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Abstract

Bee-mediated pollination greatly increases the size and weight of tomato fruits. Therefore,

distinguishing between the local set of bees–those that are efficient pollinators–is essential

to improve the economic returns for farmers. To achieve this, it is important to know the

identity of the visiting bees. Nevertheless, the traditional taxonomic identification of bees is

not an easy task, requiring the participation of experts and the use of specialized equipment.

Due to these limitations, the development and implementation of new technologies for the

automatic recognition of bees become relevant. Hence, we aim to verify the capacity of

Machine Learning (ML) algorithms in recognizing the taxonomic identity of visiting bees

to tomato flowers based on the characteristics of their buzzing sounds. We compared the

performance of the ML algorithms combined with the Mel Frequency Cepstral Coefficients

(MFCC) and with classifications based solely on the fundamental frequency, leading to a

direct comparison between the two approaches. In fact, some classifiers powered by the

MFCC–especially the SVM–achieved better performance compared to the randomized and

sound frequency-based trials. Moreover, the buzzing sounds produced during sonication

were more relevant for the taxonomic recognition of bee species than analysis based on

flight sounds alone. On the other hand, the ML classifiers performed better in recognizing

bees genera based on flight sounds. Despite that, the maximum accuracy obtained here

(73.39% by SVM) is still low compared to ML standards. Further studies analyzing larger

recording samples, and applying unsupervised learning systems may yield better classifica-

tion performance. Therefore, ML techniques could be used to automate the taxonomic rec-

ognition of flower-visiting bees of the cultivated tomato and other buzz-pollinated crops. This

would be an interesting option for farmers and other professionals who have no experience

in bee taxonomy but are interested in improving crop yields by increasing pollination.
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Author summary

Bees are the most important pollinators of cultivated tomatoes. We also know that the dis-

tinct species of bees have different performances as pollinators, and these performances

are directly related to the size and weight of the fruits. Moreover, the characteristics of the

buzzing sounds tend to vary between the bee species. However, the buzzing sounds are

complex and can widely vary over time, making the analysis of this data difficult using the

usual statistical methods in Ecology. In the face of this problem, we proposed to automati-

cally recognize pollinating bees of tomato flowers based on their buzzing sounds using

Machine Learning (ML) tools. In fact, we found that the ML algorithms are capable of rec-

ognizing bees just based on their buzzing sounds. This could lead to automating the rec-

ognition of flower-visiting bees of the cultivated tomato, which would be a nice option for

farmers and other professionals who have no experience in bee taxonomy but are inter-

ested in improving crop yields. On the other hand, this encourages the farmer to adopt

sustainable agricultural practices for the conservation of native tomato pollinators. To

achieve this goal, the next step is to develop applications compatible with smartphones

capable of recognizing bees by their buzzing sounds.

Introduction

Tomato (Solanum lycopersicum L.) is the second most important vegetable crop in the world

[1]. Global tomato production was around 180, 766 tonnes in 2019 and the production grew

14.1% over the past decade [1]. Despite cultivated tomato being self-pollinated, bee-mediated

pollination greatly enhances the quantity and quality of the fruits (greater size and weight),

also, contributing to the increase of overall crop productivity [2–9]. The tomato pollinator-

dependency is so evident that when it is cultivated in greenhouses, it typically needs to be done

by bumblebees that are reared particularly for this purpose, generating an extra cost to the

growers [10]. For instance, the pollination service in the tomato crop is estimated at about US$

992 million/year in Brazil [5].

The morphological specialization of tomato flowers, characterized by the presence of pori-

cidal anthers, restricts the exit of the pollen to a tiny opening sited at the apex of the anther

[9, 11, 12]. During visits to these flowers, pollen-collecting bees firmly grasp the anthers and

quickly contract their flight muscles, but without moving the wings, producing an audible

sound [13, 14]. The resulting vibrations are transferred to the anthers, which shake the pollen

inside them, stimulating it to leave by the pores, a phenomenon known as floral sonication or

buzz-pollination [12, 14, 15].

Although sonicating bees are among the best pollinators of tomatoes, bees belonging to dif-

ferent taxonomic groups tend to differ in their performance as pollinators [4, 6–9, 16]. In this

context, the taxonomic recognition is an indispensable requirement to distinguish among the

local set of flower-visiting bees those that are the most efficient pollinators.

However, the huge number of bee species and other insects is a challenge for taxonomists.

It is estimated that there are about 20, 000 bee species worldwide [17], and 58% of them, about

11, 600 species of 74 genera, are able to vibrate flowers to extract pollen [18]. Furthermore, the

taxonomic identification normally depends on visible morphological characteristics of tiny

size, which requires the active participation of experts in the decision-making process, since,

for an untrained eye, the species are very similar [19]. Besides that, the decreasing number of

taxonomists seriously affects the efficiency of species recognition [20]. This is especially evi-

dent in regions where the bee diversity is poorly sampled and underestimated like in Africa,
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Asia, and some tropical regions [17]. Therefore, the development and implementation of new

technologies that also fulfill taxonomic requirements are needed [20–22].

Due to the limitations of the traditional taxonomy, the automatic classification based on

artificial intelligence algorithms has been applied for the identification of plants and animals

during the last decades. The automatic classifications based on the recognition of images and/

or sounds has been implemented [23–26]. However, recognition based on images is difficult

due to complications derived from the orientation of the object, the image quality, the condi-

tion of the light, and/or the image background [20]. On the other hand, the sound is relatively

easy to acquire and can, in principle, be picked up remotely and continuously [19].

