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Abstract 

Background:  Liquid chromatography combined with tandem mass spectrometry is an important tool in proteom-
ics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides 
that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a 
peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences 
of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of 
the fragments for reconstructing a sequence.

Results:  We propose to additionally exploit the information obtained from liquid chromatography. We study the 
problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also 
with the chromatographic retention time. We consider three models for predicting the retention time and develop 
algorithms for de novo sequencing for each model.

Conclusions:  Based on an evaluation for two prediction models on experimental data from synthesized peptides we 
conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, 
we compare our algorithms using the retention time information with algorithms using the same scoring model, but 
not the retention time.

Keywords:  Computational proteomics, Peptide identification, De novo peptide sequencing, Liquid chromatography, 
Mass spectrometry

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The amino acid sequences of peptides in a sample can 
be analyzed by liquid chromatography coupled with 
tandem mass spectrometry (LC–MS/MS, [1]). First, the 
peptides are separated temporally by liquid chromatogra-
phy. Then, the mass spectrometer measures the mass-to-
charge ratio of a peptide and fragments multiple copies 
of it at random positions. Finally, the mass spectrometer 
measures the mass-to-charge ratio of the resulting frag-
ments. Peptide sequencing [2, 3] is the problem of recon-
structing the amino acid sequence of the peptide. When 
analyzing unknown peptides the otherwise very success-
ful database search approach is not applicable. We focus 
on de novo sequencing, that is the reconstruction of the 

whole amino acid sequence from scratch without the 
help of a database of known sequences.

Several algorithms for de novo sequencing  [4–8] con-
sider the differences of the peptide’s fragment masses 
to reconstruct the peptide’s sequence. Various scoring 
functions have been proposed that try to exploit as much 
information as possible from the mass spectrum of the 
fragments to find a sequence that explains the observed 
spectrum in the best possible way. However, the informa-
tion obtained from the chromatographic separation in 
the first step of the LC–MS/MS experiment is not con-
sidered by these scoring functions.

In liquid chromatography, the peptides in a sam-
ple have to pass through a column. The time a peptide 
needs to traverse the column is called retention time and 
depends on certain chemical properties of the peptide. 
This process results in the temporal separation of the 
peptides in a sample. Predicting the retention time of a 
peptide from its amino acid sequence is a challenging 
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task [9, 10]. Several studies use retention time prediction 
models for peptide sequencing as a filtering step after a 
database search to increase the confidence of identifica-
tion and to identify false positive identifications [11, 12].

However, to the best of our knowledge, the retention 
time information has not been considered by de novo 
peptide sequencing algorithms. The retention time can 
be useful, because it contains information about parts of 
a sequence that cannot be resolved by mass spectrometry 
(e.g. amino acids and fragments with equal masses, but 
different retention times). Moreover, it is available without 
additional experimental effort. However, simply filtering 
the candidate sequences of standard de novo sequenc-
ing algorithms by their predicted retention time is not an 
option, as this approach requires to compute all possible 
candidate sequences in the worst case to find an optimal 
solution. We formulate and study a de novo sequencing 
problem that integrates the retention time as an additional 
constraint and does not require filtering many candidates. 
We are interested in a sequence that both matches the 
experimental spectrum and the measured retention time. 
We consider three additive retention time prediction mod-
els and develop algorithms for each model.

In this study,1 we do not aim for a replacement for 
available de novo sequencing tools, but rather explore 
ways of exploiting the retention time information in de 
novo sequencing algorithms. In the experimental evalu-
ation, we are primarily interested in the impact of using 
the retention time information. We compare the identi-
fication rates of proposed algorithms for two prediction 
models with the identification rates of DeNovo�  [14], an 
algorithm that uses the same symmetric difference scor-
ing model, but no retention time information. The sym-
metric difference scoring model already shows improved 
identification rates compared to the prevalent shared 
peak count scoring model [5] and this is further improved 
considering the retention time. We intentionally consider 
a very basic scoring function to clearly expose the impact 
of exploiting the retention time information. We evaluate 
the performance of our algorithms on experimental data 
of synthesized peptides from the SWATH MS gold stand-
ard (SGS, [15]) dataset. For the third prediction model, 
we present some exemplary results and discuss factors 
that can limit its applicability. A proof-of-concept imple-
mentation of our algorithms is available at Github and 
can be integrated in the OpenMS framework [16].

Considering the retention time information comes at 
the cost of higher computational effort and requires addi-
tional parameters for retention time prediction. These 
parameters depend on the chosen standard operating 

protocol (SOP) chosen for the experiment and on the LC 
column of the experiment. Estimating these parameters 
requires suitable datasets, unless they are available in the 
literature. Yet, we believe that it is useful to exploit reten-
tion time information for peptide identification and to 
further study the integration of retention time informa-
tion in algorithms for de novo peptide sequencing.

Problem definition
Remarks on model simplifications
To focus on algorithmic aspects of the problem, we sim-
plify several characteristics of the experimental data in 
our modeling of the de novo peptide sequencing prob-
lem. First, the peptide molecule contains an H2O mol-
ecule in addition to the amino acid molecules. Therefore, 
the peptide mass has an offset of 18 Da compared to the 
sum of the amino acid masses. To simplify the descrip-
tion of the algorithms, we do not consider this offset 
and assume that the mass of a peptide is the sum of the 
masses of its amino acids. Similarly, we do not consider 
the fragment mass offsets of different ion types in the 
description. However, we do consider both offsets in 
the implementation of our algorithms using techniques 
described in [14].

Moreover, the mass spectrometer measures mass-
to-charge ratios, while our model requires masses as 
input. Charge state deconvolution  [1] is required as a 
preparatory step to convert mass-to-charge ratios to 
masses if fragments with a higher charge state should be 
considered.

While we do not explicitly model post-translational 
modifications, our model can consider both fixed and 
variable modifications. Fixed modifications can be con-
sidered by altering the amino acid masses accordingly. 
Variable modifications are supported by adding new 
characters to the alphabet of amino acids.

