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Self-organized pattern behavior is ubiquitous throughout nature,
from fish schooling to collective cell dynamics during organism
development. Qualitatively these patterns display impressive con-
sistency, yet variability inevitably exists within pattern-forming
systems on both microscopic and macroscopic scales. Quantify-
ing variability and measuring pattern features can inform the
underlying agent interactions and allow for predictive analy-
ses. Nevertheless, current methods for analyzing patterns that
arise from collective behavior capture only macroscopic features
or rely on either manual inspection or smoothing algorithms
that lose the underlying agent-based nature of the data. Here
we introduce methods based on topological data analysis and
interpretable machine learning for quantifying both agent-level
features and global pattern attributes on a large scale. Because
the zebrafish is a model organism for skin pattern formation,
we focus specifically on analyzing its skin patterns as a means
of illustrating our approach. Using a recent agent-based model,
we simulate thousands of wild-type and mutant zebrafish pat-
terns and apply our methodology to better understand pattern
variability in zebrafish. Our methodology is able to quantify the
differential impact of stochasticity in cell interactions on wild-type
and mutant patterns, and we use our methods to predict stripe
and spot statistics as a function of varying cellular communication.
Our work provides an approach to automatically quantifying bio-
logical patterns and analyzing agent-based dynamics so that we
can now answer critical questions in pattern formation at a much
larger scale.

topological data analysis | agent-based model | self-organization |
pattern quantification | zebrafish

Patterns are widespread in nature and often form due to the
self-organization of independent agents. Whether explor-

ing such collective dynamics in cancer (1), wound healing (2),
hair growth (3), or skin pattern formation (4, 5), researchers
focus on uncovering unknown cell behavior and signaling using
a combination of experimental and modeling techniques. This
process is complicated by the fact that biological patterns are
inherently variable, making it challenging to quantify the distin-
guishing features of different mutants and judge model accuracy.
In some applications, such as zebrafish skin patterns (Fig. 1
A–D), global information about patterns both in vivo and in sil-
ico is largely based on visual inspection, and this naturally leads
to more subjectivity and limits the scale of the analyses. More-
over, the focus is often on the characteristic features of different
mutants, making it unclear how much variability normally arises
in mutant patterns and how this variability compares to wild type.
To help address these challenges, here we develop a method-
ology, based on topological data analysis and machine learning,
for quantifying self-organized patterns with an automated, agent-
based approach, and we apply our methods to study variability in
zebrafish skin patterns.

Characterized by black and gold stripes, the zebrafish (Danio
rerio) is a model organism in the field of skin pattern formation
(4, 6, 7). Remarkably, zebrafish stripes form due to the inter-
actions of tens of thousands of different-colored cells, which
reliably self-organize on the growing skin despite their stochas-
tic environment (8–10). In addition to their namesake stripes,
zebrafish feature a wealth of other patterns [e.g., spots and

labyrinth curves (11)] that form due to genetic mutations that
restrict cell birth or alter cell behavior (often in unknown ways).
While wild-type stripes (Fig. 1A) are considered robust, mutants
that lack certain cell types (Fig. 1 B–D) feature more variable
spotty patterns (11). For example, the nacre phenotype (9, 11,
12) has an enlarged central orange region with scattered blue
splotches (Fig. 1B). In comparison, both the pfeffer (9–11, 13) and
shady (11, 14) mutants are characterized by dark spots, roughly
aligned in stripes. These patterns differ in their finer details:
pfeffer has messy spots and peppered black cells across its skin,
while shady has sharp boundaries between light and dark regions
(11). Although these descriptions apply in general, patterns vary
due to the stochastic nature of pigment cell interactions.

Mathematical descriptions of zebrafish patterns capture
stochastic cellular interactions at different levels of detail. While
partial differential equations (e.g., refs. 8, 15, and 16) offer a
broad perspective on the evolution of cell densities, cellular
automaton (17, 18) and agent-based models (19–21) provide
a more detailed view of individual cell behavior. For exam-
ple, the agent-based model (20) specified cell interactions using
stochastic rules to simulate zebrafish patterning in silico (Fig. 1
F–I). Ideally, models should reproduce pattern formation as it
is observed in vivo, and this raises the question, How can we
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Fig. 1. Self-organization during development. Diverse skin patterns form on zebrafish due to the interactions of pigment cells. (A) Wild-type zebrafish
feature dark stripes and light interstripes (4, 11), while mutant patterns that form because a particular cell type is missing have altered, more variable
patterns. (B) The nacre mutant (encoding mitfa) (9, 12) has an enlarged central orange region flanked by blue patches. (C) Pfeffer (encoding csf1rA)
(9, 10, 13) is characterized by messy spots arranged horizontally (11). (D) Shady (encoding ltk) (11, 14) often features smooth black spots roughly arranged
in stripes. Reproduced from ref. 11, which is licensed under CC BY 3.0. (E) Pigment cells extend long legs (measuring up to half a stripe width in distance)
toward interstripe cells for communication (26). Reproduced from ref. 26, which is licensed under CC BY 3.0. (F–I) The agent-based model (20) replicates
zebrafish patterns in silico. (Red scale bar, 500 µm throughout this paper.) The central light interstripe is labeled X0, and the next two interstripes are called
X1V and X1D (11). (J) Rules for agent behavior in the model (20) depend on the cells in short-range disks and a long-range annulus. Reproduced from ref. 20,
which is licensed under CC BY 4.0. (K) Summary of the main pigment cells involved in patterning. Interstripes consist of orange dense xanthophores and
silver dense iridophores, and stripes contain yellow loose xanthophores, blue loose iridophores, and black melanophores.

systematically quantify and compare pattern features, particu-
larly in the presence of biologically induced variability? More-
over, researchers seek to identify the cell interactions that are
altered in mutant patterns, but this process is limited by the large
number of parameters in agent-based models and the need for
visual inspection to analyze simulation results. Reliable, auto-
matic quantification of patterns (for both in vivo and in silico
data) is therefore fundamental to measuring how well models
perform and increasing their predictive potential.

Many black-box machine-learning algorithms have been devel-
oped for pattern classification, but these approaches require
extensive training data and tedious manual labeling. Inter-
pretable methods provide results with a more transparent rela-
tionship to biological data. In this vein, Lee et al. (22) showed
how to use ImageJ (23) to quantify traits of giraffe spots; while
their process can be automated, it relies on data in the form of
contiguous blocks of bits in an image and captures only macro-
scopic pattern features, losing the underlying discrete, cell-based
nature of the data. Taking a different approach, Miyazawa et al.
(24) assigned a “pattern simplicity score” (associated with the cir-
cularity of black–white boundary contours) to images of salmon
patterns, and they quantified overall color tone by calculating
the ratio of light to dark areas on fish images. These two global
measures, which were applied to trout in ref. 25, are broadly
applicable but are not intended to capture detailed features. The
methodology that we introduce in this paper, in contrast, utilizes
the cell-based nature of skin patterns to quantify both macro-
scopic pattern attributes and microscopic features on the cellular
level.