The classification based on Machine Learning (ML) algorithms have demonstrated high

efficiency and accuracy for the recognition of animal vocalizations, such as birds and frogs

[27–29]. The ML algorithms powered by a method for sound feature extraction (e.g., Mel-Fre-

quency Cepstral Coefficients, Hilbert–Huang Transform) have been also employed for bee-

hives monitoring using audio as one of the inputs (see S1 Table for a detailed description; [30]

and references therein). These studies sought to differentiate the bee buzzing sounds from

other sounds (cricket chirping and ambient noise) [31], recognize the presence of the queen in

a beehive and detect an orphaned colony [32, 33], or identify the circadian rhythm of a honey-

bee colony [34]. However, only three studies address the problem of automatic bee species

classification, and these deal with twelve, two and four classes respectively [19, 35, 36]. Ran-

dom Forest, Support Vector Machines, and Logistic Regression are the most applied classifiers,

and Mel Frequency Cepstral Coefficients (MFCC) is the most used feature extraction strategy

(see S1 Table). Although preliminary restricted to a few bees taxa, these studies indicated that

the ML algorithms could generate classifiers able to quickly and accurately recognize bee

identity.

In this context, the automatic recognition of bees would be especially relevant for the pol-

lination of commercial tomatoes, which need the local native pollinators to enhance the crop

productivity [4, 6–8]. Moreover, the professionals typically involved with the management of

tomato crops (e.g. farmers, agronomists) have no experience in bee taxonomy. Based on this,

we aim to verify the capacity of ML algorithms to automatically recognize the taxonomic

identity of visiting bees of tomato flowers based on the characteristics of their buzzing-

sounds. In addition, we compared the performance of the ML algorithms and MFCC feature

extraction method with classifications based on fundamental frequency realized on the same

data set, thus, providing a direct comparison between the two approaches. Due to the high

efficiency and accuracy demonstrated by ML tools powered by MFCC features in automatic

sound classification, we expected that the join of these two methods would obtain a greater

performance compared to classifications based solely on fundamental frequency (hypothesis

1). Additionally, we related the performance of ML algorithms in recognizing bees taxa from

buzzing-sounds produced during two different behavioral contexts: flight and sonication.

While the flight sound generally has few oscillations and is roughly time-independent [37,

38], the sonication produces more complex sounds that may be associated with intrinsic

characteristics of the bee [39–42]. Based on this, we predicted that the buzzing-sounds pro-

duced by floral vibrations are more relevant for recognizing bees taxa (hypothesis 2). There-

fore, the main contributions of our work are: (1) To evidence the ML classifiers performance

in recognizing flower visiting-bees species in relation to the statistical approach used by [43];

(2) To classify a higher diversity of taxonomic groups than previous studies, grouping the

largest number of genera and families of bees; (3) To provide evidence of which buzzing

sounds is more relevant for taxonomic recognition of the bees by the ML classifiers; (4) To

indicate the best ML algorithms that could lead to automatize the taxonomic recognition of

flower visiting bees of tomato crops.

PLOS COMPUTATIONAL BIOLOGY Automatic recognition of tomato-pollinating bees based on buzzing-sounds

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009426 September 16, 2021 3 / 21

https://doi.org/10.1371/journal.pcbi.1009426


Materials and methods

Buzzing sounds acquisition

The acoustic recording of buzzes was carried out using tomato plants (Solanum lycopersicum
ac. BGH 7488) grown at the experimental fields of the Federal University of Viçosa (Minas

Gerais, Brazil). A portable hand recorder (SongMeter SM2, Wildlife Acoustics, USA) was

used to record the buzzing sounds of bees visiting the tomato flowers. To record the buzzing

sounds, a researcher constantly walking through the rows of tomatoes handing-held the

recorder while searching the flower-visiting-bees. When the researcher spotted a visiting bee,

she carefully approached holding the recorder microphone as close as about 10 cm from the

flower being visited. The microphone was constantly pointed toward the bee body, and when-

ever possible to the dorsum. Sound recordings were obtained for 15 bee species from eight

genera and two families (See Table 1). Just after leaving the flower, the bees were captured with

an entomological net and placed in glass vials with ethyl acetate, for taxonomic identification.

When the researcher was not able to capture a bee individual, the corresponding audio sample

was not considered for our analysis. We adopted this procedure for ensuring a correct bee tax-

onomic recognition, then, the number of bee individuals sampled corresponds to the number

of audio files (see Table 1). All bee individuals sampled were identified at the species level by

an expert in bee taxonomy.

Acoustic pre-processing

The original sound recordings (.wav files) were manually classified into two behavioral con-

texts: (i) Sonication; (ii) flight, see Fig 1. We categorized as sonication all the segments of buzz-

ing-sounds produced by bees vibrating tomato flowers and as flight the sounds produced by

the flying displacement of the bees between tomato flowers, as illustrated in Fig 2. As a result,

the set of 59 recordings generated 321 segments, 218 of sonication and 103 of flight (see

Table 1). The flight and sonication buzz present pronounced differences in acoustic character-

istics, so they can be easily distinguished from the recordings afterward by an experienced

Table 1. Taxonomic diversity of sonicating bees recorded visiting tomato flowers and the corresponding higher taxonomic group (according to [44]). (N recordings)

denotes the number of individuals with buzzing-sounds recorded; (AF) average frequency ± standard deviation; (Flight segments) the total number of flight segments per

species; (Sonication segments) the total number of sonication segments per species.

