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Resident and migratory adipose immune cells control systemic
metabolism and thermogenesis
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Glucose is a vital source of energy for all mammals. The balance between glucose uptake, metabolism and storage determines the
energy status of an individual, and perturbations in this balance can lead to metabolic diseases. The maintenance of organismal
glucose metabolism is a complex process that involves multiple tissues, including adipose tissue, which is an endocrine and energy
storage organ that is critical for the regulation of systemic metabolism. Adipose tissue consists of an array of different cell types,
including specialized adipocytes and stromal and endothelial cells. In addition, adipose tissue harbors a wide range of immune cells
that play vital roles in adipose tissue homeostasis and function. These cells contribute to the regulation of systemic metabolism by
modulating the inflammatory tone of adipose tissue, which is directly linked to insulin sensitivity and signaling. Furthermore, these
cells affect the control of thermogenesis. While lean adipose tissue is rich in type 2 and anti-inflammatory cytokines such as IL-10,
obesity tips the balance in favor of a proinflammatory milieu, leading to the development of insulin resistance and the
dysregulation of systemic metabolism. Notably, anti-inflammatory immune cells, including regulatory T cells and innate
lymphocytes, protect against insulin resistance and have the characteristics of tissue-resident cells, while proinflammatory immune
cells are recruited from the circulation to obese adipose tissue. Here, we review the key findings that have shaped our
understanding of how immune cells regulate adipose tissue homeostasis to control organismal metabolism.
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INTRODUCTION
While the primary function of the immune system is to protect
against invading pathogens, several landmark studies have
uncovered noncanonical functions of immune cells that extend
beyond immune surveillance [1, 2]. Indeed, immune cells regulate
several vital physiological processes, including tissue regeneration
and repair, as well as organismal glucose metabolism [2, 3].
Adipose tissue is an endocrine and energy storage organ that is
critical for the regulation of systemic metabolism. Impaired
adipose tissue function is therefore closely linked to obesity and
type 2 diabetes (T2D), both of which are both major public health
problems in the developed and developing world. In addition,
obesity is tightly linked to increased cancer incidence and
impaired immune responses to infectious diseases [4, 5]. Lean
adipose tissue secretes a variety of soluble mediators, including
hormones, cytokines and chemokines, which regulate neuronal
and metabolic circuits that control satiety, food intake, metabolite
storage and catabolism [6, 7]. Notably, adipose tissue contains a
diverse array of immune cells that directly impact its function.
Thus, adipose tissue integrates organismal energy homeostasis
with the immune system.
Adipose tissue can be found in many distinct anatomical locations

and accordingly is heterogeneous in its composition and function.
Visceral adipose tissue (VAT), for example, is located inside the

abdominal cavity around the inner organs and plays a particularly
important role in metabolism. Thus, impaired VAT function is tightly
linked to metabolic disease [7, 8]. In contrast, subcutaneous adipose
tissue (SCAT), which is found under the dermal layer of the skin,
is particularly important for thermal regulation [9]. Indeed, all
endothermic animals, including mammals and birds, use heat
generated during cellular metabolism to maintain a stable core body
temperature (homeothermy), which is critical for survival and allows
for adaptation to diverse environmental climates [10, 11]. Most of
the adipose tissue in adults consists of white adipose tissue (WAT),
which is mainly an energy store. In contrast, brown adipose tissue
(BAT), which is morphologically and transcriptionally distinct from
WAT, has higher mitochondrial density and expression of mitochon-
drial uncoupling proteins with specialized functions in heat
production (thermogenesis) [12]. Immune cells in adipose tissue
also regulate thermogenesis by promoting beiging, which is a
process in which WAT upregulates thermogenic transcriptional
programs and mitochondrial uncoupling proteins to morphologi-
cally resemble BAT. Beige adipose tissue and BAT drive increased
energy expenditure during cold exposure to maintain homeo-
thermy, which is a major energy utilization program in endothermic
mammals [12].
Adipose tissue is a multicellular organ composed of adipocytes,

endothelial cells, mesenchymal stromal cells (MSCs) and immune
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cells [13]. Immune cells enriched in lean adipose tissue are largely
anti-inflammatory and promote normal metabolic homeostasis.
Many of these cells seed the tissue early in life and become
permanently resident in adipose tissue [14]. During aging or the
development of obesity, however, proinflammatory immune cells
are progressively recruited to adipose tissue, which drives the
development of insulin resistance [15]. These changes are in part
driven by alterations in the secretome of adipose tissue, favoring
the infiltration of immune cells that amplify adipose inflammation.
For example, immune cell-derived proinflammatory cytokines
such as TNF block insulin signaling by inactivating insulin receptor
substrate (IRS), leading to insulin resistance and exacerbating
blood glucose levels due to the downregulation of glucose
transporters on adipocytes [16]. Thus, during chronic alterations in
energy balance, the distribution and composition of adipose-
resident immune cell populations is dramatically altered, which
directly influences adipose tissue function. Here, we review the
ongoing immunological characteristics of adipose tissue in healthy
and obese contexts. Specifically, we discuss the differentiation and
homeostatic requirements of immune cells and the multidirec-
tional communication between immune cells, adipocytes,
endothelial cells and stromal cells that regulate adipose tissue
function and systemic metabolism. We propose a model in which
adipose tissue homeostasis and function are regulated by an
intricate and highly dynamic network of resident and recruited
immune cells. Understanding the functional consequences of the
interactions between immune and parenchymal cells in adipose
tissue will further the development of new therapeutic strategies
to treat obesity and diseases linked to obesity, including metabolic
diseases and cancer.