Finally, we consider integer values for the fragment 
masses and retention times in the description of the 
algorithm and ignore the mass accuracy of the mass 
spectrometer. We account for the mass accuracy of the 
instrument by multiplying the masses by an appropriate 
factor before rounding to integers. Additionally, in the 
implementation of our algorithm we consider masses to 
be equal if they differ at most by a predefined error toler-
ance (0.02 Da in our experiments).

Notation
We model an amino acid by a character of an alphabet 
� and a peptide by a string S = a1 . . .an over � . The 
empty string is denoted by S∅ . Every character a ∈ � has 
a mass m(a) ∈ N . The mass of a string S = a1 . . .an is the 
sum of its character’s masses m(S) :=

∑n
i=1m(ai) . The 

empty string S∅ has mass 0. A substring of S is denoted 1  A preliminary version has been presented at WABI 2017 [13].
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by Si,j = ai . . .aj for 1 ≤ i ≤ j ≤ n . The prefix set Pre(S ) 
contains all prefixes of S including the empty string, i.e. 
Pre (S) := ⋒

n
i=1S1,i ∪ {S∅}. The theoretical spectrum of S 

is the union of all its prefix and suffix masses TS (S) := 
{m(T),m(S)−m(T) | T ∈ Pre (S)} . Note that for every 
prefix T ∈ Pre (S) the string S has a complementary suf-
fix of mass m(S)−m(T) . A mass m is explained by S if 
m ∈ TS (S).

Retention time prediction models
We define three simple models for predicting the reten-
tion time of a string S = a1 . . .an (Fig. 1). The first model 
is a simple additive model with one retention time coef-
ficient for each character in � . The model only considers 
the character frequencies of a string and has been pro-
posed by [17]. It served as starting point for the develop-
ment of more evolved prediction models [18, 19].

The other two models consider additional factors that 
affect the retention time of a peptide. Besides the charac-
ter frequency, the position of the characters in the string 
is especially important for the first and the last few posi-
tions in the string [18, 19]. Therefore, the second model 
considers distinct coefficients for the characters at the 
beginning and the end of the string.

The nearest neighborhood of a character can also affect 
its retention time coefficient  [19, 20]. The third model 
considers the influence of a character’s direct neigh-
borhood by considering coefficients for pairs of con-
secutive characters instead of coefficients for individual 
characters.

Linear model:	 Every character a ∈ � has a retention 
time coefficient t(a) ∈ Z . The retention time of a 
string S is the sum of the retention time coefficients 
of its characters, 

(1)tlin(S) :=

n
∑

i=1

t(ai).

Position-dependent model:	 Characters at the 
first γ and the last γ positions of a string, where 
1 ≤ γ ≤ ⌊n2 ⌋ , have distinct retention time coefficients. 
For i ≤ γ , we denote the retention time coefficient of 
the i-th character by tpre(ai, i) ∈ Z and the coefficient 
of the (n− i + 1)-th character by tsuf(an−i+1, i) ∈ Z . 
The retention time of a string S is the sum of the cor-
responding retention time coefficients, 

Neighborhood-based model:	 The model uses reten-
tion time coefficients t(a,b) ∈ Z for pairs of char-
acters a,b ∈ � that are consecutive in a given string 
S . The first and the last character a1 and an of S have 
additional coefficients t(−,a1), t(an,−) ∈ Z , as these 
characters have only one adjacent character in S . The 
retention time of S is the sum of all these coefficients, 

The retention time coefficients for all three models can 
either be estimated from experimental data or taken from 
the literature. It is worth noting that the retention time 
coefficients might also be negative. Therefore, the reten-
tion time of a peptide does not depend linearly on the 
length of the peptide. We use a simple method for esti-
mating the coefficients in the experimental evaluation 
and discuss limiting aspects of this method below.

Problem definition
We recall the de novo peptide sequencing problem with 
respect to the symmetric difference scoring model  [14]: 
Given a mass M and a set of fragment masses X (measured 
by the mass spectrometer), find a string S of mass M that 
minimizes | TS (S) � X | = | TS (S) \ X | + |X \ TS (S)| . 
Equivalently to computing a string with mass M that 
minimizes | TS (S) � X | , we can compute a string that 
maximizes | TS (S) ∩ X | − | TS (S) \ X | , as X is a fixed 
input and S can be chosen. Throughout this paper, we 
assume that 0,M ∈ X.

In this paper, we consider a variant of this problem 
that also considers the measured retention time T and a 
retention time prediction function t∗ : �∗ → Z . A func-
tion t∗() can return negative values, as a substring can 
have a negative effect on the retention time of a string.

Problem  1  (De Novo Sequencing Problem) Let � be 
an alphabet of characters, with a mass m(a) ∈ N for 

(2)

tpos(S) :=

γ
∑

i=1

tpre(ai, i)+

n−γ
∑

j=γ+1

t(aj)+

γ
∑

k=1

tsuf(an−k+1, k).

(3)

tnei(S) := t(−,a1)+

(

n−1
∑

i=1

t(ai,ai+1)

)

+ t(an,−).

(a) Linear model
tlin(S) = t(A) + t(I) + t(A) + t(G) + t(A) + t(K)

(b) Position-dependent model (γ = 2)
tpos(S) = tpre(A, 1) + tpre(I, 2) + t(A) + t(G) + tsuf(A, 2) + tsuf(K, 1)

(c) Neighborhood-based model
tnei(S) = t(−, A) + t(A, I) + t(I, A) + t(A, G) + t(G, A) + t(A, K) + t(K,−)

Fig. 1  Retention time prediction for string S = AIAGAK . a In the 
linear model, the retention time of a string is the sum of its character’s 
coefficients. b In the position-dependent model (with γ = 2 ), 
the position of the first and the last two characters is considered 
additionally. c The neighborhood-based model considers all pairs of 
consecutive characters in a string. The first and the last character have 
additional coefficients, as they only have one adjacent character
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each a ∈ � . Given a peptide mass M ∈ N , a reten-
tion time T ∈ N , a tolerance parameter ε ≥ 0 and a set 
X = {xi ∈ N | i = 1, . . . , k} , find a string S of characters 
in � with m(S) = M and |t(S)− T | ≤ ε that minimizes 
| TS (S) � X | among all strings with mass M and a reten-
tion time t∗(S) ∈ [T − ε,T + ε].