As shown in ref. 27, topological data analysis (TDA) has
emerged as a valuable tool for characterizing collective behav-
ior and self-organization. Tools from TDA, specifically persistent
homology, allow one to assign shape descriptors to noisy or large
data across a range of spatial scales and, in contrast to deep
learning, they do not rely on any labeled training data. In the
case of collective behavior, this translates to measuring topolog-
ical summaries (e.g., connected components and loops) of the
resulting patterns from the cellular level to the global level. In
ref. 27, TDA was applied to study the velocity and positions of
agents in simulations of a flocking model. By tracking global
persistent homology features over time, Topaz et al. (27) were

able to identify agent clusters and detect the presence of global
dynamics that would be challenging to notice visually. While such
prior work (24, 25, 27) has demonstrated how to quantify vari-
ous overall features of patterns, characterizing the distinguishing
traits of the different zebrafish patterns in Fig. 1 at the level of
pigment cells requires a more detailed perspective.

Inspired by the utility of TDA for quantifying collective behav-
ior, here we show how to reinterpret topological summaries
as detailed measurements of pattern features. By combining
TDA with interpretable machine-learning techniques and work-
ing closely with the biological literature on zebrafish, we are able
to automatically detect and quantify patterns given agent (e.g.,
cell) coordinate data. Our main contribution is an automated,
interpretable framework for counting stripes and spots, detect-
ing broken stripes, measuring stripe widths, quantifying stripe
straightness, calculating spot size and roundness, measuring spot
placement, and estimating the onset of stripe formation from
pattern data. To illustrate our techniques, we apply our methods
to thousands of in silico images of zebrafish patterns generated
using the agent-based model from ref. 20. Because zebrafish dis-
play a wide range of patterns, we expect that our methodology
can be applied to other problems in biological self-organization
as well as to in vivo data. Our approach opens up a range of
possibilities for large-scale analysis of experimental images to
better understand the cellular mechanisms underlying pattern
formation.

Background and Methods
Here we give a brief overview of zebrafish biology and the model
(20), as well as an introduction to the TDA and machine-learning
concepts that we use in our methods [see SI Appendix for addi-
tional background on TDA and the model (20), including its
biological basis].

Biological Background. Zebrafish stripe patterns consist of three
main types of pigment cells: black melanophores, yellow/orange
xanthophores, and silver/blue iridophores (11) (Fig. 1A).
Xanthophores and iridophores are spread across the skin in
two forms (dense in light interstripes and loose in dark stripes),
while black cells reside only in stripes (10, 28–30). As these cells
undergo differentiation, division, death, migration, and form
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changes, they self-organize into four to five stripes and four inter-
stripes sequentially over a few months (4). During this time, the
fish body grows in length from roughly 7.5 mm to over 16 mm
(31). Cells regulate each other’s behavior through communica-
tion at short range (between neighboring cells) and at long range
(between cells in stripes and interstripes) (e.g., refs. 8, 15, and
32–34); see Fig. 1E. Importantly, this regulation is inherently
noisy. For example, cells may interact by reaching extensions
toward their neighbors (26, 35, 36); whether or not cellular com-
munication occurs then depends on whether these extensions
successfully find another cell.

Prior models (19, 20) have used estimates of wild-type stripe
width (26, 37) and descriptions of developmental timelines (e.g.,
approximate times at which new stripes appear) (4, 31, 38) to
judge model performance or fit parameters. Fewer data are
available for zebrafish mutants, and, to our knowledge, global
information is in the form of qualitative descriptions of the char-
acteristic features of their patterns. Local measurements, in turn,
include cell speeds (39, 40) and distances between adjacent cells
(33, 39, 41). Notably, we are not aware of measurements of
pattern variability or stripe straightness.

Model and Generation of In Silico Pattern Data. The model (20)
treats pigment cells as individual agents (point masses) and
tracks their positions (namely (x , y) coordinates) in space as they
interact on growing 2D domains. These domains capture the full
height of the fish body and one-third of its length (excluding a
region around the eye). The number of agents is carefully based
on empirical measurements of cell–cell distances [roughly 30 to
80 µm, depending on the cell type (39)], so that agent dynamics
occur on the same scale as cell interactions on the fish skin (20).
See SI Appendix, Fig. S3 for a summary of the model (20) and the
length scales involved.

The behavior of five different types of cell agents is accounted
for in ref. 20: We let Mi(t) be the (x , y) coordinate of the i th
melanophore (M ) at time t ; similarly, Xd

i (t), Xl
i(t), Id

i (t), and
Il
i(t) denote the locations of the i th dense xanthophore (X d),

loose xanthophore (X l), dense iridophore (I d), and loose iri-
dophore (I l), respectively; see Fig. 1K. Space is continuous, and
cell movement, which includes repulsion and attraction, is mod-
eled by coupled ordinary differential equations. Cell birth, death,
and transitions in type, in turn, take the form of stochastic,
discrete-time rules. These rules, which are strongly motivated by
the biological literature (e.g., refs. 11, 15, 34, and 39), depend
on the number of cells in disk and annulus neighborhoods cen-
tered at the cell or location of interest (Fig. 1J). Volkening and
Sandstede (20) use these neighborhoods to model the cells that a
given cell (or precursor) could communicate with [e.g., through
direct contact (42), diffusing substances (34), or dendrite exten-
sions (26, 35, 36) as in Fig. 1E]. As an example cell interaction
rule, interstripe cells are known to promote M differentiation at
long range (15, 32), and these dynamics are modeled as∑N d

X
i=1 1Ωz

long
(Xd

i ) +
∑N d

I
i=1 1Ωz

long
(Id

i )

α+β
∑NM

i=1 1Ωz
long

(Mi)
> 1

=⇒ M birth at z (if not overcrowded), [1]

where z is a randomly selected location to be evaluated for pos-
sible cell birth; N d

X, N d
I , and NM are the numbers of X d, I d,

and M cells on the domain, respectively; and Ωz
long is an annu-

lus centered at z that models long-range cellular communication
(Fig. 1J). According to Eq. 1, a new M cell appears at position
z when the ratio of interstripes cells to M cells at long range is
greater than one. [Note that the interaction rules in ref. 20 are
given in terms of numbers, rather than proportions, of cells. We
have adjusted the model (20) so that these rules depend on the

ratios or densities of cells in different regions, as this framework
works better for our large-scale study; see SI Appendix for more
details.]