TISSUE-RESIDENT IMMUNE CELLS PRESERVE INSULIN
SENSITIVITY
WAT deposits, both visceral and subcutaneous, primarily function
as sites of nutrient storage and lipid mobilization. These tissues
also perform endocrine functions by secreting adipokines (leptin,
adiponectin, resistin), lipokines (palmitoleic acid) and chemokines
(CCL2) that are involved in modulating local and systemic
immunity and metabolic homeostasis [2, 17–19]. While adipocytes
themselves secrete many of these mediators, immune cells and
MSCs produce multiple cytokines, such as interleukin-4 (IL-4), IL-5,
TNF, IFNγ and IL-33, in response to the energy state of adipose
tissue, which critically determines the metabolic fitness of
organisms [20–23].
Myeloid cells are the most abundant adipose tissue-resident

immune cells. Tissue-resident macrophages derive from the yolk
sac and are the first immune cells to seed adipose tissue, where
they undergo local expansion [24, 25]. In lean adipose tissue,
macrophages display an alternatively activated M2 phenotype
(CD206+CD301+CD11c−) and promote immune suppression.
Under homeostatic conditions, M2 macrophages maintain adipo-
cyte turnover by clearing dead adipocytes and debris through
phagocytosis and lysosomal activation and by restraining the
differentiation of adipocyte progenitors [26]. IL-4 produced by
eosinophils preserves the alternative activation status of these
macrophages, which in turn produce the anti-inflammatory
cytokine IL-10 and the IL-1 decoy receptor to inhibit IL-1β
signaling [22]. Adipocyte-derived adiponectin, which is abundant
in lean adipose tissue, also polarizes macrophages to an M2
phenotype [27]. Several transcription factors are implicated in the
differentiation of M2 macrophages. In addition to IL-4 and IL-13,
the induced transcription factors STAT6, PPARγ, PPARδ, KLF4 and
IRF4 are key drivers of M2 polarization [23, 28–31].
The role of conventional dendritic cells (cDCs) in adipose tissue

homeostasis is still controversial [32]. This is partly due to
difficulties in separating these cells from macrophages and
monocytes. In most tissues, cDCs can be identified by high

expression of CD11c and MHCII, but activated macrophages and
monocytes in adipose tissue can also express prototypic DC
markers [32, 33]. A recent study utilizing Zbtb46 reporter mice, in
which cDCs can be distinguished from other myeloid cells with
confidence, showed that both type 1 and type 2 conventional
dendritic cells (cDC1s and cDC2s) play an anti-inflammatory role in
lean adipose tissue, by producing IL-10 [34]. Notably, the anti-
inflammatory function of cDC1s in adipose tissue requires the
Wnt/β-catenin pathway (Ctnnb1) for IL-10 production, while cDC2s
upregulate PPARγ to maintain a tolerogenic anti-inflammatory
state in adipose tissue [34]. Thus, both tissue-resident macro-
phages and cDCs contribute to the maintenance of adipose tissue
homeostasis.
Adipose tissue is also rich in innate lymphoid cells (ILCs), which

are a major source of type 2 cytokines. Group 2 innate lymphoid
cells (ILC2s) dominate lean adipose tissue and play an important
role in preserving the TH2 milieu by regulating the recruitment of
eosinophils, which in turn maintain M2 macrophages [35]. ILC2s
depend on IL-33 and are important producers of the type 2
cytokines IL-5 and IL-13, which are thought to contribute to
adipose tissue health [2, 35–37]. In addition, invariant natural killer
T (NKT) cells, which produce IL-4, IL-13 and IL-10, are enriched in
adipose tissue [38, 39]. Compared to splenic NKT cells, adipose
NKT cells have a distinct phenotype and express the transcription
factors Nfil3, T-bet and GATA3, while being negative for PLZF [39].
In a lean state, NKT cells preserve the M2 phenotype of
macrophages by producing IL-10 in an Nfil3-dependent manner
and facilitate the expansion of regulatory T cells by producing IL-2
[39]. Similar to those of NKT cells, lineage commitment and the
differentiation of ILC2s also depend upon Nfil3, GATA3, T-bet and
Id2, whereas PPARγ is critical for IL-33-dependent activation and
functional licensing [40–42]. Notably, both ILC2s and NKT cells are
bona fide adipose tissue-resident populations, as demonstrated by
parabiosis experiments [36, 39].
Regulatory T (Treg) cells are the major anti-inflammatory

