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Low‑dose shift‑ 
and rotation‑invariant diffraction 
recognition imaging
Tatiana Latychevskaia1,2* & Alice Kohli2

A low-dose imaging technique which uses recognition rather than recording of a full high-resolution 
image is proposed. A structural hypothesis is verified by probing the object with only a few particles 
(photons, electrons). Each scattered particle is detected in the far field and its position on the detector 
is analysed by applying Bayesian statistics. Already a few detected particles are sufficient to confirm 
a structural hypothesis at a probability exceeding 95%. As an example, the method is demonstrated 
as an application in optical character recognition, where a hand-written number is recognized from 
a set of different written numbers. In other provided examples, the structural hypothesis of a single 
macromolecule is recognized from a diffraction pattern acquired at an extremely low radiation dose, 
less than one X-ray photon or electron per Å2, thus leaving the macromolecule practically without 
any radiation damage. The proposed principle of low-dose recognition can be utilized in various 
applications, ranging from optical character recognition and optical security elements to recognizing a 
certain protein or its conformation.

One can recognize a familiar object or scene from only a few details without a need for an entire high-resolution 
image. Thus, a few measurements can be sufficient to extract all the relevant information. The task of recogni-
tion finds applications in different areas. In optics, for example, optical character recognition (OCR) allows for 
identifying the correct symbol from a set of available symbols. Although OCR can be routinely performed by 
commercially available devices, it is still a challenge to identify a character from a noisy and low-quality image, 
one solution here is to apply neural networks1. In biology, molecular structures can be simulated based on 
theoretical models in great detail. The purpose of an experiment can thus be replaced from obtaining a full high-
resolution image of macromolecule to recognizing a certain molecular structure. The recent breakthrough in 
solving the protein folding problem using artificial intelligence (Alphafold) has already provided a large number 
of models to the three-dimensional (3D) shapes of proteins2. At the same time, the experimental imaging of a 
single protein still remains a challenge due to the radiation damage problem3. Most protein structures are being 
solved using X-ray crystallography and cryo-electron microscopy, and are the result of averaging over tens of 
thousands of molecules. Presently, there is a strong wish to develop experimental techniques which would allow 
atomic resolution imaging of truly individual molecules4–14. However, radiation damage is the main limiting 
factor15, since a macromolecule is destroyed long before a sufficient number of scattering events is detected 
for a high-resolution structural analysis3,4. Alternative methods for structural determination which minimize 
the radiation dose have recently been proposed, they allow for the verification of a structural hypothesis with 
just a few scattering events. In these schemes, a quantum sorter is designed based on the molecular structure 
hypothesis and is positioned between the macromolecule and the detector16,17. Although highly promising, the 
experimental realization of such methods has been troubled due to several factors, mainly due to the practical 
limits in nano-fabrication of the structure-defined diffractive elements and the necessity of an atomic-precision 
alignment of the sorter caused by the high sensitivity of the method to lateral shifts and rotations of either the 
molecule or the sorter (the latter is illustrated in Fig. S1).

Here, we propose a low-dose diffraction recognition imaging which identifies the correct object from a set of 
hypotheses by using Bayesian statistics analysis. Two-dimensional (2D) diffraction pattern is replaced with one-
dimensional (1D) probability function obtained from azimuthal-averaged diffraction pattern, which solves the 
two issues in the quantum recognition schemes16,17: no sorting element is needed and object can be recognized 
in any in-plane orientation. The method is independent of the lateral position and in-plane rotation of the object. 
We demonstrate an application of the method for optical character recognition (OCR)18, where a hand-written 
character is recognized from a set of different written characters. We also provide an example of recognizing the 
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structural hypothesis of a single macromolecule’s orientation from its diffraction pattern. It is shown that already 
a few detected particles are sufficient to confirm a structural hypothesis at a high probability exceeding 95%.