The agent-based model (20) can be used to simulate the full
timeline of adult pattern formation from when it begins when the
fish is roughly 21 days post fertilization (dpf). Because the model
(20) is stochastic, simulating it repeatedly leads to different in
silico patterns and, importantly, for our methods, cell-coordinate
data. We thus generate an extensive dataset by simulating the
development of thousands of zebrafish patterns. We simulate
wild-type development from 21 dpf until 66 dpf, at which point
zebrafish, measuring about 2.2 mm in height and 12.6 mm in
body length (according to the growth rates approximated from
ref. 31 in ref. 20), are expected to have three complete inter-
stripes, two complete stripes, and some partially formed stripes
near the boundaries (SI Appendix, Fig. S3B). We simulate nacre
and pfeffer pattern formation until 76 dpf and shady develop-
ment until 96 dpf by turning cell birth off for the appropriate
cell types as described in ref. 20. [We note that experimental-
ists often use stages (31) rather than dpf to measure time; in
the model (20), 66 dpf, 76 dpf, and 39 to 44 dpf correspond to
the juvenile, juvenile+, and squamation onset posterior stages,
respectively.] With one exception, we perform all of our analy-
ses on the final simulated patterns at 66 dpf (for wild type), 76
dpf (for nacre and pfeffer), and 96 dpf (for shady). Following the
approach in ref. 20, we enforce periodic boundary conditions in
the horizontal direction and wall-like boundary conditions at the
top and bottom of these domains (Fig. 3A). To help avoid quan-
tifying partially formed stripes or spots, we remove the cells in
the top and bottom 10% of the domain in postprocessing.

To generate our first dataset, we simulate wild-type, nacre,
pfeffer, and shady patterns under the baseline conditions and
parameters described in ref. 20. We then adjust the model to
account for more realistic biological stochasticity in cell interac-
tions. In particular, rather than using deterministic length scales
in the cell interaction rules, each day we select these length scales
randomly per cell and interaction from a normal distribution cen-
tered at the default parameter value. In our last dataset, we focus
on the inner radius of Ωlong in Eq. 1 and explore the role of this
parameter while keeping all other parameters at their default
values.

Topological Data Analysis and Machine Learning. Our approach
to quantifying patterns relies on topological data analysis and
machine learning. TDA is an emerging branch of mathematics
and statistics that aims to extract quantifiable shape invariants
from complex and often large data (43–47). One of the main
tools in TDA is known as persistent homology, which we review
now briefly. Given a dataset of N discrete points {xi}Ni=1 that lie
in some metric space (D , dD), we place a ball of radius r at each
xi to obtain the set br (xi) = {y∈D : dD(xi , y)≤ r}. We then take
the union of these balls over all i ∈ [1,N ], namely

⋃
i∈[1,N ] br (xi).

This process yields a new manifold with shape generated by the
original data, and persistent homology tracks how the shape of
this manifold changes as r increases (Fig. 2).

For our work it suffices to view the dimension 0 and dimension
1 persistent homology groups as vector spaces whose dimensions
correspond to the number of connected components and loops,
respectively, of the evolving manifold (see SI Appendix and refs.
43–47 for more details). The number of generators of the i th
homology group is called the i th betti number, denoted βi . If a
topological feature (e.g., connected component or loop) appears
at some radius rb and disappears at some radius rd > rb , then
we say this feature is born at r = rb and dies at r = rd , and its
persistence is given by rd − rb .

For example, because a figure eight has one connected com-
ponent and two loops, this shape has β0 = 1 and β1 = 2. Now

McGuirl et al. PNAS | March 10, 2020 | vol. 117 | no. 10 | 5115

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917763117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917763117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917763117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917763117/-/DCSupplemental


A B

Fig. 2. Illustration of persistent homology applied to coordinate data.
(A and B) Noisy data sampled from a figure-eight shape (A) and
corresponding manifold expansions (B).

consider a noisy dataset sampled from a figure eight, as we show
in Fig. 2A. To compute the persistent homology of these data we
take the union of balls of radius r centered around each data
point for an increasing sequence of r values. Two loops appear
in the data at r = r2 and disappear before r = r3 in Fig. 2B, so
this dataset has two dimension 1 homology generators that are
both born at rb = r2 and die at rd = r3 (with persistence given by
r3− r2). Similarly, this dataset is connected for r ≥ r2, so it has
one dimension 0 homology generator for r ≥ r2 with infinite per-
sistence and several dimension 0 homology generators for r < r2.
Thus, persistent homology reveals that the noisy data in Fig. 2A
are topologically similar to a figure-eight shape (β0 = 1, β1 = 2)
for r2≤ r < r3.

In addition to using TDA, we apply methods from inter-
pretable machine learning to quantify patterns. Machine-
learning algorithms seek to automatically learn information from
a given dataset for classification or prediction purposes (48, 49).
The machine-learning approach we use involves clustering data
into different classes based on a similarity measure. Specifically,
we apply single-linkage clustering to subsets of agents (e.g., pig-
ment cells) to identify clusters corresponding to spot or stripe
patterns. Single-linkage clustering is an agglomerative hierarchi-
cal clustering method: Each data point begins in its own cluster
and points (or clusters of points) are merged sequentially based

on which two clusters are closest to each other (48, 49). We con-
tinue this process until there are n clusters, where n is either
one or some predetermined number of desirable clusters. We
use single-linkage clustering over other clustering algorithms
(e.g., average linkage or k-means) to capture elongated, undu-
lating, and nonspherical clusters that are characteristic of some
zebrafish mutants (Fig. 1).

As a side note, dimension 0 persistent homology is analo-
gous to single-linkage clustering, so there is a natural connection
between TDA- and clustering-based methods for pattern quan-
tification (43). Using clustering and topological methods in tan-
dem yields both multidimensional, coordinate-free summaries
(from TDA) and essential information about the locations of
different agents (from clustering).

Results: Our Methodology for Quantifying Patterns
We now use TDA and machine learning to develop our main
result: an interpretable, agent-based methodology for automat-
ically quantifying self-organizing patterns. We summarize our
methods in SI Appendix, Table S1 and illustrate how they can
be applied to zebrafish in Fig. 3. We present direct methods for
measuring local pattern features in SI Appendix.