adaptive immune cell subset enriched in lean adipose tissue.
Tregs are specialized CD4+ T cells with suppressive and tissue-
regulatory functions. In adipose tissue, these cells restrain
inflammation to prevent the development of insulin resistance.
Treg cells that reside in adipose tissue, in particular the VAT,
display a unique phenotype as well as distinct transcriptional and
cytokine requirements compared to their lymphoid tissue
counterparts. These cells express high amounts of the adipocyte
transcription factor PPARγ, which is essential for their develop-
ment and maintenance [43, 44]. Indeed, the loss of PPARγ
specifically in Tregs results in the specific loss of Tregs in VAT [44].
Unlike their lymphoid tissue counterparts, adipose Treg cells
specifically require the cytokine IL-33 for survival and expansion
[45]. The distribution, phenotype and homeostatic requirements
of Treg cells in subcutaneous adipose tissue, however, are distinct
from their counterparts in VAT [36]. The importance of Treg cells in
controlling adipose inflammation and insulin resistance has been
demonstrated by multiple studies. Systemic ablation of Treg cells
using Foxp3DTR mice or specific ablation within the adipose tissue
using Ppargfl/flFoxp3Cre mice led to the development of insulin
resistance during diet-induced obesity [43, 44]. We have shown
that treatment of diet-induced or genetically obese mice with
recombinant IL-33 could expand Treg cells in adipose tissue,
restrain inflammation and revert glucose intolerance [46].
Expanding Treg cells systemically in obese mice using an IL-2
antibody complex also mitigated adipose inflammation and
insulin resistance [43]. Consistent with the central role of Treg
cells, pioglitazone, a PPARγ agonist that is used as an antidiabetic
drug, was shown to exert its effects at least in part by activating
PPARγ in adipose Treg cells [44]. Treg cells in adipose tissue
express the enzyme hydroxyprostaglandin dehydrogenase
(HPGD), which converts prostaglandin E2 (PGE2) into 15-keto
PGE2, and Treg cell-specific loss of HPGD exacerbates adipose
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inflammation and insulin resistance in response to diet-induced
obesity [47].
Treg cells seed adipose tissue within the first weeks of life [45],

increase in number during maturation, and decline during later
stages of life [43, 48]. However, even in adult mice, Tregs are
continuously recruited to adipose tissue [36]. Indeed, adipose Treg
cells are known to arise from peripheral Treg cells that express low
levels of PPARγ. After migrating to adipose tissue, these cells acquire
the cardinal features of adipose Treg cells, including expression of
the IL-33 receptor ST2 and the terminal differentiation marker KLRG1
[49, 50]. It is currently unclear whether Treg cells recruited during
adulthood differ developmentally or functionally from Treg cells that
seed adipose tissue during postnatal development. However, during
all stages of development, T cell receptor (TCR) signaling is a vital
requirement for adipose Treg cell differentiation and maintenance.
This effect is mediated through the transcription factors BATF and
IRF4, which are induced by TCR signaling, and activate PPARγ
expression and IL-33 responsiveness by inducing the expression of
ST2 [46]. Similarly, the transcription factor Blimp1, which is down-
stream of IRF4, preserves the transcriptional signature of Treg cells in
adipose tissue by directly regulating the expression of ST2, PPARγ
and IL-10 [36]. Recently, it was shown that insulin directly regulates
the differentiation and function of adipose tissue Treg cells by
inducing Hif1α-dependent PPARγ expression [51, 52]. Overall, lean
adipose tissue is enriched in anti-inflammatory immune cells that
are seeded early in life, display hallmarks of tissue residency and play
a critical role in maintaining adipose tissue homeostasis and
function (Fig. 1).

ADIPOSE TISSUE NICHES FOR IMMUNE CELLS
The notion that adipose tissue is enriched for an array of tissue-
resident anti-inflammatory cell types suggests that this tissue
contains specialized anatomical niches that promote the survival
of these cells. One of the key mediators of such a niche may be
IL-33, which plays a critical role in adipose tissue homeostasis by
regulating the expansion and activity of ILC2s and Treg cells
[2, 45, 46]. We and others have shown that PDGFRα+Pdpn+ MSCs
are the main sources of IL-33 in adipose tissue [20, 36, 53, 54]
(Fig. 2). Therefore, MSCs facilitate the accumulation of anti-
inflammatory lymphocytes and directly contribute to sustaining

the TH2 phenotype of immune cells and homeostasis in adipose
tissue [36, 53]. Notably, we found that IL-33+ MSCs develop in a
sex hormone-dependent manner, and the male sex hormone
testosterone is critical for their differentiation [36]. Male mice
show an enrichment in IL-33+ MSCs, and male but not female
adipose tissue is specifically enriched in IL-33-dependent Treg
cells [36]. On the other hand, ILC2s, which also rely on IL-33, did
not show sexual dimorphism in their adipose distribution [36],
indicating that other factors contribute to the sex-specific
distribution and phenotype of Treg cells. Similarly, sex differences
were not observed in Treg cells in SCAT, indicating unique sex
hormone-mediated processes in VAT [36]. TNF and IL-17A
production by PLZF-expressing γδ T cells was shown to be
important for supporting IL-33 expression in MSCs [54] and
therefore indirectly promoted immune suppression in adipose
tissue (Fig. 2). Although this is just one example of the immune-
stromal cell crosstalk that maintains tissue homeostasis and
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residency, it is likely that other factors contribute to the anti-
inflammatory state and preserve the health and function of lean
adipose tissue. Consistent with this idea, IL-33+ MSCs also exhibit
high expression of the immunoregulatory molecule CD73 [36], an
ectonucleotidase that converts AMP to adenosine [55], suggesting
that MSCs play additional immunomodulatory roles distinct from
IL-33-dependent regulation of immune cells (Fig. 2). CD73 is also
highly expressed on a subset of VAT-resident Treg cells, thus
contributing to adenosine production and beige fat biogenesis
[52]. Interestingly, insulin signaling was shown to drive the
transition of CD73hiST2lo to CD73loST2hi Treg cells by inducing
PPARγ expression [52], suggesting that VAT contains at least two
subsets of Treg cells with distinct functions.
Notably, immune cells in adipose tissue niches have coopted

aspects of the transcriptional machinery of adipocytes for their
development and function. Indeed, key factors that are known to
regulate adipogenesis and adipocyte function, including PPARγ and
the Wnt signaling pathway [56], have been used by adipose-resident
immune cells to promote various anti-inflammatory functions. These
mechanisms may also confer immune cells with tissue tropic
functions, which is evident from the critical role of PPARγ and IL-33
in adipose resident Treg cells. Thus, these adipose tissue-specific
transcriptional networks, which are utilized by different cell types,
may act as molecular links between adipocytes, MSCs and immune
cells to enable tissue residency and communicate the physiological
state of adipose tissue. For example, PPARγ is a molecule that
controls lipid metabolism in adipocytes, MSCs and in immune cells
[20, 28, 44]. Indeed, crosstalk with MSCs could be one of the
mechanisms by which adipose immune cell residency and home-
ostasis are maintained.