Subfamily Tribe Genus Species AF(±SD) [43] N recordings Flight segments Sonication segments

Halictinae Augochlorini Augochloropsis Augochloropsis brachycephala 252.1 (±44.8) 2 1 3

Augochloropsis sp.1 203.3 (±17.0) 5 9 11

Augochloropsis sp.2 190.1 (±6.3) 2 2 12

Pseudaugochlora Pseudaugochlora graminea 210.5 (±10.5) 3 2 22

Apinae Bombini Bombus Bombus morio 218.3 (±18.9) 8 9 19

Bombus atratus 233.9 (±21.7) 5 11 15

Centridini Centris Centris tarsata 330.8 (±7.3) 1 6 2

Centris trigonoides 319.9 (±16.8) 2 8 3

Euglossini Eulaema Eulaema nigrita 196.7 (±3.5) 1 2 2

Exomalopsini Exomalopsis Exomalopsis analis 167.6 (±21.8) 10 11 63

Exomalospsis minor 151.9 (±12.8) 4 4 19

Meliponini Melipona Melipona bicolor 337.1 (±29.8) 8 17 30

Melipona quadrifasciata 323.0 (±20.9) 4 9 8

Xylocopini Xylocopa Xylocopa nigrocincta 247.2 (±15.2) 2 9 7

Xylocopa suspecta 250.1 (±29.9) 2 3 2

https://doi.org/10.1371/journal.pcbi.1009426.t001

PLOS COMPUTATIONAL BIOLOGY Automatic recognition of tomato-pollinating bees based on buzzing-sounds

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009426 September 16, 2021 4 / 21

https://doi.org/10.1371/journal.pcbi.1009426.t001
https://doi.org/10.1371/journal.pcbi.1009426


user. Parts with no bee sound were not selected, but were kept for the subsequent analyses. We

performed these analyses using the Raven Lite software (Cornell Laboratory of Ornithology,

Ithaca, New York). The length of recordings ranged from five seconds to over one minute.

Audio feature extraction

After the acoustic processing, audio feature extraction was applied to transform raw audio

data into features that explicitly represent properties of the data and may be relevant for classi-

fication. This process is carried out through the MFCC [45], which is present in the librosa
library [46]. As input, the algorithm takes an audio segment (flight or sonication), which goes

through the following steps: pre-emphasis, framing, windowing, Discrete Fourier Transform

(DFT), and filter bank (applying Discrete Cosine Transform—DCT), as described by [45] (see

Fig 3).

The Discrete Fourier Transform (DFT) was applied in each frame and we calculate the

spectrum; and subsequently compute the filter banks, which are formed by triangular filters,

spaced according to the MEL frequency scale; then we obtained the log-energy output of each

one of the MEL filters. Finally, the MFCC coefficients were obtained by applying the inverse

transformation of the cosine (DCT) to the logarithm of the energy coefficients obtained in

the previous step. The parameters applied to generate the MFCC coefficients were maintained

by default, except for the minimum frequency of each audio segment and the number of fea-

tures that was set to 40. This was necessary because MFCC cannot generate a larger number

of features and the average duration of the segments was small, approximately 1.54 seconds.

Fig 1. Overview of the approach adopted for the acoustic classification of bees buzzing-sounds and machine learning workflow. The original audio

files (.wav format) containing recordings of bees buzzing-sounds during visits to tomato flowers were manually classified into sonication or flight

segments. Then, the Mel Frequency Cepstral Coefficients method (MFCC) was used to extract the audio features. After, the resulting data set was split

into 50% for the training/development set (delimited by the red dashed line) and 50% for the testing data set. The GridSearchCV method was used to

tune the hyperparameters of the training set (using 5-cross validations). The test data set was used to evaluate the performance of the Machine-Learning

classifiers in correctly assigning the buzzing sound to the respective bee taxa.

https://doi.org/10.1371/journal.pcbi.1009426.g001
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Similarity of the buzzing-sounds. After audio feature extraction by the MFCC, we

applied the euclidean distance score to estimate the similarity between the two types of sounds

produced by bees visiting tomato flowers (sonication and flight). We calculated the euclidean

distance score to all possible combinations between sonication and flight sounds and the aver-

age euclidean distance per bee taxon (species and genera). The euclidean distance has been

used to measure sound similarities, especially in the human context (e.g. between the voice

Fig 2. Spectrograms of different types of buzzing (sonication and flight) for two visiting-bees species of tomato flowers (Melipona bicolor and

Exomalopsis analis). Note that the duration and amplitude and frequency of the buzzing-sounds vary between the species and among the type of

buzzing.

https://doi.org/10.1371/journal.pcbi.1009426.g002

Fig 3. Overview of the steps for audio feature extraction by Mel Frequency Cepstral Coefficients Method (MFCC) Pre-emphasis,

framing, windowing, Discrete Fourier Transform (DFT), and filter bank (applying Discrete Cosine Transform—DCT).

https://doi.org/10.1371/journal.pcbi.1009426.g003
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produced by different speakers [47], the speech of music and non-vocal sounds [48], and char-

acteristics from the signals and to model its probability density functions [49]), being there-

fore, likely to be applied to bee buzzing classification. By definition, the greater the distance,

the less similar the sonication and flight features would be. However, to simplify the interpreta-

tion of the results, we standardized the index between 0 and 1, where 1 represents maximum

similarity and 0 no similarity (according to [50]).

Classification

Data splitting. During an exploratory analysis, we detected an unbalance of the sampled

data between the classes (species/genera) and between the two behaviors (sonication and

flight). There were 103 samples containing segments of flight and 218 of sonication. Moreover,

the distribution of these segments by the classes was even more unbalanced (see Table 1). For

example, the flight of the species Augochloropsis brachycephala was recorded just once. Con-

sidering that we need to distribute the data into training and testing sets, this species could not

be part of both. This problem does not occur at the genus-level, because the number of classes

decreases, consequently, the number of samples per class increases.