Principle
Low‑dose recognition imaging.  For M object hypotheses, M corresponding images Ii

(

p
)

 are given and 
the corresponding probability density functions (PDFs) are calculated as:

where p is the pixel coordinate and N is the total number of pixels. For a 2D diffraction pattern, p is running 
through the 

(

qx , qy
)

 coordinates in the far-field detector plane 
(

qx , qy
)

 . The a priori probabilities of having any 
of the given hypotheses are equal:

After the first particle is detected in pixel p1, the a posteriori probabilities that the corresponding PDF cor-
responds to the imaged structure are given by

The updated probabilities become the input a priori probabilities for the analysis of the next particle detected 
in pixel p2. The probabilities are then updated according to Eq. (3), and so forth. Equation (3) gives P′

1 = P1 = 1 
for M = 1.

The proposed Bayesian recognition principle is illustrated using two two-pixel images, A and B with intensity 
distributions IA

(

p
)

 and IB
(

p
)

 , shown in Fig. 1a.
According to Eq. (1) the PDF for each image are given by:

and they are shown in Fig. 1b. The initial probabilities that the detected image corresponds to hypothesis A or B 
are equal to 0.5:PA = PB= 0.5 . After the first particle is detected in pixel p, according to Eq. (3), the probability 
that the observed image corresponds to hypothesis A is given by

When the first particle is detected at pixel p = 1 , the updated probability, according to Eq. (3) is given by:

The updated probability that the detected image corresponds to hypothesis B is given by P′

B = 1− P
′

A = 0.308.
P
′

A and P′

B are a posteriori probabilities, which are then used as input probabilities for the analysis of the next 
detected particle. When the second particle is again detected at pixel p = 1 , the updated probability that the 
observed image corresponds to hypothesis A is given by:
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Figure 1.   Two two-pixel images, A and B (a) and their corresponding probability density functions (PDFs) (b).
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 and the probability that the detected image corresponds to hypothesis B is given by P′

B = 0.165. And so forth, the 
routine is repeated for each next detected particle. Thus, by counting individual particles arriving at the detector 
and analysing their position on the detector, the probabilities of the hypotheses are quantitatively evaluated.

Low‑dose shift‑invariant diffraction recognition imaging.  In general, an object’s image is shifted 
together with the object. Thus, each image of a shifted object corresponds to a different hypothesis. To create an 
imaging method which recognizes object independently on its lateral position, a diffraction pattern of the object 
can be considered instead of its image. A diffraction pattern of an object distribution is obtained by acquiring 
the squared amplitude of the Fourier transform (FT) of the object distribution. Shifting the object distribution 
creates an additional phase factor of its complex-valued Fourier transform distribution without changing its 
amplitude. The resulting diffraction pattern is thus independent on the object shift.

In an optical diffraction experiment, the probing particles (photons, electrons) scattered off an object give 
rise to a diffraction pattern in the far field. The diffraction pattern, in principle, is a distribution of the probabil-
ity to detect a particle at a certain point on the detector. A probing particle, after being scattered by the object, 
changes its state in such a way that the probability of detecting it at a certain point on the detector in the far field 
is given by the diffraction pattern. A single scattered particle could arrive seemingly at any position at the detec-
tor. But when the second, the third and further scattered particles also arrive at the positions that are distributed 
according to a diffraction pattern corresponding to a certain sample hypothesis, there is a high probability for 
the structural hypothesis to be correct. In this arrangement, even a few scattered probing particles are sufficient 
to determine the correct structural hypothesis. While conventional statistics analysis considers the outcomes 
of detecting scattered particles as being independent of one another, the Bayesian statistical analysis takes into 
account previous events and updates the probability based on previous outcomes. Quantitatively, the normalized 
diffraction pattern I
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qx , qy
)

= I0
(

qx , qy
)

/
∫∫

I0
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)

dqxdqy provides a probability density function (PDF) 
which gives the probability of detecting the scattered particle at a position 

(
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)

 on the detector; I0
(

qx , qy
)

 is 
the recorded diffraction pattern.

The recognition analysis performed on 2D diffraction patterns instead of 2D images of an object does not 
depend on the in-plane shift of the object. However, it still depends on the in-plane rotation of the object. When 
an object is rotated in-plane, its 2D diffraction pattern is also rotated by the same degree. Thus, the diffraction 
patterns of the object and of the rotated object are different and therefore correspond to two different structural 
hypotheses. The diffraction patterns of the object corresponding to its different in-plane rotations can be used 
as a set of hypotheses and the in-plane rotation of the object can be determined from them.