ADIPOSE IMMUNE INFILTRATION DRIVES INSULIN RESISTANCE
Excess energy intake and low caloric output lead to obesity, a
physiological condition marked by adipocyte hyperplasia
(increased numbers) and hypertrophy (increased size). The growth
and expansion of adipocytes results in hypoxia, the upregulation
of oxidative and membrane/ER stress pathways and adipocyte
death [57, 58]. Signals generated from stressed and dying
adipocytes inhibit insulin action by initiating inhibitory serine
phosphorylation of IRS proteins via JNK, MyD88 and IKK-β [59].
Furthermore, hypertrophic adipocytes upregulate chemokines,
including CCL2, CCL5 and CCL8, leading to the recruitment of
monocytes to adipose tissue, where these cells differentiate in situ
into inflammatory M1 macrophages, which are a predominant
source of TNF, IL-1β, IL-6 and IL-18 [24]. Inflammatory signals are
then amplified locally and systemically, leading to the recruitment
of other immune cells, including NK cells, ILC1s, B cells and CD8+
T cells [60–64], eventually replacing and inhibiting the function of
resident M2 macrophages, Treg cells, NKT cells and ILC2s
[2, 38, 43]. Obesity also results in dysregulated endocrine function.
For example, obese adipose tissue exhibits reduced secretion of
adiponectin, which mediates insulin sensitivity and is one of the
most abundant adipokines secreted by adipocytes [65]. In
contrast, the levels of the satiety hormone leptin are increased
in obesity to counteract food intake [66, 67]. Notably, adipokines
also have a direct impact on immune cell differentiation and
activation. Leptin, for example, regulates multiple immune cells,
including macrophages, NK cells and Treg cells [68]. Obesity
therefore changes the local and systemic cytokine and adipokine
environment and has profound implications on systemic meta-
bolism, inflammation and immunity.
Macrophages are thought to be key mediators of adipose tissue

inflammation and metabolic disease [69]. In obese adipose tissue,
M1 macrophages are clustered around dead adipocytes and form
crown-like structures, unlike resident M2 macrophages, which are
interspersed between adipocytes and in the vasculature [70]. TNF
production by macrophages recruited from the periphery is

central to insulin resistance [21]. TNF inhibits glucose uptake by
adipocytes by downregulating the expression of glucose trans-
porters (slc2a4) [16] and reduce insulin signaling by inducing
inhibitory serine phosphorylation of insulin receptor tyrosine
kinase proteins [71]. Analogous to TNF, IL-6 can also inhibit insulin
signaling by promoting serine phosphorylation of IRS proteins
[72]. During obesity, recruited macrophages phagocytose adipo-
cytes with high lipid levels to become lipid-laden macrophages
[73]. Intracellular lipids are known to activate inflammatory
pathways in adipose tissue macrophages [74], although precisely
how M1 macrophages are activated has been a subject of
controversy. Saturated fatty acid (SFA) signaling and TLR receptors
play important roles in inflammatory gene activation in macro-
phages [75], while the activation of inflammasome (NLRP3)- and
caspase-1-dependent pathways are important for mature IL-1β
and IL-18 secretion by adipose macrophages [75]. Given the role
of TLR4 in sensing not only LPS but also saturated fatty acids, it is
widely believed that the SFA-TLR4 axis is involved in macrophage
activation [76–78]. A recent paper, however, showed that SFAs do
not activate macrophages via TLR4 but instead induce JNK
signaling to reprogram macrophage metabolism during inflam-
mation [79]. Accordingly, stress-induced JNK signaling is critical for
the differentiation of M1 macrophages during obesity, and specific
ablation of JNK in macrophages protected mice from diet-induced
insulin resistance [80, 81].
While the M1 and M2 nomenclature provides a useful

framework for the study of tissue macrophages, it is insufficient
to describe the inflammatory status of adipose macrophages
during obesity, as these cells often express markers of both M1
and M2 macrophages [14]. M1 macrophages are often identified
by the expression of CD11c, and the ablation of CD11c+ cells
(using CD11c-DTR mice) had a positive effect on ameliorating
diet-induced insulin resistance [32]. However, CD11c is also
expressed by conventional dendritic cells and monocytes,
making it difficult to interpret some of these studies. While
CD11c+ macrophages can be distinguished from dendritic cells
by the expression of CD64 and MerTK, further investigations are
required to delineate the functions of adipose macrophages and
DCs. A recent study exploring macrophage heterogeneity using
single-cell RNA-seq revealed a distinct inflammatory population
that was CD9+Ly6C−, expressed genes related to lipid metabo-
lism and was distributed in the obese adipose tissue of both mice
and humans [82]. However, the precise function of this
population has yet to be determined. Notably, inflammatory
macrophages also contribute to the maintenance of adipose
tissue homeostasis. During lipolysis and fasting-induced weight
loss, inflammatory macrophages can phagocytose nonesterified
fatty acids that are liberated during lipolysis and from dead
adipocytes to prevent lipotoxicity [83]. Furthermore, blocking IL-
6 trans-signaling prevented the accumulation of M1 macro-
phages but did not improve insulin tolerance [84]. Thus, the
precise role of macrophages is likely to be multifaceted, and the
signals that control their recruitment and function in adipose
tissue remain a topic of great interest. Overall, further work is
required to determine the developmental origin and function of
this heterogeneous adipose myeloid population and to molecu-
larly characterize distinct cell types that contribute to adipose
tissue homeostasis and function.
Another important source of TNF during obesity, besides from