Due to the mentioned issues, the data division was stratified. As shown in Fig 1, the data

set was divided into 50% for training and 50% for testing. The division was done through the

function train_test_split of scikit-learn [51], this function is able to separate the data in a strati-

fied way through the StratifiedKFold method. This method is a variation of k-fold that returns

stratified folds: each set contains approximately the same percentage of samples of each target

class as the complete set, dividing the classes by 50%.

After data division, it is necessary to apply standardization to the data set, this step is impor-

tant for many machine learning estimators, because they can behave badly if the individual

resources do not look more or less like standard normal distributed data set (for example,

Gaussian with mean 0 and unit variance) [51]. Elements used in the objective function of a

learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regu-

larizers of linear models) assume that all resources are centered around 0 and have variance in

the same order. If a feature has a variance that is orders of magnitude greater than others, it

may dominate the objective function and make the estimator unable to learn from other fea-

tures correctly as expected. Therefore, in order to solve this problem, data normalization was

done with the StandardScaler method.

Machine learning algorithms. Machine Learning techniques have demonstrated high

efficiency and accuracy for classification of bumblebees and other groups of bees based on

the characteristics of their buzzing-sounds [19, 35, 36]. Therefore, we chose some of the

most common used ML classifiers to recognize the taxonomic identity of bees during

visits to tomato flowers (according to S1 Table): Logistic Regression [52], Support Vector

Machines [53, 54], Random Forest [55], Decision Trees [56, 57], and a classifier ensemble

[58, 59]—a combination of multiple and diversified classifiers to generate a single classifier

model. Ensemble methods train multiple learners to solve the same problem [59]. In contrast

to classic learning approaches, which construct one learner from the training data, ensemble

methods construct a set of learners and combine them. Therefore, we combine three classifi-

ers (Random Forest, SVM e Logistic Regression) by majority vote. These classifiers were

chosen because they achieved the best performance in recognizing bees buzzing-sounds (see

S1 Table).

Tuning the hyperparameters. In many cases, the performance of an algorithm in a given

learning task depends on its hyperparameter settings. In order to obtain the best performance,

the hyperparameters have been thoroughly tested. Methods to tune hyperparameters to the

PLOS COMPUTATIONAL BIOLOGY Automatic recognition of tomato-pollinating bees based on buzzing-sounds

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009426 September 16, 2021 7 / 21

https://doi.org/10.1371/journal.pcbi.1009426


problem at hand require the definition of a search space: the set of hyperparameters and ranges

that need to be considered.

An important problem is to decide which hyperparameters should be considered,

because a very large set of hyperparameters is computationally expensive and becomes more

expensive as the search space augments. So far, there is no empirical evidence on which

hyperparameters are most important to adjust and which hyperparameters result in similar

performance when set to a reasonable default value. Hyperparameters that fall into this

last category can be completely eliminated from the search space when the computational

resources are limited [60].

We used the GridSearchCV method found in the scikit-learn library [51]. This method per-

forms an exhaustive search, as input, it receives an estimator, a hyperparameter dictionary,

and the cross-validation method then creates a model for each combination. Cross-validation

is used to evaluate each individual model, this step divides the training data into 5 folds, see Fig

1. The 5 folds are also built with the StratifiedKFold method. After training and validation, the

GridSearchCV method returns the model that achieved the best performance and uses it for

the test set.

The sets of hyperparameters were defined as follows: for SVM, we vary the Kernel (Rbf,

polynomial, sigmoid, linear), C ranging in {0.001, 0.01, 0.1, 1, 10}, and γ ranging in {1e − 2, 1e
− 3, 1e − 4}. For Logistic Regression, we considered penalty {l1, l2} and C ranging in {0.001,

0.01, 0.1, 1, 10}. For Decision Trees, we validated the “Gini impurity” and “entropy” for the

information gain, these functions are used to measure the quality of a split in the tree. For Ran-

dom Forest, we considered the number of trees in the forest varying in {100, 200}. Finally, for

the ensemble model we vary only the C parameter as already described, this is due to the great

computational processing that this model requires.

Evaluation metrics

To evaluate the performance of the classification generated by the algorithms and baselines,

we used the following metrics: Accuracy (Acc), Macro-Precision (MacPrec), Macro-Recall

(MacRec) and Macro-F1 (MacF1).

Let i be a class from the set of classes C. Let T be test set and let c be a classifier, such that

c(t) = l, where t is an element of the test set T and l 2 C is a label corresponding to a class in C
assigned to t by c. Let g(t) be the ground truth class label of t. In regard to the c classifier we

define:

• True Positives of class i, denoted by TPi, as the number of elements in T correctly labeled

with class i by c, i.e., TPi ¼ jft 2 T j cðtÞ ¼ gðtÞ ¼ igj.

• False Positives of class i, denoted by FPi, as the number of elements in T that were wrongly

classified by c as belonging to class i. Formally, FPi ¼ jft 2 T j cðtÞ ¼ i ^ gðtÞ 6¼ igj.

• False Negatives of class i, denoted by FNi, as the number o elements in T belonging to class i
but classified by c with a label different from i, that is, FNi ¼ jft 2 T j cðtÞ 6¼ i ^ gðtÞ ¼ igj.

The above numbers are used to define traditional effectiveness measures of classifiers.