Methods
Algorithm for the symmetric difference scoring model
We briefly describe the algorithm DeNovo�   [14] 
for computing a string of mass M that minimizes 
| TS (S) � X | without considering retention times. We 
refer to [14] for a detailed description and a proof of cor-
rectness. Then, we describe algorithms for solving the de 
novo sequencing problem for each considered prediction 
model.

The search space of DeNovo� is modeled by a directed 
acyclic multigraph G = (V ,E) based on the given set X. A 
vertex in G represents a mass and a path in G represents a 
string. For every mass m ∈ X there are two vertices m and 
M −m in G, i.e. V = {m,M −m |m ∈ X} . An edge in 
G is always directed from the smaller to the larger mass. 
Two vertices v and w are connected by an edge if there 
exists a string with mass w − v . For each such string with 
mass w − v , we add an edge from v to w to the multigraph 
and label it with this string. That is, if v and w are con-
nected by an edge with label l(v,w) , there is also an edge 
from v to w for every permutation of l(v,w) . In practice, 
we only consider edges with a maximal label length p.

We denote the concatenation of the edge labels along a 
path P by l(P) . Let P = (0, v1, . . . , vk ,M) be a path from 
vertex 0 to vertex M. Every traversed vertex vi represents 
the mass of a prefix of the string l(P) and l(P) explains 
both vi and M − vi for every traversed vertex vi.

The idea of DeNovo� for finding a string S of mass M 
that minimizes | TS (S) � X | is to iteratively extend two 
paths both starting at vertex 0. One path represents a 
prefix and the other path a reversed suffix of S . DeNovo� 
extends both paths until the sum of their labels’ masses 
is equal to M and then concatenates the prefix and the 
reversed suffix to a string of mass M.

Definition 1  (Balanced extension) Given two paths 
P and Q both starting at vertex 0, a balanced extension 
extends the path that represents the string of smaller 
mass by a single edge, unless the resulting paths repre-
sent strings with a total mass larger than M. An arbitrary 
path is extended if both paths represent strings with 
equal masses.

Definition 2  (Path pair) A path pair is a pair of paths 
P = (0, . . . , v) and Q = (0, . . . , a, b) in G that results from 

a sequence of balanced extensions starting from two 
paths P0 = (0) and Q0 = (0).

Figure  2 depicts an example of a path pair and a bal-
anced extension. The set of masses that are explained by a 
path pair (P, Q) is the partial theoretical spectrum

The score of the path pair (P,  Q) is the number of 
masses explained by the path pair that are in X minus 
the number of explained masses that are not in X, i.e. 
| PTS (P,Q,M) ∩ X | − | PTS (P,Q,M) \ X | . The set of 
masses explained by an edge (v, w) is

Lemma 1  For every path pair P = (0, . . . , v) and 
Q = (0, . . . , a, b) with v ≤ b and v + b ≤ M it holds 
that a ≤ v ≤ b. The balanced extension of (P,  Q) 
by an edge (v,  w) additionally explains all masses 
inN ((v,w), (a, b)) = TSe((v,w),M) \ TSe ((a, b),M).

Proof  Assume that there exists a path pair (P, Q) with 
v ≤ a . This path pair results by definition from a sequence 
of balanced extensions. Consider the balanced extension 
in this sequence, where the last edge (a, b) of Q is added. 
In this step, either P ended in v or in some vertex v′ < v . 
In both cases, a is the larger mass and Q represents the 
heavier string. Hence, the extension by (a, b) is not a bal-
anced extension and (P, Q) is not a path pair.

Consider a balanced extension of (P,  Q) by an 
edge (v,  w). The edge (v,  w) explains all masses in 
TSe((v,w),M) . However, some of these masses 
might also be explained by (P,  Q). We show that 
TSe((v,w),M) \ PTS (P,Q,M) = N ((v,w), (a, b)) , i.e. 
that all masses explained by (v, w) that are also explained 
by (P,  Q), are explained by the last edge (a,  b) of Q. We 
note that all masses in TSe((v,w),M) are larger than 

(4)
PTS (P,Q,M) : = {m(T),M −m(T) | T

∈ ( Pre (l(P)) ∪ Pre (l(Q)) ) }.

(5)
TSe ((v,w),M) : = {m(T)+ v, M − (m(T)+ v) | T ∈

Pre (l(v,w)), m(T) �= 0 }.

0

p1 v

w = M − bq1 a b

A G A

K I GD

Fig. 2  Multigraph G with two paths P = (0, p1, v) and 
Q = (0, q1, a, b) . P and Q form a path pair, as there exists a sequence 
of balanced extensions leading to P and Q. A balanced extension of 
(P, Q) by (v, w) results in a path pair (P′ ,Q) , with P′ = (0, p1, v ,w) and 
m(l(P′))+m(l(Q)) = M . The path labels represent a prefix and a 
reversed suffix and can be combined to a string AGADGIK
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v and smaller than M − v . Moreover, all masses in 
PTS (P,Q,M) that are larger than v and smaller than 
M − v are explained by the edge (a,  b). Therefore, it fol-
lows that the balanced extension with (v, w) additionally 
explains all masses in N ((v,w), (a, b)).�

Using Lemma  1, the algorithm DeNovo�   [14] (Algo-
rithm 1) computes a dynamic programming table DP. An 
entry DP[v,  (a,  b)] contains the optimal score of a path 
pair ending at the vertex v, respectively at the edge (a, b). 
As a base case, we add a loop edge (0, 0) to the graph and 
initialize DP[0, (0, 0)] = 2 , because the path pair repre-
senting two empty strings explains the masses 0,M ∈ X . 
Given the optimal score DP[v, (a, b)], the algorithm con-
siders all possible balanced extensions of the correspond-
ing path pair with outgoing edges of v. By Lemma 1, the 
additionally explained masses of such a balanced exten-
sion can be computed only given the last vertex v and the 
last edge (a, b) of the two paths. The score of the resulting 
new path pair can be computed by adding

(6)
gain ((v,w), (a, b)) := |N ((v,w), (a, b)) ∩ X |

− |N ((v,w), (a, b)) \ X |

to the score DP[v, (a, b)]. The table entry of the new path 
pair is updated if the new score exceeds the value stored 
in this entry at this step of the algorithm. The optimal 
score for a string of mass M is equal to the maximum 
value of an entry DP[M − b, (a, b)] among all edges 
(a,  b) in G. A path pair with this score can be recon-
structed starting from this entry. The combination of 
the corresponding prefix and reversed suffix then leads 
to the desired string of mass M. The time complexity of 
DeNovo� is in O(|V | · |E| · d · p) , where d is the maximal 
out-degree of a vertex in G and p is the maximal length of 
an edge label [14].