Low‑dose shift‑ and rotation‑invariant diffraction recognition imaging.  To make the recognition 
method independent of the in-plane rotation of the object, a 1D PDF is obtained from azimuthally-averaged 2D 
diffraction pattern as follows. For each q value ( q =

√

q2x + q2y  ), and each azimuthal angle ϑ , the value of diffrac-
tion pattern at 

(

q,ϑ
)

 is extracted giving I0
(

q,ϑ
)

 . The azimuthal angle values are run over 2 π in steps of �ϑ and 
the total sum of all particles detected at a given q is given by

where N = 2π
�ϑ

 is the number of steps. The 1D PDF function is then calculated by normalizing I
(

q
)

 using Eq. (1). 
The obtained 1D PDF function is related only to the radial positions of the detected particles. The method is also 
insensitive to the lateral position of the sample, since a diffraction pattern is insensitive to the lateral (in-plane) 
shifts of the imaged sample. An example of 1D radial profile evolution as a function of the number of detected 
particles in a 2D image is provided in Fig. S2. The approach of using 1D radial profile has been previously 
explored in applying deep-learning techniques for structural recognition in X-ray powder diffraction data19.

For a 3D object in a certain orientation, its 2D diffraction pattern is approximately given by the diffraction 
pattern of the object’s 2D projection. An out-of-plane rotation of a 3D object results in a different 2D projection 
and, as a result, in a different 2D diffraction pattern. A different diffraction pattern, in turn, corresponds to a 
different hypothesis. Different hypotheses can correspond to different out-of-plane rotations of the same 3D 
object, or different out-of-plane rotations of different 3D objects. Thus, the recognition process can be realized 
for: different out-of-plane rotations of the same 3D object, or different out-of-plane rotations of different 3D 
objects. Once the correct out-of plane orientation of a 3D object is determined, the in-plane rotation can be 
found as explained at the end of previous section: by applying recognition of the entire 2D diffraction pattern 
against diffraction patterns corresponding to different in-plane rotations of the object.

Results
Character recognition.  The principle of the low-dose diffraction recognition imaging is demonstrated 
using an example of 10 images of hand-written numbers, each sampled with 28 × 28 pixels, Fig. 2a. These are the 
known distribution—hypotheses. For each object, its diffraction pattern was calculated, the azimuthally aver-
aged 1D profile was extracted, and the corresponding 1D PDF was obtained, shown in Fig. 2b. In the numeri-
cal experiment, one object was selected, the corresponding diffraction pattern was calculated, and the radial 
distribution was obtained by azimuthal averaging of the diffraction pattern. To mimic experimental conditions, 
Gaussian-distributed noise was added in order to reach SNR = 2. The Gaussian-distributed noise was added as 
follows: at each value of signal S, an array of Gaussian-distributed noise with standard deviation S/SNR was gen-
erated using a built in routine (LabView), the noise distribution and its parameters were checked, and the first 
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value from the array was added to the signal value. The PDF was calculated using Eq. (1). The radial positions 
on the detector of the particle scattered off the probed structure were modelled using Monte Carlo simulations. 
Each particle scattered off the sample was analysed by Bayesian analysis against the ten noise-free hypotheses 
using Eq. (3). According to Eq. (2), the initial probability for all hypotheses is 0.1. As the number of the detected 
particles increased, the probability approached 1 for the correct hypothesis, and 0 for all other hypotheses, 
Fig. 2c. Numerical experiments showed that based on the results of 1000 numerical experiments, about 40 par-
ticles were needed to achieve 95% confidence level of the probability that the hypothesis was correct, Fig. 2d. It 
was verified that this number was approximately the same for the same images sampled with different number 
of pixels: 28 × 28 pixels and 140 × 140 pixels. About 40 particles were needed to achieve 95% confidence level of 
the probability that the hypothesis was correct for each image size (Fig. S3).

The proposed low-dose recognition method allows for the recognition of a 2D object independent of the 
object’s shift or rotation. The method can be applied, for example, in optical character recognition (OCR)18, where 
quality and noise of the images is often a problem for the successful identification of a character. The example 
demonstrated here shows that character recognition can be realized for noisy and arbitrarily rotated images by 
acquiring only 100 particles (samples) instead of acquiring full two-dimensional images.

