of data to determine how many images
impacted the model’s accuracy. According to a further in-
depth investigation, utilizing the whole dataset resulted in
the maximum accuracy possible, 99.65%.

According to one research conducted by Abed and
colleagues, regular machine learning models and deep
learning (DL) models performed differently when auto-
matically differentiating between healthy individuals and
COVID-19-infected people in X-ray pictures. The re-
searchers created this dataset, called COVID-19 vs. normal,
which is vast in size (400 healthy cases and 400 COVID
cases). Based on the results of the trials, it found the deep
learning model. ResNet50 had the highest accuracy, with a
score of 98.8%. However, all of the models achieved satis-
factory results.

On the other hand, a CovidGAN model built by [36]
used an auxiliary classier generative adversarial network
(ACGAN) to generate synthetic chest X-rays (CXR) images,
which was based on the ACGAN technique. They discovered
that including CovidGAN’s synthetic pictures into CNNs
increased the performance of CNNs when it came to
COVID-19 recognition. The accuracy of CNN classification
was 85%, but when CovidGAN pictures were utilized to
build synthetic images, the accuracy increased to 95%.

The majority of the COVID-19 research initiatives made
public so far have relied on pretrained models to conduct
their investigations. These models must be pretrained on
larger, more broad datasets such as ImageNet before being
used in the production environment. A smaller dataset was
also employed to train and test the models in virtually all
research, which was always beneficial.

3. Materials and Methods

3.1. Dataset. Data are at the heart of deep learning, and it is
used to power these learning models. Because COVID-19 is
anew disease, there is no appropriate sized dataset to use for
this research. As a result, we had to acquire chest X-ray
images from five distinct publicly available image databases
to generate a dataset.

(1) COVID-19 Radiography Database ([33, 37]).
(2) GitHub repository by [26].

(3) Chest X-Ray Images (Pneumonia) [31].

(4) Synthetic-covid-cxr-dataset [38].

(5) https://github.com/agchung/-COVID-chestxray-
dataset

Some of the datasets listed above have been frequently
used in past research (Table 1). All the collected images
were divided into two categories: COVID and normal. We
obtained 12650 images for COVID-19 class and 11787
images for normal class by integrating the images from the
five publically available datasets. We transformed all of the
images into a single format, .png, because they had
multiple extensions like .jpg, .png, .jpeg, and so on. A total
of 20% of the images obtained were used for testing. 20% of
the training images were randomly allocated for validation
while training the model. Because all of the photos were of
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different sizes, they were all reduced to 256 x 256 before
being loaded into the model, significantly reducing the
feature pool extracted and increasing computational
speed. There was no image preprocessing to improve the
quality of the images, and no augmentation to increase the
quantity.

The prepared dataset for model training is summarized
in Table 2 and some samples of chest X-ray images from the
created dataset are shown in Figure 1. COVID-19 sufferers’
lungs are spotty and cloudy, as seen in the images, when
contrasted to normal, healthy lungs. Additionally, on the
lower lobes and periphery of the lungs several distinctive
features can also be seen [43].

3.2. Architecture of Deep Transfer Learning. CNNs are a type
of deep neural network (DNN) used for image recog-
nition [44]. To build a CNN model, inputs must be
transformed into a CNN-friendly format. Frequently
images are viewed as matrices. During training, the model
tries to understand the differences between the categories,
which helps it predict the labels on unknown images.
CNN uses three layers to efficiently accomplish its
function: convolutional, pooling, and fully connected
(FC). The convolutional layer with pooling extracts the
most distinct characteristics. The fully connected layers
handle the classification task.

However, training the CNN from scratch takes a
significant amount of time and data to achieve the req-
uisite accuracy. Given the scarcity of available images, we
chose to start with a model trained on an extensive dataset
and transfer weights [45, 46]. This will eliminate the
bottleneck associated with feature extraction in our CNN
training. All that is required now is to adjust the final
classification layer to one that is appropriate for the image
classification challenge at hand. In the current work, we
chose three well-established CNN architectures that have
attained state-of-the-art performance and were pretrained
on the ImageNet [47] dataset, which contains 1.4 million
annotated images classified into 1000 classes. The chosen
architectures, ResNet34, ResNet50, and ResNet101, were
used for the classification of COVID-19 chest X-ray
images to binary classes (COVID-19 and normal
(healthy)). Additionally, we used a transfer learning
technique that was implemented using the ImageNet
dataset to overcome the limitations of insufficient data
and training time.