Tailored to a specific application (zebrafish), our work opens
up an additional way of thinking about TDA tools and using
them to obtain detailed measurements of patterns. We expect
that a similar approach can be used to study other patterns
with data in the form of agent coordinates or images (with
functional persistence). To help encourage further applications
of TDA to self-organized patterns, we thus present our meth-
ods using general language in the next section, while also using
zebrafish to highlight the kinds of application-specific consid-
erations one must address when applying TDA to new data.
In particular, one application-specific step involves determin-
ing what agent type(s) to use as input for topological feature
computations. For example, multiple types of cells are present
in the same pattern features on zebrafish (e.g., in Fig. 1A,
both I d and X d appear in interstripes). Applying TDA to

A B

C D

Fig. 3. Illustration of our topological techniques applied to zebrafish patterns. (A) Boundary conditions are periodic in the horizontal direction, so stripes
and interstripes are viewed as loops from a topological perspective. (B) We count interstripes and measure stripe width using persistent homology. We show
manifold expansions of the locations of Xd cells by considering balls of growing radius r centered at the location Xd

i of each cell. When r = r1, the radius of
the balls is about half the maximum distance between neighboring Xd cells ∆xx . At this point, three interstripes have formed, but the number of loops is
larger than the true number of interstripes due to gaps between cells, highlighted by red arrows (β0 = 3 and β1 > 3). As r increases to r2, the noisy loops die
off, leaving only three loops (β0 = 3 and β1 = 3). The long persistence of three loops corresponds to the true presence of three interstripes. As r increases
further to r4, the manifold collapses to a single connected component (β0 = 1 and β1 = 1). The difference between the ball radius at which this collapse
occurs (r4) and the ball radius at which three loops appear (r1) approximates half the maximum width of black stripes. (C) By combining TDA with clustering
methods, we automatically detect interstripe boundaries and measure their curviness; we show the percentage of increase in arc length distance (ALD)
of these boundaries (traced out in red) relative to perfectly straight stripes here. (D) We describe spotted phenotypes by combining persistent homology,
clustering methods, and principal component analysis. We use β0 to quantify the number of spots. As an example, we show the spot size and spot roundness
for two nacre spots.
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the locations of every agent type in a pattern is expensive.
It may be sufficient to study only one or two agent types,
but selecting which types to use requires application-specific
considerations.

Counting Spots and Stripes. We compute the dimension 0 and
dimension 1 persistent homology groups using the coordinate
data of agents [e.g., pigment cell locations generated by the
model (20)] to quantify pattern types, assuming periodic bound-
ary conditions in the x direction. With these boundary condi-
tions, spots can be viewed as connected components without
loops, whereas stripes wrap around the domain and are thus
connected components with a single loop (Fig. 3 A and B).
Consequently, β0 and β1 approximate the number of spots and
stripes in a pattern, respectively.∗

For zebrafish, we estimate the number of stripes and inter-
stripes in wild-type patterns by computing β1 for X l and X d

cells, respectively. We apply TDA to these cells because they
uniformly cover the fish skin, but in different forms in stripes
and interstripes.† We estimate the number of spots in nacre and
pfeffer patterns by computing β0 using the locations of blue I l

cells.‡ For pfeffer, individual M cells appear randomly on the
domain, so using these cells to count the number of spots would
introduce spurious connected components (in the form of indi-
vidual black cells). In comparison, M are much more clustered
in shady; thus, we calculate the number of dark shady spots by
computing β0 for M.

In general, we calculate betti numbers by applying persis-
tent homology to the agents’ coordinates and using a persis-
tence threshold to count the number of homological genera-
tors whose persistence is greater than the set threshold (Tp).
Empirical estimates of cell–cell spacing motivate our choice of
Tp for zebrafish. Specifically, we use T 0

p = 100 µm and T 0
p =

90 µm as the dimension 0 persistence thresholds for iridophores
and melanophores, respectively. We chose these thresholds
conservatively, as average xanthophore–xanthophore neighbor-
ing distances are 30 to 60 µm and average melanophore–
melanophore distances are roughly 50 to 60 µm in wild type
(20, 33, 39, 41). (We are not aware of empirical measure-
ments of iridophore spacing.) For dimension 1 homology, we
use a universal persistence threshold of T 1

p = 200 µm. More-
over, to ensure that we correctly differentiate between complete
and broken stripes or interstripes, we specify that a persis-
tence generator counts toward β1 only if its birth radius rb
is below a certain threshold (T 1

b ). For X l and X d, we use
T 1

b = 100 µm and T 1
b = 80 µm, respectively. These thresholds

were motivated by cell–cell distance measures (33, 39, 41) and
tuned based on parameter fitting experiments with stripe and
interstripe breaks.

Simultaneously, we can use persistent homology to identify
stripe breaks when the number of expected stripes is known (see
Fig. 4A for examples of stripe and interstripe breaks). Namely,
we flag a stripe break when β1 is less than the expected num-
ber of stripes. Here we additionally consider β1 of the M cells,
with T 1

b = 90 µm and T 1
p = 200 µm. We compute β1 for both X l

and M because the former appear at low density in dark stripes;
computing β1 for both cell types allows us to be more confi-
dent in our results. As we discussed in Background and Methods,
we expect that our simulated zebrafish patterns have two fully

*If boundary conditions are not periodic, spots and stripes are topologically equivalent.
†Alternatively, we could have used Id and Il, but these cells appear closer together than
xanthophores at stripe–interstripe boundaries.

‡Alternatively, we could have computed the number of spots using Xl in nacre, as these
cells appear together with Il. However, Xl are much less dense than Il in nacre, so the
former would introduce more noise into our measurements.
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Fig. 4. Baseline quantification of wild-type patterns. All measurements are
based on 1, 000 simulations of the model (20) under the default parameter
regime. (A) We use persistent homology to detect the presence of breaks
in stripes and interstripes. (Following the example in ref. 20, we do not
count breaks in the dark stripes along the top and bottom boundaries of
the domain.) The domain captures about one-third of the fish body (20).
(B) Distribution of times at which interstripes X1D and X1V (Fig. 1F) begin
to form. (C) Distribution of maximum interstripe width. (D) Distribution of
stripe curviness (also see Fig. 3C). In B–D, we display histograms of in silico
data and kernel density estimator (KDE) curves with a Gaussian kernel in
black; the mean plus/minus the SD is shown in each plot for the data.

formed stripes and three fully formed interstripes at the time of
our analysis, so we flag a stripe break when β1 < 2 for both X l

and M cells. Similarly, we flag an interstripe break when β1 < 3

for X d cells.

Measuring Stripe Width. Beyond quantifying the number of
stripes or spots, we leverage TDA to approximate stripe and
interstripe widths. In particular, we estimate (inter)stripe widths
using the persistence (rd − rb) of the significant dimension 1 per-
sistence points. We define significant dimension 1 persistence
points as those with persistence greater than or equal to T 1

p

and birth radius rb less than or equal to T 1
b . For example, the

persistence of a stripe loop is the difference between the radius
value (rd ) at which two adjacent stripes combine to form a single
loop and the radius value (rb) at which the stripe feature ini-
tially formed (we ignore the features that persist to infinity). This
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difference (rd − rb) is half of the maximum distance between two
adjacent stripes, capturing the maximum width of the enclosed
interstripe (Fig. 3).