macrophages, are NK cells, which are limited in distribution to
epididymal VAT depots [85]. Obesity drives the upregulation of
the NK cell activating receptor NCR1 on adipocytes. This, in turn,
triggers IFNγ production by NK cells and facilitates the differentia-
tion of inflammatory macrophages that promote insulin resistance
[63]. Similarly, IFNγ produced by ILC1s reinforces inflammatory
macrophage polarization [86] while simultaneously counteracting
IL-33-mediated activation of ILC2s [37]. Accordingly, mice lacking
Nfil3, which is critical for NK cell differentiation, or genetic loss of
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NCR1 or IFNγ resulted in improved insulin sensitivity [63], while
treating mice with IL-15 to expand NK cells led to insulin
resistance [85].
Although multiple lines of evidence suggest that macrophages

and NK cells are critical in the initiation of adipose tissue
inflammation and insulin resistance, many other cell types have
been implicated in these processes. For example, B cells have
been shown to expand in obese adipose tissue and promote the
activation of M1 macrophages, as well as CD4+ and CD8+ T cells.
B cell deficiency protected mice from the development of insulin
resistance, whereas the transfer of pathogenic IgG from obese
mice into B cell-deficient mice induced inflammation and insulin
resistance [62]. Similarly, T cells play central roles in adipose tissue
inflammation. For example, adipose infiltration of CD8+ effector
T cells precedes macrophage infiltration, suggesting that CD8+
T cells initiate obesity-driven adipose inflammation [60]. Further-
more, CD4+ T cells, particularly TH1 cells, have been shown to play
a proinflammatory role during obesity [87]. In line with this
conclusion, deficiency of the transcription factor T-bet, which
regulates the differentiation of TH1 cells and many other immune
cell types [88], results in improved insulin sensitivity [87]. This
effect appears to be intrinsic to CD4+ T cells, as adoptive transfer
of wild-type CD4+ T cells promoted insulin resistance in Rag−/−

mice fed a high-fat diet, whereas the transfer of T-bet-deficient
CD4+ T cells failed to initiate inflammation [87]. In support of a
key role of T cells in metabolic disease, treating genetically obese
ob/ob mice with anti-CD3 antibody minimized the expansion of
TH1 cells and mitigated adipose inflammation and insulin
resistance [61]. Collectively, multiple types of immune cells from
the innate and adaptive arms of the immune system infiltrate
adipose tissue during obesity to participate in the inflammatory
cascade that culminates in insulin resistance and metabolic
dysfunction (Fig. 1). In contrast, tissue-resident immune cell
populations found in adipose tissue during homeostasis are
critical for maintaining adipocyte homeostasis and function.

IMPAIRED IMMUNOSUPPRESSION MECHANISMS IN OBESITY
Obesity-induced adipose inflammation and the influx of newly
recruited inflammatory immune cells impair immunosuppressive
mechanisms and further amplify inflammation and insulin
resistance. Obesity has been shown to result in a loss of Treg
cells and ILC2s specifically in VAT [2, 43]. Although the signals that
lead to obesity-mediated Treg cell loss are not fully understood,
excessive weight gain was found to drive the downregulation of
Pparg and other adipose Treg cell-specific genes [48]. Obesity is
also associated with the loss of IL-33-expressing MSCs, which
affects not only Treg cells but also ILC2s [20, 36]. Finally, obesity
results in increased IFNα production by plasmacytoid dendritic
cells, which was shown to be toxic to Treg cells [89].
Hyperinsulinemia also directly impairs Treg cell population
expansion and function, and accordingly, ablation of the insulin
receptor specifically in Treg cells led to the expansion of adipose
Treg cells, reduced adipose tissue inflammation and restored
metabolic health [51]. Finally, IL-21 has been shown to be
increased in adipose tissue during obesity, and IL-21 deficiency
leads to the expansion of adipose tissue Treg cells and preserves
insulin sensitivity [90]. Similar to Treg cells, ILC2s are impaired
through the loss of IL-33-expressing MSCs during obesity [53].
Furthermore, IFNγ impairs the activation of ILC2s in adipose tissue
during aging and obesity [37]. This, in turn, may also affect Treg
cells, which are thought to interact with ILC2s through ICOS [37].
Interestingly, our recent work revealed an inflammation-driven

pathway that recruits Treg cells to adipose tissue. Adipose tissue-
derived CCL2 attracts Treg cells to adipose tissue [36], exploiting
the same molecular pathway utilized by monocytes to infiltrate
adipose tissue [36, 91]. Thus, the inflammation-mediated loss of
Treg cells is counteracted by simultaneous de novo recruitment of

peripheral Treg cells. Overall, however, Treg cell influx and
expansion decline during the late stages of obesity and with
physiological aging, allowing for the expansion of proinflamma-
tory immune cells, exacerbating adipose tissue inflammation [43].
Importantly, the decline in adipose Treg cells and ILC2s during
obesity is conserved across mice and humans [2, 43], suggesting
that immune cell homeostasis is mediated by evolutionarily
conserved mechanisms. In summary, obesity not only facilitates
the infiltration of inflammatory immune cells into adipose tissue
but also disables the protective mechanisms required to maintain
insulin sensitivity and glucose homeostasis.