Figure 2 shows the schematic representation of con-
ventional CNN including pretrained ResNet34, ResNet50,
and ResNetl01 models for the prediction of normal
(healthy) and COVID-19 classes from chest X-rays.

3.3. ResNet. The residual neural network (ResNet) model
[48] is an upgraded version of the convolutional neural
network (CNN) (Figure 3). Unlike all other publicly avail-
able CNNs, ResNet incorporates residual (skip) connections
between layers, avoiding the vanishing gradient problem
that happens as the network becomes more extensive and
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TaBLE 1: List of some of the benchmark datasets used in previous works.

Database Previous works
COVID-19 Radiography Database https://www.kaggle.com/tawsifurrahman/covid19-radiography-database [33, 37] [34, 39, 40]
GitHub repository by [26] https://github.com/ieee8023/covid-chestxray-dataset/tree/master/images [41]
Chest X-Ray Images (Pneumonia) (34, 42]

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia [36]

TaBLE 2: Distribution of the collected images.

Category No. of images
Train COVID-19 9803
Normal 8956
Test COVID-19 2847
Normal 2831

complicated. Additionally, bottleneck blocks are employed
in the ResNet model to accelerate training [49].

ResNet comes in a variety of variations that all operate
on the same principle but have a variable amount of layers
(Table 3). The terms ResNet34, ResNet50, and ResNet101
refer to variations that work with 34, 50, and 101 neural
network layers, respectively.

3.4. Model Training. ResNet34, ResNet50, and ResNet101
were trained using the FAST AI package built on top of
PyTorch. The training was conducted on an NVIDIA
Quadro P1000 GPU with 32 GB RAM. The training begins at
a learning rate of 0.001. We employed the Adam algorithm
[50] as an optimizer. We originally set up the training to 100
epochs. However, if the validation loss does not constantly
reduce over a lengthy period, the process will terminate
prematurely. The batch size was 16 to avoid the memory
exhaust. The model’s performance is evaluated by applying
the model to the test dataset. We used NumPy, OpenCV,
scikit-learn [51], and other open-source tools for further
processing and analysis.

3.5. Performance Metrics. The confusion matrix is a table
that describes the accuracy of classification task [52]. It also
shows the evaluation metrics such as true positives (TP),
false positives (FP), false negatives (FN), and true negatives
(TN). Each of them is defined as follows.

(i) True Positives (TP): These are number of images in
which we predicted the class (COVID or normal),
and they do belong to the predicted class.

(ii) True Negatives (TN): We predicted that the images
do not belong to a class and they actually do not
belong to the class.

(iii) False Positives (FP): We predicted a class, but the
images do not actually belong to the predicted class
(also known as a “type I error”).

(iv) False Negatives (FN): We predicted that images do
not belong to a class, but they actually belong (also
known as a “type II error”).

The model performance metrics like accuracy (equa-
tion (1)), error rate, recall (equation (2)) precision
(equation (3)), and Fl-score (equation (4)) were derived
from these data. The most commonly used fundamental
measure classifiers are accuracy (ACC) and error rate
(ERR) [53]

TP + TN

A - 1
Y = TPy TN+ FP + EN’ o
TP
Recall = ———, 2
TP+ EN @
TP
precision = — TP 3
recision TP +EP ( )

2 % Precision * Recall
F1 score = — . (4)
Precision + Recall

4. Results

To do a COVID-19 detection using the obtained chest
X-ray dataset, we developed three CNNs, ResNet32,
ResNet50, and ResNetl0l that were pretrained on
ImageNet weights. A learning curve was used to assess the
overall performance of the models. The learning curve is a
mathematical depiction of the model’s performance
during training. The train and validation losses of the three
models are presented in Figure 4. These graphs allow us to
see if the models are overfit or not. Figure 5 also depicts the
validation accuracy and error rate for the three architec-
tures that were designed. The plot of training loss de-
creasing to a point of stability is shown in Figure 4.
Meanwhile, the validation loss plot stabilizes and has a
small gap between it and the training loss. In terms of
learning curves, it can be noted that the performance of
ResNet34, ResNet50, and ResNet101 is astonishingly well
fitted, by extracting all of the information needed for the
effective classification of chest X-rays to COVID-19 or
healthy (normal).