In wild-type zebrafish, twice the persistence of the yellow X l

loops yields an approximation for the maximum interstripe width
across the fish. Similarly, twice the persistence of the orange
X d loops approximates an upper bound on stripe width. We
note that rd alone could be used as an alternative estimate for
maximum (inter)stripe width, but we use rd − rb to account for
the narrow boundary region between stripes and interstripes.
To obtain a lower bound on stripe width, one could calculate
the persistence of the significant dimension 0 persistence points,
as this measurement is based on half of the minimum distance
between two adjacent interstripes.

Measuring Spot Size. We measure spot size by applying single-
linkage hierarchical clustering to the agents of interest with the
number of desired clusters (e.g., number of spots) set to the
β0 values we obtained from our topological analyses. Then, we
count the number of cells per cluster to approximate the size of
each spot. We define “spot size” as the median number of agents
per spot across all of the spots.

Quantifying Stripe Straightness. To measure “stripe curviness” we
compute the arc length distance (ALD) of the boundary of each
single-linkage cluster that corresponds to a stripe. We define our
stripe curviness measure to be the average percentage of increase
of this ALD from the ALD of straight stripes:

curviness = mean
stripes

((
true ALD

straight ALD
− 1

)
× 100

)
. [2]

For example, to measure the curviness of wild-type zebrafish
stripes, we apply single-linkage clustering to the locations of X d

cells. For the number of desirable clusters n , we use the num-
ber of expected interstripes minus the number of stripe breaks
that we identified with persistent homology (Fig. 3C). We then
calculate the ALD for the resulting clusters and compute stripe
curviness using Eq. 2.

Quantifying Spot Roundness. To estimate spot uniformity, we use
the clusters identified via single-linkage hierarchical clustering
(with the number of desired clusters set to the β0 values). We
then apply principal component analysis (PCA) to each clus-
ter. The eigenvalue decomposition in PCA provides information
about how varied the data are in each dimension. Since our data
are 2D, we use PCA to evaluate the spread of each cluster in the
x and y directions. If a spot has significantly more variance in one
direction, this indicates that it is irregularly shaped or elongated.
Specifically, we define our roundness measure as

roundness of spots = median
spots

(
PCA eigenvalue 1
PCA eigenvalue 2

)
. [3]

We assume that a PCA eigenvalue ratio close to one implies
round spots, while a PCA eigenvalue ratio �1 indicates
irregular, nonuniform spots (see Fig. 3D for examples).

Determining Spot Alignment and Center Width. We quantify spot
alignment by first applying single-linkage hierarchical cluster-
ing to agent locations (with the number of desired clusters set
to the β0 values). We then calculate the pairwise l∞ distances
between the cluster centroids and complete a nearest-neighbor
search with the l∞ metric.§ This allows us to extract the distance

§Note that dl∞ ((x1, y1), (x2, y2)) = max(|x1 − x2|, |y1 − y2|).

from each spot to its closest neighboring spot. We define the
spot-spacing variance as the SD of these nearest-neighbor l∞ dis-
tances. A large spacing variance corresponds to nonuniform spot
placement, while a small spacing variance predicts well-aligned
spots.

Motivated by the nacre and shady patterns, which feature
expanded light central regions (Fig. 1 G and I), we also use
the cluster centroids to approximate the center width, defined
as twice the distance from the midpoint of the domain to its first
spot. In particular, we estimate the center width as twice the min-
imum distance from the cluster centroids to the midpoint of the
domain, minus the median spot diameter. Here we define spot
diameter as twice the greatest Euclidean distance from the spot’s
centroid to cells belonging to the spot. For zebrafish, the cen-
ter radius corresponds to the width of the central interstripe X0
(Fig. 1 F and G).

Capturing Pattern Formation Events. Thus far, we have focused
on quantifying pattern features at a snapshot in time. However,
for self-organization that occurs during organism development,
it is also useful to estimate the time at which specific features
emerge. For example, in wild-type zebrafish, the second and
third interstripes X1V and X1D (Fig. 1F) develop around 39
to 44 dpf [based on approximations (20) of images in refs. 11
and 31]. This information on target time dynamics serves as an
additional quantitative measurement that can be used to evalu-
ate models. Here we present a method for quantifying the time
at which stripes X1V and X1D form; future work could extend
these methods to capture the time dynamics of spot formation
and other features.

Given data in the form of agent locations at consecutive time
points, we first assume new stripes form somewhere between day
d0 and d1. If there is no prior knowledge about the expected time
of stripe development, one can set d0 and d1 to the first and last
days of pattern development, respectively. For zebrafish, because
the model (20) was parameterized so that interstripes X1D and
X1V form around 39 to 44 dpf, we conservatively set d0 = 32 dpf
and d1 = 62 dpf. Within the specified time interval, we then ana-
lyze the patterns sequentially beginning at d0, assuming there is
initially a single stripe on the domain. At each time step, we find
the upper and lower bounds of the stripes by computing the max-
imum and minimum, respectively, of the y coordinates of the
agents of interest (e.g., for zebrafish, we use X d cells). Finally,
we estimate the initial formation of new stripes as the first day at
which the upper or lower bounds of the stripes increase by more
than some threshold from the previous day. For zebrafish, the
threshold we use is 200 µm¶ .

Results: A Quantitative Study of Zebrafish Patterns
We now study zebrafish pattern variability and robustness by
analyzing thousands of in silico wild-type and mutant patterns
generated using the agent-based model (20). Quantitatively
evaluating data of this scale is possible because of our auto-
mated framework. As a baseline test, we begin by illustrating
our techniques on simulations of wild-type zebrafish stripes.
Because our analysis there is consistent with previous charac-
terizations collected visually and local pattern measurements,
we then use our methods to extract quantifiable features from
mutant patterns and measure pattern variability in the presence
of increased stochasticity in cell interactions. We conclude by
showing how our methods can be used to detect the impact of
changing a given model parameter without the need for visual
inspection.

¶Alternatively, we could rely on topological summaries to approximate the initial for-
mation of new stripes, but a direct approach is more computationally efficient in this
setting.
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We view our results in the next sections as presenting a
broader, more objective picture of the behavior of the agent-
based model (20). Additionally, because this model is closely
based on the biological literature, our results serve to predict
the kind of pattern variability we expect to see in vivo based on
the model (20). As large-scale collections of experimental images
become available, our predictions can be tested by applying our
techniques to in vivo images of zebrafish as well.