Algorithm for the linear prediction model
In the following subsections, we develop an algorithm for 
the de novo sequencing problem (Problem  1). We have 
to consider three aspects when taking into account the 
retention time information. First, we need to define the 
predicted retention time of a path pair in G. Second, we 
have to compute the effect of a balanced extension on the 
predicted retention time of a path pair. Third, we need to 
find optimal substructures of paths from 0 to M in G with 
an optimal score and a feasible predicted retention time.

1 DP [v, (a, b)] ← −∞ for all (a, b) ∈ E and all v ∈ V

2 DP [0, (0, 0)] ← 2

3 for v ∈ V in ascending order do

4 foreach (a, b) ∈ E in lexicograph. asc. order with DP [v, (a, b)] �= −∞ do

5 foreach (v, w) ∈ E with w + b ≤ M do

6 if w ≤ b then

7 DP [w, (a, b)] ←

max DP [w, (a, b)], DP [v, (a, b)] + gain((v, w), (a, b))
)

8 else

9 DP [b, (v, w)] ←

max DP [b, (v, w)], DP [v, (a, b)] + gain((v, w), (a, b))
)

10 end

11 end

12 end

13 end

Algorithm 1: DeNovo∆ [14].
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In this subsection, we consider the linear retention 
time prediction model. We note that the retention time 
of a path pair P = (0, . . . , v) and Q = (0, . . . , a, b) with 
a ≤ v ≤ b is the sum of the retention times of both 
substrings t = tlin(l(P))+ tlin(l(Q)) . Moreover, the 
retention time t ′ of a path pair obtained from (P, Q) by 
applying a balanced extension by some edge (v, w) can 
be computed as t ′ = t + tlin(l(v,w)) . That is, we only 
need t and the edge label l(v,w) for computing t ′.

However, it is not sufficient to only store the opti-
mal score DP[v,  (a,  b)] of any path pair ending in v, 
respectively (a,  b), and its retention time to com-
pute a solution for our problem. There can be multi-
ple path pairs ending in the same vertex and the same 
edge with different retention times. If we consider an 
optimal solution and its sequence of path pairs com-
puted by the algorithm, a path pair P = (0, . . . , v) and 
Q = (0, . . . , a, b) in this sequence does not necessarily 
have an optimal score among all path pairs ending in v 
and (a, b). Nevertheless, its score is optimal among all 
path pairs with the same retention time that end in v 
and (a, b). Therefore, we need to store for each possible 
retention time t the optimal score of a path pair ending 
in vertex v and edge (a, b).

DeNovo�Lin (Algorithm  2) stores for each entry 
DP[v, (a, b)] an array containing a score for every possi-
ble retention time t. DP[v,  (a, b)][t] is the optimal score 
for a path pair ending in v, respectively (a, b), with reten-
tion time t. For a given vertex v and an edge (a,  b), the 
algorithm performs balanced extensions by all outgoing 
edges (v, w) of v. For every balanced extension and every 
feasible retention time t, the algorithm then computes 
the new retention time t ′ and the new score of the result-
ing path pair and updates the corresponding entry in the 
table. We can see by an inductive argument that the opti-
mal scores in the table are computed correctly. As the 
base case, we note that DP[0, (0, 0)][0] = 2 is correct, as 
an empty path pair explains the masses {0,M} ⊆ X and 
has retention time 0. As soon as the entry DP[v, (a, b)] is 
reached in line  7, all optimal scores for path pairs end-
ing in vertex v and edge (a, b) have been computed. This 
holds by induction, as every possible balanced extension 
leading to a path pair ending in v and (a, b) has already 
been considered (given the optimal score of a preceding 
path pair). Moreover, the array in DP[v, (a, b)] is not fur-
ther modified as soon as the algorithm reaches the ver-
tex v and the edge (a, b) in line 7. Therefore, the invariant 
holds that, if the algorithm considers a vertex v and an 
edge (a, b) in line 7, the corresponding entry DP[v, (a, b)] 
contains the optimal score for each feasible retention 
time.

After computing all entries DP[v,  (a,  b)], the 
optimal score of a string with retention time t is 

max(a,b)∈E DP[M − b, (a, b)][t] . We are interested in 
optimal strings with a predicted retention time t ± ε . 
Therefore, we iterate over all entries DP[M − b, (a, b)][t] 
for (a, b) ∈ E and all feasible retention times 
t ∈ [T − ε,T + ε] to find the optimal score of a string 
with a feasible predicted retention time. We can recon-
struct a corresponding string starting from the corre-
sponding entry in DP.

The running time of DeNovo� is in 
O(|V | · |E| · d · p)  [14], where d is the maximal out-
degree of a vertex in G and p is the maximal length of 
an edge label. The additional overhead of DeNovo�Lin 
(loop starting at line 8 in Algorithm 2) is to iterate over 
all feasible retention times t for each entry DP[v,  (a, b)] 
and compute the new retention time t ′.

The number of scores to be stored varies depending on 
the entry and the retention time coefficients. For a path 
pair ending in v, respectively (a, b), we have to consider 
all retention times in [rtmin · (v + b), rtmax · (v + b)] , 
where rtmin and rtmax are the minimum and the maxi-
mum retention time per mass unit. For example, we 
only store one optimal score in entry DP[0,  (0,  0)], 
but up to ⌈rtmax ·M − rtmin ·M⌉ scores in entries 
DP[M − b, (a, b)] for (a, b) ∈ E . The time complex-
ity of DeNovo�Lin is in O(|V | · |E| · |RTM | · d · p) , 
where |RTM | denotes the number of possible retention 
times for a string of mass M. In practice, most entries 
DP[v,  (a,  b)] contain only few scores, as we only store 
the score for a retention time t if there is a path pair 
ending in v and (a, b) with predicted retention time t. 
Therefore, it is advisable to use a memory-efficient data 
structure instead of an array to reduce the memory 
consumption of the algorithm.