These measures are: Precision, Recall and F1 [61]. Precision p(c, i) of a classifier c in relation to

a class i is defined in Eq 1

pðc; iÞ ¼
TPi

TPi þ FPi
: ð1Þ
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Informally, precision is the ratio between the number of test elements correctly labeled by c
with the class label i and the number of all elements labeled (correctly or incorrectly) by c.

Recall, denoted by r(c, i), of a classifier c in relation to a class i is defined by Eq 2

rðc; iÞ ¼
TPi

TPi þ FNi
: ð2Þ

Thus, recall is the ratio between the number of test elements belonging to class i which were

correctly labeled by c and the total number of test elements of class i.
The F1 measure is a combination of the precision and recall measures and is defined by

Eq 3.

F1ðc; iÞ ¼
2pðc; iÞrðc; iÞ

pðc; iÞ þ rðc; iÞ
ð3Þ

When comparing the effectiveness of classifiers generated from distinct learning methods,

it is common to use a global measure of effectiveness. A global measure aims at resuming the

effectiveness of the classifier over all classes in the test set. In this work we use the following

global measures to compare the results of classifiers we use: Accuracy (Acc) (which is equiva-

lent to Micro-F1), Macro-Precision (MacPrec), Macro-Recall (MacRec) and Macro-F1 (MacF1).

Accuracy of a classifier c is the fraction of test elements that were correctly labeled by c, and is

formally defined by Eq 4

AccðcÞ ¼
PjCj

i¼1
TPi

PjCj
i¼1
ðTPi þ FPiÞ

ð4Þ

The Macro measure (Macro-Precision, Macro-Recall and Macro-F1) is the average of the

corresponding measure (Precision, Recall and F1) over all classes and are defined by Eqs 5, 6

and 7.

MacPrecðcÞ ¼
PjCj

i¼1
pðc; iÞ
jCj

ð5Þ

MacRecðcÞ ¼
PjCj

i¼1
rðc; iÞ
jCj

ð6Þ

MacF1ðcÞ ¼
PjCj

i¼1
F1ðc; iÞ
jCj

ð7Þ

Baselines establishment

To assess and compare the performance of ML algorithms in recognizing bees based on their

buzzing sounds, we built three baselines. The first one, named “fundamental frequency” was

estimated to compare our results —based on ML techniques and audio feature extraction by

the MFCC—with results obtained by [43]—based on differences in the average fundamental

frequency of the bees buzzing. The fundamental frequency was obtained by dividing each

sound recording into three sections of similar duration and the lowest frequency of each sec-

tion was measured using Avisoft-SASLab Lite (Avisoft Bioacoustics, Germany); the average

fundamental frequency of each sound recording was the mean of the three frequencies, as per-

formed by [43]. Then, the values of average fundamental frequency (±SD) were associated
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with the corresponding bee taxon (species/genus). The species/genus whose average was

between the lowest and highest frequency will be selected and the species/genus that has the

lowest standard deviation will be predicted. For the second baseline, named as “Fundamental

frequency (SVM)”, we employed the best classifier here (based on the best F1-score) to recog-

nize the bees taxa based only on the fundamental frequency. Lastly, we report the result of a

majority baseline that assigns all the classes to the majority class, that is Exomalopsis for genus-

level and Exomalopsis analis for species-level classification.

Results

Acoustic characteristics of the buzzing sounds

The acoustic proprieties (amplitude, frequency, and duration) of the buzzing can vary depend-

ing on the behavioral activity and bee species visiting tomato flowers. For example, the spectro-

grams of Melipona bicolor and Exomalopsis analis show that the flight and sonication buzzing-

sounds are distinct from each other (Fig 2). During the flight (Fig 2), the spectrograms are

time-independent and consist of a continuous frequency; amplitude variations may be related

to the intensity of the sound over time, since the distance from the bee to the microphone can

also vary. During the sonication, the fundamental frequency increases significantly (around

240 Hz) and the amplitude reaches higher values at higher frequencies.

The acoustic proprieties of the buzz are also different among the bee species. For example,

while M. bicolor (Fig 2 upper spectrogram) presents successive short sonication buzzing-

sounds, with brief breaks among them, the E. analis (Fig 2 bottom spectrogram) shows sonica-

tion intervals with irregular duration (generally longer than M. bicolor) and longer breaks

among them.

Performance of the machine learning algorithms

Regarding the type of buzzing-sound. The sonication and flight features extracted by the

MFCC can be easily distinguished. They presented very low similarity among each other, rang-

ing from 0.01 to 0.03 (Euclidean distance score) for bee species and between 0.01–0.02 for the

genus. Moreover, the type of buzzing-sound also influenced the capacity of classifiers to recog-

nize the visiting bees of tomato flowers. The ML algorithms reached a better performance, rec-

ognizing bees at species level based on sonication sounds (based on the best Macro-F1 score,

see Table 2). The accuracy and Macro-F1-score were higher in classifications considering only

the segments of floral sonication sounds rather than those of flight (Table 2). The sonication

sounds classified by the SVM algorithm achieved the best performance among all combina-

tions tested here (Accuracy = 73.39%; Macro-F1 = 59.06%, Table 2).

Nonetheless, at genus-level recognition, the performance of the algorithms did not seem to

depend on the type of buzzing-sound (based on the higher Macro-F1 measure, Table 3). How-

ever, the buzzing sounds from flights led to a marginally better ML algorithms performance

than sonication in recognizing the genera of bees (Table 3).