IMMUNE CONTROL OF THERMOGENESIS
In addition to energy storage and the regulation of systemic
metabolism, adipose tissue also plays a critical role in thermo-
genesis, which is impacted by immune cells. Mammals have
specialized heat-generating adipose tissue deposits, including
brown and beige adipose tissue, which have high mitochondrial
density and expression of mitochondrial uncoupling protein 1
(UCP1), a transmembrane protein that creates a proton channel in
the mitochondrial inner membrane to allow the translocation of
protons and the dissipation of the electrochemical gradient,
leading to the uncoupling of oxidative phosphorylation from the
synthesis of ATP and the generation of heat as a byproduct [92].
Upon environmental cold exposure or activation of the sympa-
thetic nervous system via beta-3 adrenergic stimulation, inguinal
or subcutaneous WAT deposits can also engage in adaptive
thermogenesis by upregulating the expression of UCP1. UCP1+

cells are known as ‘beige’ adipocytes and are transcriptionally
distinct from white or brown adipocytes [93, 94]. These cells are
derived from Myf5− PDGFRα+ precursor cells [95, 96] or by the
direct conversion or transdifferentiation of existing white adipo-
cytes [97, 98]. However, despite its central role in thermogenesis,
UCP1 is not essential because Ucp1−/− mice show no defects in
adaptation to long-term cold exposure [99]. UCP1-independent
mechanisms of thermogenesis occur predominantly in the
form of futile metabolic cycling processes, during which tandem
inverse reactions occur simultaneously, and the only net effect
is the hydrolysis of ATP and dissipation of energy in the form of
heat [100–103].
In a lean state, adipose tissue-resident immune cells participate

in the regulation of adaptative thermogenesis predominantly via
the secretion of cytokines that influence the differentiation and
function of mesenchymal stromal cells and adipocyte precursor
cells or by controlling the differentiation and phenotype of other
adipose-resident immune cells, indirectly impacting adipocyte
precursors. M2 macrophages support the terminal differentiation
of PDGFRα+ stromal cells to beige adipocytes upon cold exposure
[104, 105] (Fig. 3). In a related circuit, eosinophil-derived IL-4,
together with ILC2-derived IL-13, stimulates the proliferation and
differentiation of PDGFRα+ stromal cells to the beige adipo-
cyte lineage [104, 106]. Accordingly, mice lacking eosinophils, IL-4
and IL-13, or IL-4Rα, or mice with a macrophage-specific deletion
of IL-4rα, exhibit deficiencies in beige adipocyte formation, cold-
induced thermogenesis and decreased energy expenditure [106]
(Fig. 3). IL-33-dependent ILC2s are also necessary for sustaining
the proliferation and commitment of PDGFRα+ adipocyte
precursor cells to the beige lineage [106]. Additionally, IL-33
induces the expression of methionine-enkephalin peptides in
ILC2s, which induces beige fat biogenesis via an unknown
mechanism [107]. Recently, γδTCR T cells were shown to be
important for regulating thermogenesis by directing the innerva-
tion of BAT and by increasing the expression of tyrosine
hydroxylase through IL-17F- and adipocyte IL-17Rc-dependent
signaling [108] (Fig. 3). Finally, activated NKT cells contribute to
WAT beiging by increasing the expression of FGF21, a hormone
involved in stimulating adipocyte glucose uptake [109] (Fig. 3).
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Adipokines produced by adipocytes can also induce thermo-
genesis and increase energy expenditure. For example, adipo-
nectin is increased in subcutaneous WAT by chronic cold exposure
and promotes beige adipocyte formation and BAT UCP1 expres-
sion via its effects on macrophage polarization, which increases
M2 macrophage polarization in WAT without affecting type 2
cytokine expression or ILC2 abundance [110]. BAT also contains
resident innate and adaptive immune cells, although their tissue
tropic functions are not well understood. For example, BAT
harbours transcriptionally distinct Treg cells that regulate the
inflammatory tone of the tissue, although Treg depletion seems to
have only minor effects on BAT thermogenic gene programs and
thermogenesis [111, 112]. It remains to be determined whether
BAT-resident macrophages and ILC2s also participate in regulating
thermogenesis in a similar manner to their counterparts in WAT.
Energy balance is a critical regulator of the extent of adaptive

thermogenesis in adipose tissue. Inflammatory pathways activated
by obesity inhibit adaptative thermogenic programs. For example,
IL-1β and TNF signaling in adipocytes inhibits UCP-1 expression
and cold-induced thermogenesis [113, 114]. In a similar manner,
IκB kinase-ɛ (IKKɛ)-, IRF3- and TGF-β-dependent inflammatory
pathways inhibit adipose tissue thermogenesis and energy
expenditure during obesity, and blocking these pathways
stimulates adipose tissue thermogenesis [115, 116]. Interestingly,
exercise and energy restriction regimens (caloric restriction or
intermittent fasting) promote beige adipocyte formation and
energy expenditure through immune cell-derived cytokines.
Specifically, the positive effect of exercise and fasting on
thermogenesis requires IL-4 production by eosinophils and
alternative activation of macrophages in WAT [104] and signaling
in an IL-4Rα- and STAT6-dependent manner [105]. Exercise was
also shown to increase the production of meteorin-like hormone
in muscle and adipose tissue, which stimulated the differentiation
of M2 macrophages, thereby indirectly increasing beige differ-
entiation and thermogenic capacity [105]. Intermittent fasting,
while acting on the IL-4/IL-13 signaling cascade, also influences
microbiota composition and enhances hepatic production of
FGF21 to increase beiging in a PPARα-dependent manner [117].
Whether exercise and caloric restriction regimens directly
influence adipocyte thermogenesis and the mechanisms remain
to be elucidated.