Conformation recognition.  The example in this section shows how a small change in the sample can be 
recognized using the proposed technique. Here, a test sample is a cat cartoon in two possible conformations—
with its tail up ("up") and with its tail down ("down"), Fig. 3a. 1D PDF profiles obtained from the corresponding 
azimuthal-averaged diffraction patterns exhibit almost identical distributions, Fig. 3a–b. The probed structure 
is in the "up" confirmation and it is verified against the two conformation hypotheses: "up" and "down". The 
1D PDF is calculated from the radial distribution of the azimuthal-averaged diffraction patterns correspond-
ing to the "up" conformation using Eq.  (4), with noise added to reach SNR = 2. The numerical experiments 
show that approximately 300 particles are required to reach a 95% probability that the structural hypothesis is 
correct, Fig. 3c–d. Cross-correlation function (CCF) analysis is a conventional approach to quantitatively esti-
mate whether the signal is matching a reference signal. By applying the CCF analysis to the radial distributions 
updated after each detected particle, we observed that both CCFs exhibit very close values with only about 10E-2 
difference (Fig. S4), thus providing a less clear answer to the structural hypothesis.

Figure 2.   Principle of low-dose diffraction recognition imaging. (a) Ten samples constituting the then 
hypotheses. (b) 1D PDF profiles corresponding to the diffraction patterns of each sample. (c) Evolution of 
probabilities as a function of number of detected particles. (d) Number of particles required to achieve 95% 
probability that the sample structure hypothesis is correct; results of 1000 experiments.
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Macromolecule orientation recognition from X‑ray diffraction pattern.  The low-dose recognition 
method can be particularly useful for verifying the structure of radiation sensitive biological macromolecules, 
as for example in the quantum recognition schemes16,17. In the next example, a single lysozyme molecule20,21 is 
recognized from two possible hypotheses: molecule being in xy or xz orientation, Fig. 4a,b. The enzyme was set 
in the xy-orientation, Fig. 4a, and probed with X-ray photons of 1 Å wavelength. The diffraction patterns were 
simulated as described in Methods. The radial positions of the individual particles on the detector were simu-
lated using the Monte Carlo technique, the 1D PDF was created in a similar way as in the previous example, with 
noise added to reach SNR = 2; the currently reported noise level for diffraction patterns in single particle imaging 
(SPI) amounts to SNR = 722. Approximately 100 elastically scattered photons were needed to reach 95% probabil-
ity that the structural hypothesis was correct (Fig. 4c,d). This results in 0.11 photons/Å2 for elastically scattered 
particles, or an approximate radiation dose of 1.1 photons/Å2, considering that only one photon out of ten is 
elastically scattered3. Thus, a structural hypothesis of a single lysozyme molecule can be verified with a radiation 
dose of one X-ray photon/Å2, which is orders of magnitudes less than typical radiation dose in high-resolution 
X-ray imaging4–14. The total number of 100 photons is extremely low. To illustrate this fact, the intensity dis-
tribution obtained with 100 photons is shown in Fig. 4e,f. This low-dose diffraction pattern exhibits almost no 
signal outside of the central region of 0.2 1/nm resolution, the limit which is comparable to the size of molecule 
itself, 5  nm. Such a low-dose electron diffraction pattern cannot be used for structure determination by an 
iterative phase retrieval algorithm. In the provided here example a lysozyme molecule was selected to compare 
the obtained results to the results presented by Neutze et al3 who proposed "diffract and destroy" experiment 
and showed that a diffraction pattern of a single lysozyme molecule would exhibit such a low number of counts 
per pixels at the rim (where the resolution is 2.2 Å) that iterative phase retrieval methods cannot be applied to 
reconstruct the molecular structure. Here we show that, alternatively, structure of an individual macromolecule 
can be recognized from its low-dose diffraction pattern.