A detailed performance analysis on the validation set is
used to monitor the model performance during the training
process. The confusion matrix (Table 4) shows that, out of
3751 validation samples, the ResNet34 trained model pre-
dicted 12 samples to belong to a wrong class as opposed to
3739 correct predictions resulting in 99.68% validation
accuracy with a 99.67% Fl-score. It is evident that the
ResNet34 outperforms the other three architectures in terms
of accuracy (Table 5). The precision, recall, and F1-score for
each class in validation samples are also shown in Table 6.
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FIGURE 1: Samples of chest X-ray images from prepared dataset. (a) Normal. (b) COVID-19.
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FIGURE 2: Block diagram of the proposed system.

Following that, we examined the performance of the
pretrained model on the test data photos (Figure 6). The
confusion matrices for the three ResNet model variations
accessible for the experiment are shown in Figure 6,
namely, ResNet34, ResNet50, and ResNetl0l. In all of
them, the most normal (healthy) chest X-ray images were
predicted as COVID-19. However, a smaller percentage
of COVID-19 photos were misclassified as normal. This
could be because some of the normal X-ray images
possessed visual qualities that the model was unable to
detect. By examining the total number of correct and
incorrect predictions, and the performance of the models
on individual classes (Figure 7), we may infer that
ResNet101 performs the best. However, the value is not
much different from the other models. Adding layers or

creating a more sophisticated architecture does not al-
ways result in increased prediction accuracy [54], and
here, there was only a slight performance rise with more
layers. So, we can say that performance of methods is not
always related to the complexity of the network. So by
comparing the computational time (Table 7), which is a
result of more deep layers (complexity of the network),
and the model’s performance, we concluded that
ResNet34 would be a better choice for the chest X-ray
binary classification task.

When we talk about the misclassifications in Figure 7
confusion matrices, it is further evaluated in Figure 8 where
most of the misclassifications occur for normal images that
were wrongly predicted as COVID-19 but with high
confidence.
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Convl layerl layer2 layer3 layer4 — > Flatten
r—JT. —
256
S12 g
14 T softmax
7
224
FiGURE 3: Detailed architecture of ResNet.
TaBLE 3: Sizes of outputs and convolutional kernels for ResNet versions.
Layer name Output size 34 layers 50 layers 101 layers
conv 1 112x112 7 x 7, 64, stride 2
3 x 3 max pool, stride 2
conv 2.X 56 X 56 3x3, 64 3 1x1, 64 1x1,64 7
3x3) 64 X 3X3, 64 (x3 3X3, 64 |x3
1x1, 256 1x1,256 ]
conv 3.x r ] 1x1,128 1x1,128 7
28 x 28 3x3,128 > >
3x3,128 | ¥4 3x3,128 |x4 3x3,128 |x4
B - 1x1,512 1x1,512 ]
conv 4.x 14 x14 r 3x3,256 ] 6 1x1, 256 1x1,256 ]
3x3,256 3x3, 256 |x6 3X3, 256 |x23
- - 1x1,1024 1x1,1024 |
conv 4.x 7 %7 -3X3’512-x3 1x1,512 1x1,512
3x3)512 3X3, 512 |x3 3X3, 512 |x3
- - 1x1,2048 1x1,2048
1x1 Average pool, 1000-d fc, softmax
FLOPs 3.6x10° 3.8x10° 7.6x10°

5. Discussion

The effective detection of COVID-19 cases as soon as
possible has emerged as a critical aspect in containing the
outbreak in pandemic hot regions. Additionally, monitoring
chronic coronavirus infections may aid in the prediction of
new variant risks, as the virus commonly mutates under
favorable conditions. It has lately been debated whether
chest X-ray pictures are effective in diagnosing COVID-19,
owing to the time delay and lower reliability associated with
the RT-PCR or antigen testing methods [34, 55]. The current
study created a fully automated diagnostic tool to classify
chest X-rays into normal and COVID-19 categories based on
their appearance in response to these findings. The results of
this study demonstrate that an artificial intelligence system
driven by a fine-tuned pretrained model, as developed in this
work, can accurately anticipate the presence of COVID-19 in
a chest X-ray image and distinguish it from normal con-
ditions. Consequently, our findings improve upon prior

research by emphasizing the usefulness of chest X-ray im-
aging in other medical diagnostic procedures.