This approach is flexible and can be extended to 
compute suboptimal solutions, e.g. the k best-scoring 
strings, using similar techniques as described in  [14]. 
The implementation of this algorithm supports com-
puting both the best and the k best strings for a given 
input.

Algorithm for the position‑dependent prediction model
In the position-dependent prediction model, the reten-
tion time of a string S is not equal to the retention time 
of all permutations of S . This is due to the fact that the 
retention time coefficient of a character in the first and 
the last γ positions of the string may be different from 
the coefficient of the same character at another posi-
tion. Therefore, we have to distinguish the prefix and 
the suffix path of a path pair (P, Q), with P = (0, . . . , v) , 
Q = (0, . . . , a, b) , and a ≤ v ≤ b , in order to compute 
its predicted retention time. This was not necessary for 
DeNovo� and DeNovo�Lin, as both the score and the 
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predicted retention time (in the linear prediction model) 
do not depend on which of the two paths represents the 
prefix.

Let us assume that P is the prefix path and Q is the suf-
fix path of a path pair (P, Q). We compute the retention 
time of (P, Q) by summing the retention times tP and tQ 
of the path labels,

(7)

tP :=
∑

ai∈ l(P)

{

tpre(ai, i) i ≤ γ

t(ai) i > γ

tQ :=
∑

aj∈ l(Q)

{

tsuf(aj, j) j ≤ γ

t(aj) j > γ .

If we want to update the retention time after a balanced 
extension of (P, Q) by an edge (v, w), we have to compute 
the retention time of the edge label l(v,w) . This retention 
time depends on whether the edge label contains some 
of the first or the last γ characters of a solution string S 
of mass M. However, there can be multiple such solution 
strings resulting from different further balanced exten-
sions of this path pair.

1 foreach (a, b) ∈ E and v ∈ V do

2 DP [v, (a, b)] ← array with entries −∞ for each feasible retention time t

3 end

4 DP [0, (0, 0)][0] ← 2

5 for v ∈ V in ascending order do

6 foreach (a, b) ∈ E in lexicograph. asc. order with a ≤ v ≤ b do

7 foreach (v, w) ∈ E with w + b ≤ M do

8 foreach entry t in DP [v, (a, b)] do

9 t′ ← t+ tlin(l(v, w))

10 if w ≤ b then

11 DP [w, (a, b)][t′] ←

max DP [w, (a, b)][t′], DP [v, (a, b)][t]+gain((v, w), (a, b))
)

12 else

13 DP [b, (v, w)][t′] ←

max DP [b, (v, w)][t′], DP [v, (a, b)][t]+gain((v, w), (a, b))
)

14 end

15 end

16 end

17 end

18 end

Algorithm 2: DeNovo∆Lin– Linear retention time prediction model.
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We can decide whether l(v,w) contains some of the 
first γ characters given the length k of l(P) without 
knowing the solution string S . If k ≥ γ , the edge label 
clearly does not contain any of the first γ characters of 
any solution resulting from extending (P, Q). Likewise, 
we know that l(v,w) contains none of the γ last charac-
ters if l(Q) has more than γ characters. However, if l(Q) 
has less than γ characters, we cannot decide whether 
l(v,w) contains some of the last γ characters without 
knowing the length of S.

Let us assume for now that l(v,w) does not contain 
some of the last γ characters of the solution. The reten-
tion time of the new path pair resulting from the bal-
anced extension of (P, Q) by the edge (v, w) is

If P would be the suffix path, tpre(ai, i) would be replaced 
by tsuf(ai, i) in the above equation.

It is important that the above assumption holds for 
every balanced extension leading to a solution string S . 
Otherwise, the retention time of the new path pair is not 
computed correctly. We cannot check if our assumption 
holds while computing the new retention time after a bal-
anced extension. However, given a solution string S and a 
path pair that represents a prefix and a suffix of S , we can 
check if either the balanced extension leading to this path 
pair or a preceding balanced extension does not satisfy 
the assumption. If so, either the prefix or the suffix path 
label has at least n− γ characters, where n is the length of 
S . This also holds for all subsequent path pairs, as we only 
add characters to path labels in a balanced extension.

Therefore, when reconstructing a solution from the 
dynamic programming table, we have to additionally check, 
if one of the path labels has n− γ or more characters, before 
we combine them to a solution string. If so, the assump-
tion was not fulfilled at some step and we discard this solu-
tion, as its retention time was not computed correctly. Note 
that we cannot consider these strings, unless they can be 
constructed by another sequence of balanced extensions. 
However, it is very unlikely that the assumption is not ful-
filled in practice, as we consider small values of γ . We never 
observed such a situation in our evaluation using γ = 2.

Given the sequence of path pairs of an optimal solution, 
a path pair in this sequence has an optimal score among 
all path pairs with the same retention time. However, we 
have to store some additional information to compute a 
solution with respect to the position-dependent predic-
tion model. First, we have to store whether P is a prefix or 
a suffix path. Second, we have to store the length of both 
path labels, unless they are larger than γ.

(8)t ′ = t +
∑

ai∈l(v,w)

{

tpre(ai, i) i + k ≤ γ

t(ai) i + k > γ .

DeNovo�Pos (Algorithm  3) stores the optimal scores 
of path pairs ending in v and (a,  b) in an array with an 
entry for every retention time t, the lengths α and β of the 
path labels and a Boolean variable pre indicating if the 
path ending in v is the prefix or the suffix path. We store 
the length of the path labels only up to length γ , as the 
exact length is only important as long as the path labels 
have less than γ characters.

If the algorithm reaches an entry DP[v, (a, b)] in line 7, 
all optimal scores for path pairs ending in vertex v and 
edge (a, b) have been computed correctly, as all balanced 
extensions leading to such path pairs have already been 
considered. Given the optimal score of a path pair, the 
algorithm performs every possible balanced extension 
with an outgoing edge of v, computes the new score and 
retention time, and updates the corresponding entries.