Macromolecule orientation recognition from electron diffraction pattern.  Similar results were 
obtained for electron diffraction of an individual macromolecule, as for example EspB, a virulence protein 
secreted from Mycobacterium tuberculosis23,24. The diffraction patterns were simulated as described in Meth-
ods. Gaussian noise was added to the diffraction pattern so that the SNR at a certain q value is modelled as 
SNR(q) = 1/(30q), where q is in Angstrom; for example SNR = 0.33 at q = 0.1 1/Å and SNR = 0.11 at q = 0.3 1/Å. 
This particular model of SNR(q) roughly approximates the experimental observations25. The orientation of the 
protein was validated against the xy and xz orientations, Fig. 5a,b. The probed molecule was positioned in the 
xy-orientation (Fig. 5a) and approximately 40′000 electrons were needed to reach 95% probability that the struc-
tural hypothesis was correct (Fig. 5c,d). For the total probed area of 8.23E + 5 Å2 this translates into a dose of 
48.6E-3 e/Å2, a much smaller dose than the typical 2–5 e/Å2 required in high-resolution imaging cryo-electron 

Figure 3.   Principle of structure determination demonstrated for a binary sample – a cat cartoon. (a) The 
sample can be found in two conformations: with tail up ("up", shown in red) or tail down ("down", shown 
in blue). (a) 1D PDF profiles corresponding to the diffraction patterns; the region where two signals exhibit 
difference is shown. The scalebar is 60 a.u. (b) Azimuthally-averaged diffraction pattern of "up" conformation. 
The scalebar is 5 pixels in the Fourier space, with 1 pixel = 1/400 a.u. (c) Probability of the right hypothesis ("up") 
as a function of the number of detected scattered particles. (d) Number of particles required to achieve 95% 
probability that the sample structure hypothesis is correct; results of 1000 experiments are shown.
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microscopy26–28. The electron diffraction pattern produced with a dose of 48.6E-3 e/Å2 exhibits mainly a very 
low-resolution signal, Figs. 5e–f.

Discussion
Low-dose diffraction recognition imaging verifies a structural hypothesis by detecting only a few scattered par-
ticles. Detecting scattered particles in the far field and analysing only their radial positions on the detector make 
the method invariant to shift and in-plane rotation of the object. For live low-dose imaging, the scattered particles 
can be detected and analysed during imaging. For experiments where only a post-experimental low-count image 
is available, as in the case of a diffraction pattern of a protein, each individual count in a pixel can be considered 
as a detected particle analysed by the proposed method as explained in the example of two-pixel images.

The proposed method can be adapted for optical image recognition, which finds applications in micros-
copy, medical imaging, robotic vision, optical remote sensing, and optical security methods. In optical security 
techniques, image recognition is currently achieved by performing correlation of a reference object and a target 
object to be recognized, for example by means of holography29,30. In the herewith provided example of OCR, a 
character is recognised using much less samples than when acquiring a full image of the character.

When applied for structural biology, the herewith proposed method allows for the verification of a struc-
tural hypothesis by probing the sample with only a few particles (photons, electrons). Previously, Neutze et al3 
described their "diffract and destroy" experiment and showed that a diffraction pattern of a single biological mac-
romolecule (lysozyme) would exhibit such a low number of counts per pixel at the rim of the diffraction pattern. 
Such a diffraction pattern cannot be used for high-resolution structure reconstruction by iterative phase retrieval 
methods. With the method proposed here we show that, alternatively, structure of an individual macromolecule 
can be recognized from a diffraction pattern, even when the diffraction pattern is acquired at a very low dose.

High-resolution imaging techniques such as cryo-EM or X-ray SPI14,31, conventionally employ a low-reso-
lution model of the molecular structure as reference to perform cross-correlation analysis for alignment of the 
experimental images into a high-resolution image of the structure. Currently, the EMC method (E for expan-
sion, M for maximization and C for compression), proposed by Loh and Elser, is applied for analysis of SPI data 
to reconstruct a particle’s three-dimensional (3D) diffraction intensity from many photon shot-noise limited 
two-dimensional measurements32.

In the method proposed here, instead of a full image only a few scattered counts are detected, thus demon-
strating that the cross-correlation analysis can be replaced by the low-dose recognition method.