Illustrating Our Techniques on Wild-Type Zebrafish. We focus on
stripes first because they provide a means of testing our method-
ology, as wild-type patterns have the most experimental data
(collected both in silico and in vivo) available for compari-
son. Here we use our methodology to evaluate 1, 000 wild-type
zebrafish patterns generated with the model (20) under the
default parameter regime. Previously, model performance (20)
was judged by manually counting the number of stochastic sim-
ulations that display breaks (or interruptions) in interstripes and
requiring matches in pattern features (e.g., number of inter-
stripes present) at major developmental timepoints. In particu-
lar, by inspecting 100 in silico patterns, Volkening and Sandstede
(20) reported a success rate of 89% according to the former goal,
meaning that 89 of 100 simulations had no interruptions in inter-
stripes. (Note that breaks in black stripes are occasionally seen
on real fish, so these interruptions were not quantified in ref. 20.)
Our methodology allows us to analyze much larger datasets and
remove any human error from the process; we demonstrate how
topological methods can be used to detect stripe breaks automat-
ically in Fig. 4A. Across 1, 000 wild-type simulations, we find that
87.5% have no breaks in interstripes (flagged by a decrease in β1

for X d cells). This agrees well with the success rate in ref. 20 that
was computed using visual inspection.

As an additional evaluation, we manually viewed 200 model
outputs and found that the betti numbers capture interstripe
breaks with 100% accuracy and only one false positive. In a sim-
ilar vein, the model (20) was parameterized so that interstripes
X1D and X1V (Fig. 1F) form between 39 and 44 dpf, but until
now this property was judged by visual inspection. Using our
automated methods, we show the distribution of times at which
these interstripes develop in Fig. 4B and find good agreement
with the target pattern milestones in ref. 20.

Fig. 4 C and D shows the distributions of interstripe width and
stripe curviness across 1, 000 wild-type simulations. The maxi-
mum interstripe width, measured by the persistence of the signif-
icant dimension 1 persistence points of X l, represents the maxi-
mum separation between adjacent stripes. We find that this
quantity has a mean of about 814 µm and a SD of approxi-
mately 49 µm, which is similar to the average distance between
cells (39, 41), suggesting that the average number of cells across
the width of a stripe varies by ±1 cell along a stripe. Similarly,
in Fig. 4D, we show measurements of wild-type stripe curviness
(Eq. 2), a dimensionless quantity that could be compared to
empirical data in the future. More generally, Fig. 4 B and D pro-
vides a baseline measurement of the model output (20) that we
use to compare to further studies.

Quantifying “Characteristic” in Noisy Mutant Patterns. The nacre,
pfeffer, and shady mutants lack specific cell types, leading to
altered patterns, which are highly variable and can be broadly
described as spotty (Fig. 1 B–D). Here we use our methods to
analyze 1, 000 in silico patterns generated with the model (20)
under the default parameter regime for each mutant. Our results,
shown in Fig. 5, serve as quantitative descriptors of what consti-
tutes “characteristic” for each mutant (according to the model)
and demonstrate our methods’ abilities to extract quantifiable
differences between spot patterns. Among the three mutants, we
find that pfeffer has the most spots and that these spots are the
most round and the most evenly spaced (Fig. 5 A and C–D). In
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Fig. 5. Baseline study of mutant patterns to extract quantifiable features.
All measurements are based on 1, 000 simulations of the model (20) (for
each mutant) under the default parameters. Histograms show distributions
for (A) the number of spots, (B) spot size, (C) spot roundness, (D) variance in
spot spacing, and (E) X0 interstripe width (Fig. 1G). We overlay KDE curves
with a Gaussian kernel on the histograms; the mean plus/minus the SD is
shown in each plot for the data.

comparison, nacre and shady have a similar number of spots, but
the spots on shady are smaller and rounder than those of nacre.
(As we noted in Background and Methods, we remove a small
region at the top and bottom of the domain prior to our analysis
to avoid quantifying partial spots.) Moreover, the width of the
central X0 interstripe in pfeffer is closest to wild-type interstripe
width (Fig. 4C), while both nacre and shady feature expanded
central interstripes, echoing empirical observations (11). Inter-
estingly, we find that the variance in the number of spots for all
three mutants is small (a SD of about two spots). With the excep-
tion of nacre, which displays the greatest variability in four of
the five measurements we present in Fig. 5, the variance in spot
spacing and the width of the central interstripe X0 is also small
[on the order of the distance between neighboring cells (39)]. In
the future, it would be interesting to compare these quantities to
large-scale in vivo data and determine what cell interactions in
the model (20) are responsible for selecting them robustly.

Measuring Pattern Variability. Some cellular interactions on the
zebrafish skin are thought to be regulated by direct contact, den-
drites, or longer projections (26, 35, 36) (Fig. 1E). To account for
this, the model (20) assigns disk (short-range communication)
and annulus (long-range communication) interaction neighbor-
hoods to each cellular agent (Fig. 1J). Cell birth, death, and
form transitions are then governed by rules (e.g., Eq. 1) that
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depend on the proportion of cells within these neighborhoods.
The size of the neighborhoods dictates which cells are able to
interact and therefore plays a critical role in patterning. While
the interaction neighborhoods have deterministic sizes [based on
empirical measurements (26, 36, 39)] in ref. 20, a more realistic
model should account for stochastic variations in cell size and
projection length. Randomly varying the length scales involved
in the interaction neighborhoods serves as a means of including
more realistic cellular communication [which could also include
diffusion of signaling factors (34) in the future] in agent-based
models of zebrafish. As a first step toward including more real-
istic stochasticity, we therefore replace the deterministic length
scales in the model (20) with stochastic length-scale parameters
and measure their effect on pattern variability. This models the
presence of randomness in cell interactions due to variations in
cell size and projection length.

Interaction neighborhoods appear in 17 places in the rules
that govern M birth, M death, iridophore form changes, and
xanthophore form changes in the model (20). For each cell
interaction, we randomly select the size of the associated inter-
action neighborhood per cell per day from a normal distribution
with the mean set to the default parameter value. We vary the
SD from 1 to 50% of the mean and for each SD (we con-
sider σ ∈{0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, where σ times the default
length scale is the SD of the normal distribution), we run 1, 000

simulations each for wild type, nacre, pfeffer, and shady.# Our
goal in this study is twofold: First, we aim to make quantita-
tive predictions comparing variability in wild-type and mutant
patterns, and second, we seek to identify the range of patterns
these fish may display in the presence of stochastic cellular
communication.