We reconstruct a solution starting from a path pair 
ending in some vertex M − b and some edge (a,  b). 
The algorithm additionally verifies that both the pre-
fix and the suffix path label have more than γ char-
acters. DeNovo�Pos considers at most 2 · γ 2 · |RTM | 
optimal scores for each table entry DP[v,  (a,  b)], where 
|RTM | is the number of possible retention times for 
a string of mass M. Therefore, the running time is in 
O
(

|V | · |E| · |RTM | · γ 2 · d · p
)

 , where d is the maximal 
out-degree of a vertex in G and p is the maximal length 
of an edge label.

Algorithm for the neighborhood‑based prediction model
The neighborhood-based model predicts the retention 
time of a string S by considering all pairs of consecutive 
characters. We define the predicted retention time of a 
path pair (P, Q) as follows. The retention time of the path 
label l(P) is the sum of the retention time coefficients of 
the pairs of consecutive characters and the additional 
coefficient of the first character. Note that we consider 
only one coefficient for the last character in the prefix, as 
the other coefficient depends on the next balanced exten-
sion or the last character of l(Q) . The retention time of 
l(Q) is defined analogously considering that the l(Q) is a 
reversed suffix of the solution string S . We compute the 
retention time of (P, Q) by summing the retention times 
of both path labels (Fig. 3). That is, the retention time of 
(P, Q) is

where l(P) = p1, . . . ,pn and l(Q) = q1, . . . ,qm are the 
path labels of (P, Q).

(9)

tnei(P,Q) := t(−,p1)+

(

n−1
∑

i=1

t(pi,pi+1)

)

+

(

2
∑

i=m

t(qi,qi−1)

)

+ t(q1,−),
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1 foreach (a, b) ∈ E and v ∈ V do

2 DP [v, (a, b)] ← (|RTM | × γ × γ × 2)-array with entries −∞

3 end

4 DP [0, (0, 0)][0, 0, 0, 0] ← 2

5 for v ∈ V in ascending order do

6 foreach (a, b) ∈ E in lexicograph. asc. order with a ≤ v ≤ b do

7 foreach (v, w) ∈ E with w + b ≤ M do

8 foreach entry (t, α, β, pre) in DP [v, (a, b)] do

9 t′ ← retention time of resulting path pair

10 if pre then

11 α′ ← max(γ, α+ |l(v, w)|); β′ ← β

12 else

13 α′ ← α; β′ ← max(γ, β + |l(v, w)|)

14 end

15 if w ≤ b then

16 DP [w, (a, b)][t′, α′, β′, pre] ←

max DP [w, (a, b)][t′, α′, β′, pre], DP [v, (a, b)][t, α, β, pre]+

gain((v, w), (a, b))
)

17 else

18 DP [b, (v, w)][t′, α′, β′,¬pre] ←

max DP [b, (v, w)][t′, α′, β′,¬pre], DP [v, (a, b)][t, α, β, pre]+

gain((v, w), (a, b))
)

19 end

20 end

21 end

22 end

23 end

Algorithm 3: DeNovo∆Pos – Position-dependent prediction model.
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We can update the retention time after a balanced 
extensions of (P,  Q) as follows. Consider a balanced 
extension of the prefix path P by an edge (v,  w) with 
l(v,w) = l1 . . .lk . Let pn be the last character of l(P) . 
The retention time t ′ of the new path pair resulting from 
the balanced extension is

The retention time after a balanced extension of the suffix 
path Q is defined analogously (again considering the l(Q) 
is a reversed suffix).

Note that the retention time of a solution S is not the 
sum of the retention times of a prefix of S and its com-
plementary suffix. We have to additionally consider the 
coefficient of the last character of the prefix and the first 

(10)t ′ = tnei(P,Q)+ t(pn,l1)+

k−1
∑

i=1

t(li,li+1).

character of the suffix, which are consecutive in S . If we 
combine the path labels of a path pair (P′,Q) to a string 
S (Fig. 3), the retention time of S is tnei(P′,Q)+ t(pn,qm) , 
where pn and qm are the last characters of the prefix l(P) 
and the reversed suffix l(Q).

DeNovo�Nei (Algorithm 4) stores for every path pair 
(P, Q) ending in vertex v and edge (a, b) the optimal score 
for each retention time t, last character p of the path 
ending in v, and a Boolean variable pre indicating if P is 
the prefix path. As a base case, the algorithm stores the 
optimal score for a path pair ending in vertex 0 and the 
loop edge (0,  0) as DP[0, (0, 0)][0,−, 0] = 2 . The algo-
rithm considers the vertices and edges of G in ascend-
ing order. After considering all possible path pairs, the 
optimal score can be computed by considering all entries 
DP[M − b, (a, b)] and the feasible solutions for path pairs 
ending in these vertices and edges.

l(P ) = p1 p2

l(P ′) = p1 p2 l1 l2

l(Q) = q1 q2 q3

S = p1p2l1l2q3q2q1

t = tnei (P,Q) = t(−, p1) + t(p1, p2) + t(q3, q2)+
t(q2, q1) + t(q1,−)

t′ = tnei (P ′, Q) = t+ t(p2, l1) + t(l1, l2)

tnei(S) = tnei (P ′, Q) + t(l2, q3)

Fig. 3  The retention time t of a path pair (P, Q) is the sum of the retention time coefficients up to the last characters p2 and q3 . The path pair (P′ ,Q) 
resulting from a balanced extension of (P, Q) by an edge with label l1l2 has retention time t + t(p2 ,l1)+ t(l1 ,l2) . A path pair (P′ ,Q) with 
m(l(P′))+m(l(Q)) = M can be combined to a solution string S by concatenating l(P′) and the reversed string of l(Q) . The retention time of S is 
tnei(P

′ ,Q)+ t(l2 ,q3)
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1 foreach (a, b) ∈ E and v ∈ V do

2 DP [v, (a, b)] ← (|RTM | × |Σ| × 2)-array with entries −∞

3 end

4 DP [0, (0, 0)][0,−, 0] ← 2

5 for v ∈ V in ascending order do

6 foreach (a, b) ∈ E in lexicograph. asc. order with a ≤ v ≤ b do

7 foreach (v, w) ∈ E with w + b ≤ M do

8 foreach entry (t, p, pre) in DP [v, (a, b)] do

9 t′ ← retention time of resulting path pair

10 if w ≤ b then

11 p′ ← last character of l(v, w)