Figure 4.   Structure verification of a single lysozyme molecule from a low-dose X-ray diffraction pattern. (a) 
and (b) structure of the molecule in xy- and xz-orientation, respectively. (c) Probability of the right hypothesis 
(xy-orientation) as a function of the number of detected photons. (d) Number of photons required to achieve 
95% probability that the sample structure hypothesis is correct; results of 1000 experiments are shown. (e) and 
(f) X-ray diffraction patterns of a lysozyme molecule formed by elastically scattered (e) 1.24E + 8 photons/
Å2 and (f) 0.11 photons/Å2 (f). In (e), the full, 1024 × 1024 pixel diffraction pattern is shown, the maximum is 
8.0E + 7 counts per pixel (cpp). In (f), only the central 128 × 128 pixel region of 1024 × 1024 diffraction pattern is 
shown, with the maximum of 1 cpp.
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Another possible application of the herewith proposed method can be a sequential imaging of macromol-
ecule undergoing conformational or dynamical changes where at each time frame the macromolecule is probed 
with only a few particles (photons, electrons), so that the conformational changes can be determined without 
significant damaging of the structure during the entire acquisition time.

We provided several examples of possible applications of the method. In general, the proposed method can 
be applied for any recognition task where the hypotheses exhibit different PDF distributions. This could include: 
different orientations of 3D objects, different 2D or 3D objects, different conformations of the same objects, etc.

Methods
X‑ray diffraction pattern of a single lysozyme molecule.  The diffraction pattern of a single lysozyme 
molecule were calculated by coherently adding waves scattered off individual atoms:

where fj
(

q
)

 is the atomic form factor corresponding to jth chemical element:

where the parameters ai , bi , and c are provided in the International Tables for Crystallography33; �r =
(
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loaded from the protein database structure 253L20,21.

Electron diffraction pattern of a single virulence protein.  The electron diffraction pattern of a single 
virulence protein was calculated using the following multi-slice simulation protocol: (1) The atomic coordi-
nates of the macromolecule were downloaded from the protein database structure 3J8323,24. (2) The sequence 
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Figure 5.   Structure verification of a single EspB protein by counting single scattered electrons. (a) and (b) 
the phase distributions of the exit wave are shown calculated for 200 keV electrons, the macromolecule in xy 
and xz orientation, respectively. The phase shift reaches 0.84 in (a) and 0.74 rad in (b). (c) Probability of the 
right hypothesis (xy-orientation) as a function of the number of detected electrons. (d) Number of electrons 
required to achieve 95% probability that the sample structure hypothesis is correct; results of 1000 experiments 
are shown. (e) and (f) diffraction patterns of a single EspB protein at a radiation dose of (e) 8.23E + 5 e/Å2 (b) 
and 48.6E-3 e/Å2 (f). (e) Full, 1024 × 1024 pixel diffraction pattern and (f) only the central 64 × 64 pixel region of 
1024 × 1024 diffraction pattern are shown.
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of atoms was re-arranged in the order of the increasing z-coordinate, and the atoms were numbered as a1, 
a2 etc. (3) An incident plane wave with a unit amplitude was assumed, u1(x1, y1, z1) = 1. (4) The coordinates 
of the first atom a1 were read from the text file as (x(1)1 , y

(1)
1 , z1) . (5) The transmission function in the plane 

at z1 was calculated as t1(x1, y1, z1) = exp
[

iσvz(x1, y1)
]

 , where σ is the interaction parameter at 200 keV and 
vz(x1, y1) is the projected potential of atom a1, calculated from the tabulated parameters corresponding to 
the chemical elements as described in reference34. (6) The exit wave in the plane (x1, y1, z1) was calculated as 
u′1(x1, y1, z1) = u1(x1, y1, z1)t1(x1, y1, z1).(7) The z-coordinate of the next atom a2 was read as z2 , and the dis-
tance �z = z2 − z1 was calculated. (8) The wave function u′1(x1, y1, z1) was propagated for �z using the angular 
spectrum method35. The resulting wavefront was u2(x2, y2, z2) . (9) The wave function was propagated through 
the sample, atom by atom, by repeating steps 4 to 8 until the electron wave had propagated through all the atoms. 
The obtained distribution is the exit wave. (10) The diffraction pattern was calculated as the square of the ampli-
tude of the Fourier transform of the exit wave.

Data availability
All data are available in the main text or the supplementary information.
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