To quantitatively explore how additional stochasticity impacts
patterning, we first need to define what it means for a pattern
to look the same as (or different from) what we would expect
characteristically. For wild type, this is immediate: We charac-
terize wild-type patterns in terms of stripe and interstripe breaks.
For nacre, pfeffer, and shady, however, the process is more chal-
lenging because these mutant patterns are messier. For example,
from looking at the images of nacre in Fig. 1 B and G, it is not
clear at what point in silico patterns consisting of elongated,
orange globs should be considered good or bad matches for
nacre. This is where our baseline analysis of nacre, pfeffer, and
shady plays a role. We use our earlier analysis of simulations in
the default parameter regime to identify patterns that fall outside
of what constitutes “characteristic” for each of these mutants
(in terms of number and size of spots). For each mutant, we
set our thresholds for small and large spots to be the minimum
and maximum values, respectively, of the cluster-size measures
that we found in our baseline experiments with that mutant.
Analogously, for each mutant, we set the threshold for what
constitutes few (many) spots to be the minimum (maximum)
number of spots we found in our baseline simulations with that
mutant.

In Fig. 6 A–D, we show how prevalent various patterns are
across our stochastic simulations for different levels of noise in
cell-interaction length scales (see SI Appendix, Tables S2–S5 for
additional measurements). As an agglomerate summary across
all 6, 000 simulations that we generated for different σ values,
Fig. 6 E–H provides examples of the different patterns cate-
gorized by our methods for wild type and each mutant. Our
results in Fig. 6 A–D suggest that wild-type and mutant patterns
behave differently in the presence of noise. In particular, all three
mutants have characteristic spots in less than 50% of the model
outputs when σ≥ 0.2, while wild-type patterns retain character-

#When we add noise to the annulus parameters, we choose both the inner radius and
the annulus width from a normal distribution.

istic unbroken stripes and interstripes more robustly. If we take
a closer look at individual pattern features in Fig. 6 I and J, we
note that low levels of noise (σ≤ 0.1) serve to straighten stripes
and that stripe width is mostly unaffected by the inclusion of
noise in cell size and projection length. As stochasticity increases,
wild-type patterns display a gradual decay in quality over the
range of σ values that we consider. With increasing noise, we find
more breaks in interstripes, wider interstripes, curvier stripes,
and marginally slower pattern formation (SI Appendix, Table S2).
Wild-type stripes do not appear to completely deviate from char-
acteristic until σ= 0.5, at which point broken stripes become
the norm.

In comparison, the mutant patterns are almost unaffected by
noise for σ≤ 0.1, but then undergo a sharp change in pattern
features as σ increases. When nacre and pfeffer stray from char-
acteristic, we mostly observe small spots or scattered cells (Fig. 6
B and C). Noisy length scales in shady, in turn, generally pro-
duce patterns with few or no dark spots (Fig. 6D). Related,
Frohnhöfer et al. (11) observed that strong forms of the shady
mutant have no spots. As we show in Fig. 6 B–D and SI Appendix,
Tables S3–S5, spots on all three mutants retain their character-
istic roundness across a range of σ values, deviating substantially
from the measures in Fig. 5 only when σ= 0.5.

To roughly approximate the amount of noise present in cel-
lular length scales in vivo, we estimate the SD reported for the
distance between neighboring xanthophores (33) and the length
of their filopodia extensions (30). Based on graphs in ref. 33,
we estimate that the distance between the centers of neighbor-
ing X d cells (at 40 dpf) is 27 µm with a SD of 4.6 µm; in our
notation, this means that σ= 4.6/27, so the SD is about 17% of
the mean. Similarly, using graphs in the supporting information
of ref. 30, we estimate that the longest xanthophore extensions
(measured from the cell center) have a SD in length that cor-
responds to 12% and 20% of the mean filopodia lengths before
and after iridophores arrive on the skin, respectively (in partic-
ular, we find that the filopodia length before iridophores arrive
is approximately 58 µm ± 6.7 µm, and the filopodia length after
iridophores arrive is approximately 25 µm ± 5 µm). These mea-
surements suggest that focusing on the patterns that emerge
when σ is between roughly 0.1 and 0.2 in our simulations may
have particular biological relevance. We caution that this approx-
imation is based on variance in short-range length scales only,
and cells may also communicate through long-range projections
(26, 36) [as well as diffusion of signaling molecules (34)]; more-
over, in comparing these measurements to our simulations, we
are inherently assuming that the empirical data have a normal
distribution.

Motivated by our estimates of SD in vivo, we explore what our
analysis predicts when σ ∈ [0.1, 0.2]. As we note in SI Appendix,
Table S2, we find that wild-type stripe width, stripe curviness, and
the time of formation of interstripes X1V and X1D are robust in
this range of σ. Our methods allow us to estimate that 84.8%
and 78.1% of the wild-type patterns for σ= 0.1 and σ= 0.2,
respectively, feature characteristic unbroken interstripes (recall
that 87.5% of our simulations in the baseline experiments with
σ= 0 have unbroken interstripes). Echoing empirical observa-
tions (11) that mutant patterns are more variable than wild type,
we find that the model (20) supports a distribution of mutant
patterns for σ ∈ [0.1, 0.2]. In particular, we predict that the rep-
resentative images of nacre, pfeffer, and shady in Fig. 1 B–D
and F–H are characteristic of these mutants in the sense that
roughly half of the associated fish may resemble them, while
we expect that the remaining fish resemble versions of these
images with fewer and smaller spots. Crucially, we predict that
the mutants do not commonly display larger spots than those
in Fig. 1 F–H. In the future, analyzing extensive collections of
empirical images will allow one to test our predictions and the
model (20).
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Fig. 6. Quantitative study of how stochasticity in cell interactions affects wild-type and mutant zebrafish patterns. For each value of σ∈
{0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, where σ times the default length scale is the SD of the noise that we include in the size of cellular interaction neighbor-
hoods, we analyze 1, 000 simulations for wild type and each mutant. (A–H) Summary of the patterns that emerge under stochasticity, as detected using our
methods for (A and E) wild type, (B and F) nacre, (C and G) pfeffer, and (D and H) shady. In A–D, we highlight the range of σ values that retain at least
50% characteristic patterns under noise in gray. (We define “characteristic” for wild type as patterns having three unbroken interstripes and two unbroken
stripes, and we define characteristic for mutants as patterns with spot size and spot number that fall within the baseline distributions in Fig. 5 A and B.)
(I and J) Mean maximum stripe/interstripe width (I) and mean stripe curviness (J) for wild type for different noise strengths. (K and L) Spot spacing variance
(K) and spot roundness (L) for mutants under different noise strengths. In I–L, the bars indicate SD and the shaded regions give the characteristic values (the
mean ±1 SD) for the associated measurements from our default studies. Also see SI Appendix, Tables S2–S5.