12 DP [w, (a, b)][t′, p′, pre] ←

max DP [w, (a, b)][t′, p′, pre], DP [v, (a, b)][t, p, pre] +

gain((v, w), (a, b))
)

13 else

14 p′ ← last character of l(a, b)

15 DP [b, (v, w)][t′, p′,¬pre] ←

max DP [b, (v, w)][t′, p′,¬pre], DP [v, (a, b)][t, p, pre] +

gain((v, w), (a, b))
)

16 end

17 end

18 end

19 end

20 end

Algorithm 4: DeNovo∆Nei – Neighborhood-based prediction model.
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The algorithm considers at most 2 · |�| · |RTM | opti-
mal scores for each pair of a vertex v and an edge (a, b), 
where |RTM | is the number of possible retention times 
for a string of mass M and |�| is the size of the consid-
ered alphabet. The running time of DeNovo�Nei is in 
O(|V | · |E| · |RTM | · |�| · d · p) , where d is the maximal 
out-degree of a vertex, p is the maximal length of an edge 
label, and |RTM | is the number of feasible retention times 
for a string of mass M.

Experimental evaluation
In this section, we study the performance of our algo-
rithms for de novo peptide sequencing with retention 
time prediction. In our evaluation, we want to clearly 
expose the effect of considering the retention time infor-
mation rather than studying the identification rates 
compared to state-of-the-art de novo sequencing soft-
ware, such as UniNovo  [6] or Novor  [8]. We compare 
the identification rates of the proposed algorithms with 
the identification rates of DeNovo�   [14], as this algo-
rithm uses the same symmetric difference scoring model, 
while other available tools use different scoring models. 
Note that we use a very simple scoring function that only 
considers if a mass has been measured by the instru-
ment, but no other information, such as the intensity of 
the signal. While this is sufficient for studying the effect 
of considering the retention time information, such a 
scoring function is typically not suitable for real applica-
tions. However, our algorithms can support more sophis-
ticated scoring models that also take into account the 
signal intensities measured by the mass spectrometer. We 
refer to  [14] for one example of such a scoring function 
that is supported by the current implementation of our 
algorithms.

We first describe the considered dataset and a method 
for estimating the parameters of the three models. Then, 
we compare the identification rates of the proposed algo-
rithms to the identification rate of DeNovo�  [14].

Dataset
We use the SWATH-MS Gold Standard (SGS) dataset 
(http://www.pepti​deatl​as.org, identifier PASS00289, [15]) 
with measurements of 422 synthesized peptides. Specifi-
cally, we consider the 944 spectra of synthesized peptides 
from DDA-experiments that have also been considered 
in  [14]. The raw profile spectra were centroided (peak-
picked) using the tool qtofpeak-picker  [21]. The spec-
tra have been analyzed using the database search tool 
Comet [22] using the very restricted database containing 
only the 422 synthesized peptides. In our evaluation, we 
only considered spectra from doubly-charged peptides 
(as reported by Comet) and assumed that all measured 

fragment masses are singly charged. Peptideprophet [23] 
has been used to validated the results.

We used the sequences identified by Comet as gold 
standard and considered a peptide to be identified by one 
of the considered algorithm, if the exact sequence has 
been computed as the best-scoring solution, respectively 
one of the 5, 10, or 100 best-scoring solutions.

Retention time coefficient estimation
In this work, we are mainly interested in the algorithmic 
problem of using retention time information for de novo 
sequencing and do not focus on efficient procedures for 
estimating the coefficients of retention time prediction 
models. We use linear regression for estimating the coef-
ficients for our three retention time models.

We randomly split the 944 spectra into a training set 
with 80% of the spectra (755 spectra) and a test set with 
the remaining 20% of the spectra (189 spectra). We use 
the training set to estimate the retention time coefficients 
and the test set to select a tolerance parameter ε . In a lin-
ear regression approach, we choose the coefficients such 
that the sum of the squared loss 

∑

S,T (T − t(S))2 is mini-
mized, where T is the measured retention time, and t(S) 
the predicted retention time of the sequence S.

For example, we estimate the coefficients of the linear 
model by first computing the character frequency vector 
for each string in the dataset. The character frequency 
vector of a string is a vector of length |�| that indicates 
how often a character occurs in the string. For example, 
the occurrence vector of the string AGA has value 2 at 
entry A , value 1 at entry G and value 0 at all other entries. 
Then, the retention time of a string S is the scalar product 
of its character frequency vector frq(S) and the vector of 
the retention time coefficients ct. Standard software tools 
for statistical methods  [24] can be used to compute ct, 
such that 

∑

i(Ti − �ct, frq(S)�)2 is minimized.
We chose the tolerance parameter ε independently 

for each prediction model by considering the difference 
between the measured and the predicted retention time 
of the sequences in the test set. Figure 4 shows the differ-
ences between the predicted and the measured retention 
times for all three models on the test dataset. We set ε to 
half the difference between the maximum error emax and 
the minimum error emin , i.e. ε = (emax − emin)/2 . Con-
cretely, we set ε = 1000 seconds for the linear prediction 
model and ε = 750 seconds for the position-dependent 
model.

The neighborhood-based prediction model has a very 
large predictive error for several sequences due to the 
small training dataset. Several coefficients are estimated 
based on few observations and others cannot be esti-
mated at all. Therefore, we cannot extensively evaluate 

http://www.peptideatlas.org


Page 13 of 16Frank et al. Algorithms Mol Biol  (2018) 13:14 

the identification rates of our algorithm with the neigh-
borhood-based prediction model, as a much larger 
training dataset for estimating all parameters would 
be necessary. For our limited evaluation, we ignore the 
5 largest and the 5 smallest retention time errors when 
picking the tolerance parameter and use ε = 500 seconds.