Regarding the level of taxonomic resolution. The performance of ML classifiers was

different for acoustic recognition of bees at species and genus levels. Indeed, the complexity

increases for species recognition in relation to genus recognition: there are 15 classes (against

8 genera) and the number of samples for some of them is very small (N� 5). The SVM reached

the best Macro-F1 values at genus-level recognition (Flight, 60.2%; Table 3), which was similar

to the Macro-F1 obtained by the SVM in species recognition (Sonication, 59.06%; Table 2).

However, based on Accuracy, the Ensemble was the best for genus recognition and the SVM

for species (Tables 3 and 2).
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Just the LR and SVM classifiers always presented Macro-F1 values higher than the baselines

at genus-level classification (S2 Table). On the other hand, only the DTree continually

achieved lower performance than the baselines (based on the Macro-F1 measure, S2 Table).

Considering the species recognition, besides the LR and SVM, the Ensemble also reached a

better score than the baselines (based on the Macro-F1 measure, S3 Table).

The confusion matrix shows the number of correctly predicted genera versus erroneously

predicted genera by SVM, the classifier with the best performance here (based on Mac-F1

score, Table 4). The SVM was capable to correctly recognize 64% (34 of 53) of the flight sounds

samples. However, the capacity of the algorithm to identify bees was unequal among the gen-

era. The SVM was able to correctly recognize more than 50% of the samples of four out of

eight genera (Bombus, Centris, Melipona and Eulaema, Table 4).

On the other hand, for species-level recognition, the SVM was able to correctly predict

79% of the sonication samples (80 of 109) (Table 5). Moreover, this algorithm was capable to

recognize E. analis (28 of 30 samples), the most representative species (Table 5). Moreover,

this algorithm correctly recognized some species with a small number of samples, like

Table 2. Predictive performance of different Machine-Learning algorithms on acoustic recognition of bee species based on the type of buzzing-sound (flight, sonica-

tion, and flight+sonication) during visits to tomato flowers. The performance of the ML algorithms was measured by Accuracy (Acc), Macro-Precision (MacPred),

Macro-Recall (MacRec) and Macro-F1 (MacF1) and compared with three baselines scenarios: (1) Majority class: assigning all the classes to the majority class; (2) Funda-

mental frequency: bees recognition based solely on the average frequency of the sonication, as performed by [43]; (3) Fundamental frequency (SVM): bees recognition

based fundamental frequency and using the SVM algorithm, classifier with the best performance (based on the MacF1-score). Bold numbers represent the best results per

evaluation metric within buzz-sound; Different upper side letters denote significant differences in the F1-score among the algorithms of the same buzzing-behavioral

(p� 0.05, T-test); (��) denotes that the performance of the algorithm is higher than the baselines (based on the MacF1 measure; p� 0.05, T-test).

Flight

Algorithms Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

LR�� 51.92 47.25 41.30 40.20a

SVM�� 55.76 56.91 53.78 49.00a

RF 48.07 47.32 43.20 41.46a

DTree 26.92 24.25 23.88 19.74b

Ensemble�� 50.00 45.80 38.01 36.02b

Sonication

Algorithms Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

LR�� 64.22 45.56 41.13 41.27a

SVM�� 73.39 61.75 60.70 59.06b

RF�� 58.71 47.73 34.72 37.67a

DTree 43.11 31.31 35.35 29.07c

Ensemble�� 68.80 48.50 45.59 44.19a

Flight + Sonication

Algorithms Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

LR�� 53.41 53.67 51.36 48.61a

SVM�� 56.52 46.66 46.59 45.16a

RF�� 50.31 44.56 38.13 36.21b

DTree 32.91 33.02 28.19 25.91c

Ensemble�� 58.38 53.81 47.62 47.36a

Baselines

Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

Majority class 23.00 2.00 7.00 2.00

Fundamental frequency 51.00 25.00 40.00 28.00

Fundamental frequency (SVM) 35.00 27.00 24.00 24.00

https://doi.org/10.1371/journal.pcbi.1009426.t002
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Table 3. Predictive performance of different Machine-Learning algorithms on acoustic recognition of bee genera based on the type of buzzing-sound (flight, sonica-

tion, and flight+sonication) during visits to tomato flowers. The performance of the ML algorithms was measured by Accuracy (Acc), Macro-Precision (MacPrec),

Macro-Recall (MacRec) and Macro-F1 (MacF1) and compared with three baseline scenarios: (1) Majority class: assigning all the classes to the majority class; (2) Funda-

mental frequency: bee recognition based solely on the average frequency of the sonication, as performed by [43]; (3) Fundamental frequency (SVM): bee recognition based

fundamental frequency and using the SVM algorithm, classifier with the best performance (based on the MacF1 score). Bold numbers represent the best results per evalua-

tion metric within buzz-sound; Different upper side letters denote significant differences in the MacF1 scores among the algorithms of the same buzzing-behavioral

(p� 0.05, T-test); (��) denotes that the performance of the algorithm is higher than the baselines (based on the MacF1 measure; p� 0.05, T-test).