While fasting and caloric restriction are associated with
increases in health span and longevity [118], physiological aging
induces a decline in the thermogenic capacity of adipose tissue,
which is accompanied by increased accumulation of inflammatory
B cells, αβ-TCR T cells and M1 macrophages with senescence-
associated gene signatures and pathways associated with
catecholamine catabolism to suppress lipolysis [119–121]. With
the increase in inflammatory senescent immune cells in adipose
tissue, there is an accompanying decline in M2 macrophages and
ILC2s, which are important for preserving thermogenic capacity, as
detailed above. ILC2s become dysfunctional during aging, and
accordingly, IL-33-mediated expansion of aged ILC2s failed to
promote thermogenesis in aged mice. Accordingly, the transfer of
ILC2s from young mice restored thermogenic capacity in aged
mice during cold exposure [122].
Similar to insulin signaling, the thermogenic capacity of adipose

tissue also depends upon the activity of various anti-inflammatory
resident immune cells, which are impaired by inflammatory
signaling cascades that are upregulated during obesity and
decline in function with physiological aging. Overall, adipose
tissue immune cells have indispensable roles in regulating beige
and brown thermogenic adipocyte differentiation, thermogenic
capacity and systemic energy expenditure by regulating the
sympathetic innervation of adipose tissue and the differentiation
of thermogenic PDGFRα+ adipocyte precursor cells.

CONTROVERSIES AND OPEN QUESTIONS
Adipose tissue contains a multitude of different immune and
stromal cells and is impacted by factors such as diet, age and sex.
Most studies, however, focus on the roles of only one or a few
different cell types under one set of conditions. Thus, it is not
surprising that controversies have arisen about the relative
impacts of certain cell types on adipose tissue functions.
Conflicting results are most likely due to differences in experi-
mental design. Sex in particular plays a critical role, and male mice
are far more susceptible to the development of insulin resistance
and obesity than female mice [36, 123]. This difference has been
attributed to adipose tissue-intrinsic differences [124] and
differences in the abundance and phenotype of Tregs and stromal
cells in VAT [36]. Another important factor is age. NKT cells are
particularly abundant in adipose tissue in mice between 8 and
16 weeks of age [43], while Treg cells accumulate until 6–8 months
of age before declining [43]. Similarly, the length of dietary
interventions or the microbiota [125], the use of nonlittermate
controls or differences in the experimental readouts [126] have
been shown to play critical roles in the outcomes of studies of
adipose tissue function.
Even understanding the role of individual cell populations is not

without challenges. NKT cells, for example, can exert both pro-
and anti-inflammatory effects, and given their abundance in lean
VAT in mice and humans [38, 127], several studies have examined
their role in obesity-induced inflammation with partially contra-
dictory results [125, 128–133]. This discrepancy may be due to
differences in the genetic models used to deplete NKT cells
(Cd1d−/− or Jα18−/− mice), which lack different types of NKT cells
[134]. Critically, the ablation of CD1d specifically on adipocytes
resulted in inflammation and insulin resistance, indicating an
adipocyte-intrinsic role for CD1d [135]. Single-cell sequencing
technologies to understand the heterogeneity of different NKT cell
subsets and the use of cell type-specific knockout models are
important to specifically target NKT cells during early and
established obesity to fully understand their role in metabolic
regulation.
Similar to NKT cells, the role of Treg cells is also somewhat

controversial in the context of adipose tissue biology. Although
these cells are widely accepted as mediators that suppress
inflammation, including that in adipose tissue [136], they have
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Fig. 3 Immune regulation of thermogenesis. Upon cold exposure,
M2 macrophages promote the differentiation of beige adipocytes
from PDGFRα+ stromal cells. This process is mediated by IL-4
produced by eosinophils. IL-4 and IL-13 derived from eosinophils
and ILC2s also promote the proliferation of PDGFRα+ cells to
facilitate beiging. While the mechanism by which M2 macrophages
promote beiging is unclear, ILC2s and NKT cells promote the
upregulation of UCP-1 and FGF-21 in adipose tissue, respectively.
Innervation mediated by γδT cell-derived IL-17F also promotes
beiging and thermogenesis. The role of Treg cells in thermogenesis
is controversial
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also been implicated in exacerbating adipose inflammation
[137, 138]. The examination of mice with Treg cell-specific
ablation of PPARγ suggested a negative role of adipose tissue
Treg cells during aging [137]. Similarly, two studies suggested that
Treg cells dampen adipose tissue beiging in a Blimp1- and IL-10-
dependent manner [137, 139]. In our own experiments, the loss of
Blimp1 in Treg cells resulted in the depletion of adipose tissue-
resident Treg cells and led to impaired systemic glucose home-
ostasis [36]. One must consider alternative explanations for the
observed phenotypes of mice with Treg cell-specific deletion of
Blimp1 or IL-10. Deletion of both molecules is known to affect Treg
cells in many tissues, including in the gastrointestinal tract [140],
thus resulting in tissue inflammation and weight loss and
indirectly contributing to increased glucose metabolism. Similarly,
it is possible that Treg cells that are impaired by aging or the loss
of critical regulatory molecules, such as PPARγ, lose expression of
their lineage-defining transcription factor Foxp3 and acquire an
inflammatory phenotype, subsequently contributing to adipose
inflammation. Fate mapping mouse models would help in
understanding the abundance of ex-Treg cells and their contribu-
tion to inflammatory status in different mouse models. Finally, it is
currently unclear whether regulatory circuits that are active in
murine Treg cells also contribute to Treg cell differentiation and
function in human adipose tissue. For example, our data
suggested that IL-33 signaling plays a role in mouse and human
adipose tissue Treg cells [46], while others have failed to identify
ST2+ Treg cells in human adipose tissue [141]. Given the paucity
of Treg cells in female and obese adipose tissue [36, 43, 46], future
studies need to take into account the sex and adiposity of human
subjects. In-depth characterization of immune cells embedded in
human adipose tissue will help to further the understanding of
evolutionarily conserved immune-mediated mechanisms. Single-
cell genomic technologies may further illuminate the complexity
of immune cells in human adipose tissue and variations associated
with sex, age and adiposity. Finally, the role of Treg cells in
thermogenesis is controversial and requires further investigation.
While one study has shown that the loss of Treg cell function
(Blimp1 or IL10 deletion) improves thermogenesis [138], another
study demonstrated that adoptive transfer of Treg cells promoted
the beiging of subcutaneous adipose tissue [142].
There is a common idea that lean adipose tissue is TH2-biased,