Not only is the model’s accuracy a critical research
problem for us. We aimed at the factors that influence these
outcomes. The current research used transfer learning to
construct a COVID detection system using chest X-rays. The
methodology was not unique as many previous studies had
already demonstrated the utility of transfer learning or
pretrained models in this classification task [18, 33].
However, the majority of them were based on a limited
dataset. As a result, we cannot always state that the results are
generalizable because they only reflect a small fraction of the
worldwide COVID cases. We require a model that can
generalize across a wide range of samples worldwide. So, we
can say that the dataset created in this study is the most
promising characteristic of the current research ahead of the
model development.

The performance analysis of the various transfer learning
methodologies suggested in this research is the next goal of
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FIGURE 5: The flow graph. (a) Validation accuracy. (b) Error rate of the ResNet34, ResNet50, and ResNet101 models.

the project. The ratio of correctly categorized images out of ~ feature extraction and end-to-end CNN techniques. The
total images is the important statistic. Since we fine-tuned  suggested system learnt the basic abstract features of the
the pretrained model’s top layers, we have already expected ~ images from the lower layers, while the top layers learned
the best accuracy, as fine-tuning always outperforms classic ~ high-level features on the target input images, resulting in
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TaBLE 4: Validation confusion matrix.

True:

Models COVID-19 True: healthy
Predicted: COVID-19 1924 8

ResNet34 Predicted: healthy 4 1815
Predicted: COVID-19 1923 11

ResNet30 Predicted: healthy 5 1812
Predicted: COVID-19 1925 10

ResNet101 Predicted: healthy 3 1813

TaBLE 5: Validation performance metric.
Models Aciz;r)acy Recall (%) Precision (%) Fl-score (%)
(]

ResNet34 99.68 99.56 99.78 99.67

ResNet50 99.57 99.40 99.72 99.56

ResNet101 99.65 99.45 99.83 99.64

TaBLE 6: Validation classification report.

Models Recall (%) Precision (%) Fl1-score (%)
COVID-

ResNet34 19 99.79 99.59 99.69
Healthy 99.56 99.78 99.67
COVID-

ResNet50 19 99.74 99.43 99.59
Healthy 99.40 99.72 99.56
COVID-

ResNet101 19 99.84 99.48 99.66
Healthy 99.45 99.83 99.64

high accuracy. The loss and accuracy graphs of the three
versions of the residual networks are substantially identical
in Figures 4 and 5. Its training impact is outstanding, and the
loss has been constant. Tables 5 and 7 also reveal that the
accuracy, recall, precision, and Fl-scores of these models
were comparable. This addresses two research concerns: (1)
to what extent can chest X-ray binary classification (COVID
vs healthy) benefit from transfer learning in deep learning
with an improved dataset?, (2) how do the different transfer
learning scenarios improve performance?

However, there is cause for concern. The number of
parameters we need to train for each model changes
depending on the number of layers. ResNet101 contains 101
layers and 44.5M parameters, as shown in Table 8, yet the
detection impact is not much better than the other residual
networks on the COVID-19 dataset. Table 5 illustrates the
time it takes to calculate all of the models. As can be seen,
increasing the number of layers and hence the parameters
elongates the training time. The longer it takes to extract
features, the more complicated the network structure is, but
this does not affect accuracy. Compared to more complex
versions of ResNet, ResNet34 requires the least amount of
time to train and obtain a comparable performance.

5.1. Performance Comparison. The table gives a performance
comparison of the previous works with the same problem
with the proposed models. We compare our research with
recent work, as shown in Table 9. [57] used seven customized
deep CNN models to classify COVID-19 and healthy people.
The most performance occurred for VGG19 and Dense-
Net201 with accuracy, F1-score, precision, and recall of 90%,
91.5%, and 90%, respectively. [58, 59] used the transfer
learning methods to achieve accuracies up to 96% and
91.62%, respectively.

[32] with their customized DarkNet model achieved high
performance of 98.08% accuracy, which is closer to our
model. Even though majority of models achieved good
performance, the only issue was that many of them used one
or two datasets for their works which kept the model
generalization capability in question. But our model out-
performs these works in terms of accuracy and the quantity
of the data it handles.