Flight

Algorithms Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

LR�� 60.37 65.25 56.63 57.02b

SVM�� 64.15 64.44 60.49 60.20a

RF 54.71 45.85 41.22 38.17c

DTree 39.62 20.92 28.79 21.85c

Ensemble 60.37 64.37 56.84 55.23a, b

Sonication

Algorithms Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

LR�� 60.90 56.72 49.91 51.55b

SVM�� 66.36 71.04 54.70 58.06a

RF 62.72 44.83 36.93 37.77d

DTree 49.09 30.59 29.51 29.82e

Ensemble 67.27 47.97 41.45 42.60c

Flight + Sonication

Algorithms Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

LR�� 62.34 51.49 55.76 52.38a

SVM�� 67.90 57.79 60.46 58.59a

RF�� 61.11 53.57 45.77 46.92b

DTree 45.06 34.53 35.80 34.23c

Ensemble�� 68.61 61.23 56.99 58.09a

Baselines

Baselines Acc (%) MacPrec (%) MacRec (%) MacF1 (%)

Majority class 30.00 4.00 12.00 6.00

Fundamental frequency 68.00 41.00 50.00 43.00

Fundamental frequency (SVM) 48.00 29.00 29.00 28.00

https://doi.org/10.1371/journal.pcbi.1009426.t003

Table 4. Confusion matrix with the best performance for bee buzzing-sounds classification at genus-level using MFCC features (flight with SVM classifier,

MacF1 = 60.20% and Acc = 64.15%). The numbers in the matrix correspond to correctly (diagonal elements, bold) and incorrectly (out-of-diagonal elements) recognized

samples in the data set. The best parameters of this classification were C = 10, decision_function_shape = “ovo”, gamma = 0.01, kernel = “rbf”.

Predict! Augochloropsis Bombus Centris Eulaema Exomalopis Melipona Pseudaugochlora Xylocopa All

True #

Augochloropsis 3 0 0 0 3 1 1 0 8

Bombus 0 10 0 0 0 0 0 0 10

Centris 0 0 5 0 0 2 0 0 7

Eulaema 0 0 0 1 0 0 0 0 1

Exomalopis 0 1 0 0 4 1 0 2 8

Melipona 0 1 1 0 2 7 0 1 12

Pseudaugochlora 0 0 0 0 1 0 0 0 1

Xylocopa 0 2 0 0 0 0 0 4 6

https://doi.org/10.1371/journal.pcbi.1009426.t004
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Augochloropsis brachycephala, Augochloropsis sp.2, Melipona quadrisfaciata and Centris
trigonoides.

Discussion

The accuracy of tested ML algorithms in recognizing flower-visiting bees of tomato crops ran-

ged from 49 to 74% on a data set of 59 audio recording samples. The algorithms reached a bet-

ter performance to assign the bees buzzing sounds to their respective taxa than frequency-

based trials. Moreover, we found that the sonication sounds are more relevant to bees species

recognition. The ML algorithms achieved a greater performance in recognizing bee species

when we considered only the sounds produced during sonication. On the other hand, the gen-

era recognition was not dependent on the type of buzzing-sound.

Advantages of machine-learning over classifications based on fundamental

frequency

The ML algorithms achieved higher performance recognizing bee taxa than analyses based on

fundamental frequency and realized on the same data set. Moreover, the statistical analysis

based on fundamental frequency differences performed by [43], failed to distinguish between

most bee species. In fact, analyses based solely on the fundamental frequency (average fre-

quency) must lose part of the intrinsic complexity of buzzing sounds, which is multifactorial

and time-dependent [12]. The buzz has other acoustic features, like the amplitude and dura-

tion, that combined between them and with the frequency must contribute to characterize the

buzzing-sounds [62]. However, this must result in a huge amount of data with unusual distri-

butions, non-linearity, complex data interactions, dependence on the observations that would

not be well handled by commonly used statistical methods in ecology [63, 64]. On the other

hand, the ML algorithms combined with the MFCC method has been able to correctly predict

66% of all samples; 79% of the samples of species based on sonication sounds and SVM algo-

rithm. Likely due to the ML attributes boosted by MFCC, we reached here a higher perfor-

mance on acoustic recognition of bees than classifications based only on the fundamental

frequency.

The recognition of bees depends on the type of buzzing

There are pronounced differences between the biomechanical properties of the buzzing pro-

duced during sonication and those produced during the flight [38]. The sonication sounds

have amplitudes and frequencies higher than flight buzzes [38]. The flight sound has few oscil-

lations and roughly time-independent. It consists of the natural frequency (the frequency at

which the wings oscillate) and its higher harmonics [37, 38]. Therefore, the flight buzzing can

be more similar among species over the higher-level taxa. This may be the reason why flight

sounds were more relevant to the recognition of the genus than to the species. Besides that, the

incorporation of both buzzing sounds (sonication+flight) does not seem to interfere with the

performance of the algorithms in recognizing bees at genus-level, because the performance of

the ML algorithms was similar.

On the other hand, the sonication sounds were associated with higher performance in rec-

ognizing bee species. Although, the mechanical characteristics of the sonication have been

related to the amount of pollen released from poricidal anthers [12, 43, 65–67], the acoustic

properties of buzzing-sounds are also related to intrinsic attributes of the species [39–42]. Con-

sequently, the higher specificity related to sonication sounds makes it more relevant to species

recognition by the ML algorithms. Although the behavioral context that the buzzing-sound
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was produced was not relevant for genera recognition by ML algorithms, it was for the recog-

nition of species.