and obesity promotes TH1-mediated inflammation. Indeed, several
types of immune cells in lean adipose tissue produce TH2
cytokines, such as IL-4, IL-13, IL-5 and IL-10 [2, 38, 44]. MSCs also
contribute to TH2 inflammation in lean adipose tissue by
producing IL-33 [20, 36, 53]. Consistent with the TH2 profile,
immune cells such as ILC2s and Treg cells also express the TH2
transcription factor Gata3 in lean adipose tissue [2, 36]. While
systemic loss of T-bet protected against the development of
insulin resistance [87], the ablation of IFNγ, the major TH1 cytokine,
only modestly improved insulin sensitivity in obese mice [143].
However, there have been no systematic studies that have
examined the role of TH1 and TH2 cytokines in female mice. Given
the pronounced differences in susceptibility to metabolic diseases
[36, 144] and in VAT Treg cell phenotype and function between
males and females [36], revisiting the TH1/TH2 model in adipose
tissue health and disease is urgently needed.
Notably, adaptive thermogenesis influences immune recruit-

ment and composition in adipose and peripheral tissues, including
the liver and gastrointestinal tract [145–147]. Modulating thermo-
genic programs, such as by increasing housing temperature to the
thermoneutral zone, can alter phenotypes driven by obesity-
induced inflammation, atherosclerosis, bacterial sepsis, nonalco-
holic fatty liver disease, colitis and cancer [145, 147, 148] to those
more consistently observed in human physiology. Normal
vivarium conditions impose significant thermal stress on experi-
mental animals, which can obscure experimental results and
represent an additional obstacle for predictive modeling of human

diseases and therapies, as humans spend most of their lives under
thermoneutral conditions [149]. Thermogenesis and ambient
housing temperature, therefore, should be experimental variables
that are carefully considered when carrying out metabolic and
immunological studies.
Finally, it must be acknowledged that there are certain

limitations in regard to animal models and their use in obesity
and metabolic studies. For example, there are differences in
pancreatic islet architecture in mice compared with humans [150].
Furthermore, genome-wide association studies showed that
human obesity is polygenic in nature and associated with over
100 candidate genes, making monogenetic mouse models of
obesity less amenable to therapeutic translation [151]. Therefore,
the validation of findings based on murine adipose tissue is
required in both healthy and obese humans of both sexes to fully
understand the role of the adipose immune system in regulating
metabolism and obesity-related chronic inflammatory diseases.
Overall, many questions remain, and further work is required to
untangle the complicated relationships between adipose tissue
function and the immune system.

CONCLUDING REMARKS
Over the last two decades, several landmark studies have uncovered
the remarkable impact of the immune system on systemic
metabolism, as outlined in this review. The quest to understand
the precise role of each immune cell subset in protecting adipose
tissue homeostasis or contributing to adipose inflammation and
associated pathology has revealed cellular networks involving
immune cells, adipocytes and MSCs. It has become apparent that
most immune cells that are anti-inflammatory and contribute to the
preservation of systemic glucose metabolism populate adipose
tissue early in life, expand locally and are not frequently replenished
by circulating immune cells. The adaptation to adipose tissue
microenvironments and tissue-derived signals, as well as the use of
molecular regulators, such as IL-33 and PPARγ, are common in many
of these adipose tissue-resident immune cells. Stromal cells may
play an important yet poorly defined role in mediating the
development, maintenance, and intercellular communication of
adipose tissue immune cells.
Reestablishing immunoregulatory mechanisms in adipose tissue

could be a therapeutic approach to treat metabolic inflammation
and insulin resistance. Additionally, there is great interest in
understanding the cellular and molecular pathways that increase
and sustain beige and brown adipocyte thermogenesis as a
mechanism to regulate energy expenditure and metabolism in
humans, and there are potential implications for the management
of obesity and diabetes [152]. Overall, understanding the
population dynamics of immune cells and their functions in
adipose tissue will aid in the design of novel therapeutic
interventions that dampen adipose inflammation to restore insulin
sensitivity and glucose homeostasis.
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