Comparison of DeNovo�Lin and DeNovo�Pos
We analyzed the 944 considered spectra with DeNovo�
Lin and DeNovo�Pos. Both algorithms compute all solu-
tions with a score of at least 90% of the optimal score and 
a predicted retention time within the tolerance range. 
Figure  5 shows the number of annotated sequences 

reported as best-scoring sequence by the three consid-
ered algorithms. While the majority of the spectra are 
either identified by all algorithms or not at all, 59 spectra 
are only identified when considering the retention time 
information.

Figure 6 shows a comparison of the identification rates 
with respect to the 5, 10, and 100 best-scoring sequences 
of DeNovo�   [14], DeNovo�Lin, and DeNovo�Pos. 
Without considering the retention time, DeNovo� 
reported the annotated sequence as best-scoring 
sequence for 586 spectra (62.1%). Considering the linear 
retention time prediction model, DeNovo�Lin computed 
the annotated sequence with an optimal score for 610 
spectra (64.6%). DeNovo�Pos considers the position-
dependent prediction model and achieved the highest 
identification rate. The annotated sequence was reported 
as best-scoring sequence for 629 spectra (66.6%). The 
performance improvement decreases with increasing 
number of considered candidate sequences.

However, a filtering approach that considers the top 
100 sequences reported by DeNovo� , would not be as 
successful as the proposed algorithms. While the anno-
tated sequence was reported by DeNovo� for 793 spec-
tra among the top 100 sequences, DeNovo�Lin reported 
it in 798 cases and DeNovo�Pos in 808 cases. Even an 
optimal filtering approach by retention time would miss 
the sequences that have not been reported by DeNovo� . 
For six spectra, DeNovo�Lin and DeNovo�Pos did not 
report the annotated sequence, where DeNovo� did 
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report it, as the predicted retention time of the annotated 
sequence was not in the chosen tolerance range.

The length of a peptide affects its retention time. How-
ever, the considered prediction models do not take into 
account the peptide’s length and use the same coeffi-
cients for all peptide lengths. There is not necessarily a 
linear correlation between the length of a peptide and its 
retention time, as the coefficients can be positive or nega-
tive. Our models do not perform equally well on short 
and long peptides. Figure  7 shows a distribution of the 
number of identified spectra with respect to the length 
of the corresponding peptide sequence. DeNovo�Pos 
shows the best performance for peptides with fewer than 
14 amino acids. For longer peptides, the linear prediction 
model shows a superior identification rate on the consid-
ered dataset.

Discussion and conclusion
Discussion
An accurate retention time prediction model is crucial 
for exploiting the retention time information successfully. 
The identification rates of our algorithms depend on the 
choice of the tolerance parameter ε . Increasing ε dimin-
ishes the effect of considering the retention time, while 
decreasing ε might exclude the correct sequence from the 
search space.

In our evaluation, we considered a limited training 
dataset for estimating the retention time coefficients. 
While we have to estimate a small set of coefficients for 
our linear prediction model, the neighborhood-based 

prediction model has many retention time coefficients. 
Estimating these coefficients requires a large training 
dataset, as each coefficients needs to be estimated based 
on a sufficiently large set of observations. A much larger 
training set would be necessary to get a robust estimate of 
the retention time coefficients for this model. Our mod-
els fail to predict the retention time of some sequences 
accurately considering the available training data. To 
avoid excluding the correct sequence from the search 
space, we had to chose large tolerance parameters. By 
improving the predictive power of the models, e.g. using 
a larger training set or a more sophisticated parameter 
estimation, the tolerance parameter can be decreased, 
which increases the identification rates of our algorithms.

To get a glimpse on the performance of DeNovo�Nei, 
we set ε = 500  (in seconds) and analyzed the spectra 
from the test set, where the correct sequence was not 
excluded due to the predictive error. In three cases, the 
annotated sequence was reported by DeNovo�Nei, but 
by no other considered algorithm. The position of the 
annotated sequence improved compared to the position 
reported by DeNovo�Pos for 12 spectra.

Our prediction models do not consider several other 
properties of a peptide that affect its retention time. For 
example, the length of a peptide has an influence on its 
retention time. More evolved prediction models [18, 19] 
integrate a correction for the peptide length. The predic-
tion models considered in this work cannot account for 
the peptide length. However, as suggested in [19], a sepa-
rate set of retention time coefficient can be estimated for 
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short peptides in order to improve the prediction accu-
racy. This approach needs an even larger training dataset 
in order to accurately estimate the coefficients.

The running time of our prototypical implementations 
is in some cases not yet practical. DeNovo�Lin needs 
less than 3 seconds per spectra for half of the considered 
spectra, but several hours in exceptional cases. However, 
our implementation has not been optimized for speed 
and memory consumption. In general, DeNovo�Pos is 
more time-consuming. Half of the spectra were analyzed 
within about 2 min. The running time of our algorithm 
depends on the size of the spectrum graph. The algo-
rithms considered two masses to be equal if they differ by 
at most 0.02 Da. Moreover, a simple merging algorithm 
is applied during the construction of the spectrum graph 
to reduce the size of the graph as described in  [14]. We 
observed a great variation of spectrum graph sizes in our 
experiments. The spectrum graphs contained roughly 
8400 edges on average, whereas the largest observed 
graph contained 23,000 edges. Spectra measured on low 
resolution lead to denser spectrum graph, i.e. to a larger 
number of edges, but a lower number of vertices. How-
ever, we did not study the performance and runtime of 
our algorithms on this type of spectra.

Conclusion
In this paper, we propose the first algorithms for 
exploiting the retention time information in de novo 
peptide sequencing. We study three retention time pre-
diction models and develop algorithms for computing a 
sequence that matches the experimental mass spectrum 
as well as possible and is in accordance with the observed 
retention time. The experimental evaluation of our algo-
rithms shows that identification rates can definitively be 
improved by exploiting this additional information. Yet, 
the proposed algorithms score sequences with a very 
simplistic scoring function that only counts explained 
and measured masses and does not consider any other 
available information. For real-world applications, a more 
evolved scoring function using all available information 
needs to be integrated. While [14] introduces a new scor-
ing model, we explore ways of exploiting the retention 
time information. The proposed algorithms open room 
for developing new scoring functions that consider both 
the retention time information and the symmetric differ-
ence scoring model.
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