Limitations of buzzing-sound classification with machine learning

Although here we classified a greater taxonomic diversity of flower-visiting bees based on

their buzzing than previous studies (see S1 Table); grouping the largest number of genera and

families of bees (15 species from 8 genera and 2 subfamilies; Table 1), the machine-learning

approach presented some limitations in recognizing bees based on buzzing sounds. Firstly,

the ML algorithms are domain-dependent. This means that a classifier can perform very well

when it is applied on the same domain to the one it was trained, yet the performance decreases

when it is applied to a different domain (e.g. species/genus, sonication/flight). Thus, the classi-

fier needs to be retrained in order to perform well on a different domain. Secondly, the perfor-

mance of ML algorithms was not homogeneous among the classes of species and genera. The

performance was very high for some bee taxa, especially the most sampled, and varied for

unrepresentative taxa (Augochloropsis sp.2, 100%; E. analis, 93%; P. graminea, 72%), which

may be related to the unbalanced number of samples per bee taxa, an issue also reported by

related studies (see S1 Table). Consequently, bees that rarely visited the tomato flowers and/or

were difficult to capture were under-sampled. This bias is inherent to the system since the

local abundance of individuals per species naturally varies and the bees spontaneously visit the

flowers. On the other hand, to ensure taxonomic identification, all specimens had to be cap-

tured. This was a requirement to include the buzz sound associated with a given bee on the

acoustic analysis, in case the bee could not be sampled, we deleted the corresponding sound

file. The oil collecting bees (Centris sp.), for example, were more difficult to sample, because

they flew quite fast between flowers, remained for a short time in the same flower, and/or did

not visit nearby flowers, which make it difficult to follow them. The general consequence of

these two factors mentioned above (different abundance of individuals among bee taxa and

sampling bias) was an unbalanced sampling among classes of buzzing bees. Unfortunately, the

Machine Learning algorithms have a considerable loss of performance in classifying unbal-

anced data [68].

Nevertheless, the performance in recognizing the buzzing sounds was uneven among the

ML algorithms. The LR and especially the SVM outstanding from the other algorithms and

constantly obtained better performance than the baselines. The SVM through weighted eval-

uation metrics stood out among the classifiers, achieving the best performance in recogniz-

ing the visiting-bees of tomato. In fact, the SVM has strong theoretical foundations with

excellent empirical successes [69] and has demonstrated tolerance to data sets with few sam-

ples per class and unbalanced data (see Evaluation metrics in text) [70]. This may be the

main reason that this classifier was almost always produced the best classifications in relation

to baselines and other algorithms. Despite that, the SVM performance is still lowed on the

small data set tested here, compared to ML standards (see S1 Table). Therefore, we suppose

that there is so little audio data that no classical ML classifier can, in principle, generalize

well on it. Further studies, considering larger recording samples, and/or applying algorithms

that can perform more complex processing tasks like unsupervised learning systems (e.g.,

clustering, dimensionality reduction, recommender systems, deep learning) may reach better

classification performance.

Consequences of automating the bee recognition to tomato yields

The bee identity is associated with pollination effectiveness and fruit yields since the perfor-

mance as pollinators tends to be different among species/groups of visiting bees (e.g. [4, 6–9,
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16]. Differences in the body size of the bees in relation to the distance between anthers and

stigma may be a key factor in explaining this. Larger pollinators transfer more pollen than

smaller ones [71], since their body size fits or exceeds the distance between anthers and stigma

[72–74]. Therefore, automating the taxonomic recognition of flower-visiting bees would be

especially relevant for tomato production, whereas the quality of the pollination provided is

linked to the identity of the bee. Then, farmers, agronomists, and other professionals interested

in improving the pollination of cultivated tomatoes could identify the species of visiting bees

without needing an expert in insect taxonomy. Aware of the value of bees to the crop income,

the farmer could be motivated to adopt practices to benefit the most successful pollinators and

indirectly the overall local bee community, promoting profitable and sustainable agricultural

practices.

Moreover, the automated taxonomic recognition of bees may apply to other buzz-polli-

nated plants, since they are primarily visited by bees that produce buzzing sounds to extract

pollen [9, 12, 14, 15]. Some of these plants are, as well as tomato, important food crops, like

blueberry, kiwi, cranberry, and eggplant [9, 75–77]. However, some procedures must be

adopted to avoid sampling bias and facilitate acoustic recognition: (1) studies must focus on

one plant species because the same bee species produce vibrations with different frequencies

and duration when visiting different plant taxa [42, 78]; (2) consider the limitations when ana-

lyzing the relative acoustical amplitude because this energy-related parameter is dependent on

measurement procedures (e.g. the recorder model and configuration, the distance of the focal

object) and does not necessarily correspond to the vibrational amplitude [19, 79].

In summary, the ML algorithms powered by the MFCC feature extraction method could

lead to automate the taxonomic recognition of flower-visiting bees of tomato crop. We

found advantages of ML classifiers in recognizing species of bees based on their buzzing

sounds over conventional analyzes based on fundamental frequency alone [43]. Some

classifiers, especially the SVM, an algorithm that better handles a data set of low sampling,

achieved better performance in relation to the randomized and sound frequency-based tri-

als. The buzzing sounds produced during sonication were more relevant for the taxonomic

recognition of bees species than the flight sounds. On the other hand, we found that the ML

classifiers achieve better performance to recognize bee genera based on flight sounds. As far

as we know, the use of ML algorithms to explore these two kinds of bee sounds for bee taxa

identification has not been reported previously. Future studies may focus on the extension

of this approach to other buzz-pollinated crops as well as on the technological application of

this model, for example, the development of apps based on ML techniques and compatible

with smartphones.
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44. Melo GA, Gonçalves RB. Higher-level bee classifications (Hymenoptera, Apoidea, Apidae sensu

lato). Revista Brasileira de Zoologia. 2005; 22(1):153–159. https://doi.org/10.1590/S0101-

81752005000100017

45. Logan B, et al. Mel frequency cepstral coefficients for music modeling. In: Ismir. vol. 270. Citeseer;

2000. p. 1–11.

46. McFee B, Raffel C, Liang D, Ellis DP, McVicar M, Battenberg E, et al. librosa: Audio and music signal

analysis in python. In: Proceedings of the 14th python in science conference. vol. 8. Citeseer; 2015.

p. 18–25.
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