The organization of the previous work [34] is similar to
ours; they used the Xception model, which, like ours, makes
use of residual connections to address the issue of dis-
appearing gradients. [59] also employed ResNet50v2 in their
work. However, our objective here was to construct a more
accurate model and develop a model that was much more
generalizable to a much larger dataset than in these previous
publications; then only, it can be suitable for real-life sce-
narios. Additionally, [34] compared the number of pa-
rameters in their model to those in prior publications.
However, we analyzed the number of parameters in various
ResNet versions generated for the COVID-19 identification
task in our work. We attempted to develop a trade-off be-
tween the number of parameters in the model (training
time) and its accuracy, which was essentially a comparison of
training time and accuracy. We also included the prediction
visuals in the discussion section as in [34]. However, they
were utilized not only to illustrate the predictions of the
model but also to determine whether the predictions were
correct or incorrect and the level of confidence in those
predictions. Our work attempted to deduce a significant
inaccuracy in the CNN and will have a detrimental effect on
the medical diagnosis process.

The misclassifications that occurred in the test dataset are
depicted in Figure 6. It is clear that the healthy images had
more mistakes because they were anticipated as COVID-19.
Figure 8 depicts some of the dataset’s misclassified images.
However, it is worth noting that these incorrect forecasts were
forecasted with a probability of 99% or 100% (confidence).
This highlights a significant CNN flaw. CNNs are not without
faults, even when they have great accuracy. The error bars
associated with a CNN’s forecast are unavailable. [61] already
discussed how deep neural networks can be easily fooled and
produce high confidence predictions based on rubbish im-
ages. So, in a domain, particularly in the medical domain,
understanding the mistake associated with the prediction is
critical since the judgments affect people’s lives. So as part of
our future study, we plan to look into ways to provide error
bars for CNN predictions.
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FIGURE 7: Test data performance of the models on individual classes.
TaBLE 7: Test data performance metric.
Models Accuracy (%) Recall (%) Precision (%) Fl1-score (%) Training time
ResNet34 98.34 96.86 99.81 98.31 609 minutes
ResNet50 97.99 96.29 99.67 97.95 1200 minutes
ResNet101 98.45 97.35 99.53 98.42 1700 minutes
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Prediction/Actual/Loss/Probability

Covid/Normal/21.33/1.00

Covid/Normal/7.21/1.00

A“

FIGURE 8: Some of the dataset’s misclassified images (labeled as predicted class/actual class/loss value/probability of prediction).

TaBLE 8: Number of parameters in ResNet versions [56].

ResNet version Number of parameters (in millions)

ResNet34 21.8
ResNet50 25.6
ResNet101 44.5

TABLE 9: Performance comparison with previous works.

Works Architecture Accuracy
(%)
[57] VGG19 DenseNet201 90
[58] COVIDPEN 9%
[59] DenseNet201 + ResNet50V2 + Inceptionv3 91.62
[60] VGG19, ResNet152 Xception, DenseNet201 9%
InceptionResNetV2
[32] Customized DarkNet 98.08
Our ResNet34 98.34
model

6. Conclusions

The paper presented a deep learning model for detecting
COVID-19 incidence from chest X-rays. The model is
trained with a prepared dataset containing images from

Covid/Normal/17.72/1.00

Covid/Normal/9.71/1.00

Covid/Normal/8.20/1.00

Covid/Normal/5.07/0.99

varied public sources containing chest X-rays of healthy and
COVID categories. The model’s performance evaluation for
image classification using transfer learning yields a classi-
fication accuracy of above 98%. The current research also
presented a detailed study of the performance of the three
distinct residual network models with numbers of layers
ranging from 34 to 101. It was evident that the training and
validation loss plots for all specified architectures showed the
least gap regardless of the number of layers. This means that
all models could achieve an optimum value of weights with a
decent degree of accuracy. However, the more complex
model required more training time to attain the best results.
ResNet34 was the best model since it could reach a 98.34%
accuracy with a small amount of training time. The proposed
model generalized well to the dataset, making it a better
candidate for real-time applications than state-of-the-art
models developed with a smaller dataset. Furthermore, we
discovered that more healthy images were predicted to be of
the COVID class with high confidence. This unravels a
significant flaw in CNN: CNN has a reliability issue that
hugely impacts medical decision-making. As a result, we
planned to address this issue in future work, including
COVID prediction from chest X-rays.
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