A Means of Linking Altered Cell Behavior to Mutant Patterns. Thus
far, we have focused on exploring wild-type patterns and the
nacre, pfeffer, and shady mutants. Based on transplantation
experiments (9–11), these mutant patterns seem to arise because
a cell type is missing, rather than due to altered cell interac-
tions. Zebrafish also feature a second type of mutant pattern
that forms because cell behavior is altered (often in unknown
ways) despite all cell types being present. Examples of this sec-
ond type of mutant include leopard and obelix, which feature
spots and widened stripes, respectively (9). Mutations that alter
cell behavior provide modelers with an opportunity to help link
genes to cellular function. [We note that many zebrafish genes
have an orthologue in the human genome (50).] One can adjust
cell behavior in a model to search for patterns that match vari-
ous mutants; in this way, a modeling approach can help establish
links between cell behaviors and the genes that control them
through the phenotype. Agent-based models (e.g., refs. 19–21)
often have a large number of parameters, however, and this
makes it challenging to comprehensively screen for the cellular
interactions that may be related to various mutants by adjusting
parameters and visually inspecting the resulting simulations. In

a similar vein, modelers seek to present a broad picture of the
impact of varying different parameters, but this process is again
often limited by the time-consuming nature of visual inspec-
tion. We expect that our methods can be used to help address
these challenges, and we provide one example to illustrate this
process next.

As an example study, we vary a single parameter in the model
(20) across a range of values and apply our methods to the result-
ing patterns. In particular, we focus on the cellular interaction
radius represented by Ωlong in Eq. 1. As shown in Fig. 1J and
discussed in Background and Methods, long-range interactions
depend on the proportion of cells in an annulus region Ωlong in
the model (20). Eq. 1 describes M birth as occurring at randomly
selected locations z when the number of I d and X d cells in Ωz

long
is sufficiently larger than the number of M in this annulus. This
models empirical observations that M differentiate from precur-
sors or stem cells (38, 51, 52) and that X d and I d in neighboring
interstripes support black cell birth, while other M inhibit it (15,
32) at long range. In ref. 20, the inner radius of the annulus Ωlong
is 210 µm (motivated by in vivo measurements of cellular exten-
sions in refs. 26 and 36) and the width of the annulus is 40 µm.
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Fig. 7. Quantifying in silico pattern dependence on the spatial scale of long-range cellular interactions involved in M birth. (A–F) Kernel density estimates
for (A and B) maximum stripe and interstripe width for wild type, (C) wild-type stripe curviness, (D) number of spots for pfeffer and shady, (E) median spot
size for the mutants, and (F) pfeffer and shady spot roundness as a function of the inner radius of the Ωlong neighborhood in Eq. 1. Measurements in A–F are
based on 100 simulations of the model (20) (for wild type, pfeffer, and nacre, respectively) for each inner radius R of Ωlong in [1] considered. (We consider R
from 10 to 400 µm in increments of 25 µm.) All other model parameters (including the width of the Ωlong annulus in Eq. 1 and the long-range annulus scale
in all other model rules) remain at their default values. In A, B, and E we show linear regression models for their corresponding values, along with the R2

goodness-of-fit scores. (G) Example wild-type, pfeffer, and shady patterns for different parameter values [the patterns generated by the model (20) under
the default parameter—210 µm—are noted in gray].

Here we vary the inner radius parameter from 10 to 400 µm
in increments of 25 µm and run 100 simulations under each
parameter regime for wild type, pfeffer, and shady‖. This allows
us to comprehensively explore the impact of long-range signaling
on M differentiation.

If Ωlong in Eq. 1 is too small [e.g., when its inner radius is
below 30 to 80 µm, the average distance between cells (33, 39)],
it is likely that there are no or very few cells in this annulus
region, so that the signal from X d and I d to promote M cell
birth is effectively turned off. Intuitively, this should lead to an
M shortage in the resulting patterns. Conversely, we expect that
increasing the inner radius of Ωlong will widen black stripes. To
test these hypotheses and determine the role of this parameter
in wild type, we use our methodology to measure stripe width,
interstripe width, and stripe curviness across a range of Ωlong val-
ues. For pfeffer and shady, we compute spot size, number, and
roundness as a function of Ωlong in Eq. 1. We present our results
in Fig. 7 using kernel density estimation plots to visualize the 2D
probability density function of pattern features and parameter
values.

As we show in Fig. 7 A, B, and E, there is a strong positive
correlation between the spatial scale of long-range signaling in
M birth and stripe width, interstripe width, and spot size. To
check that the quantities we detected automatically agree with
results by visual inspection, we show a few sample simulations
in Fig. 7G for different Ωlong values. As expected, we find that
the width of black stripes in wild type increases as the spatial
scale of long-range signals promoting M birth increases. Con-

‖Note that we do not simulate nacre because this mutant has no M cells.

versely, when the scale of M -birth signals in Eq. 1 is very local,
the resulting patterns vaguely resemble the nacre mutant, which
features no melanophores (9, 11). This highlights the importance
of large-scale simulations and automated methods, as they allow
comprehensive model explorations and provide a more complete
picture of the roles of different parameters.

To further explore our results, we ran a linear regression anal-
ysis on the pattern quantities that we present in Fig. 7. For
wild type, we find that a linear model in stripe width yields a
coefficient of determination R2 = 0.912, meaning that the lin-
ear model captures 91.2% of the observed stripe width variance.
For shady, a linear model in spot size has a corresponding
R2 = 0.901, while a linear model in spot size for pfeffer has a
lower goodness of fit (R2 = 0.722) because the spot size increases
more rapidly. Regression models of this type can be used to
predict pattern quantities without needing any reference data.
In particular, these simple regression models have the potential
to allow one to predict pattern features as a function of cel-
lular interaction signals without needing to perform any model
simulations.

The results of our case study exploring the impact of a sin-
gle parameter (related to long-range signals in melanophore
differentiation) show promise. In particular, they suggest that
our methods can be applied not only for pattern quantification
but also for model sensitivity analysis and large-scale parame-
ter screening to detect possible ways that cell interactions may
be altered in mutations. Additionally, we refer to SI Appendix
for a case study illustrating how our methods can be used to
compare and differentiate different zebrafish models. We leave
a more thorough investigation of zebrafish mutations and the
altered cell interactions involved for future work. For example,
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the obelix mutant (9) features widened stripes due to unknown
altered cell interactions; by systematically varying parameters in
the model (20) and automatically detecting their impact on stripe
width, one could identify a set of altered cell behaviors that may
be responsible for this phenotype, and these predictions could
then be evaluated experimentally.

Discussion and Conclusions
Our goal was to provide methods for quantifying agent-based
patterns across a range of scales. Leveraging topological data
analysis and machine learning, we developed a methodology
that captures information spanning local features of interacting
cells up to macroscopic spots and stripes. Because it describes
shape features across a sequence of spatial scales, persistent
homology is a critical tool in our methods. We showed that
combining this topological tool with clustering methods yields
a collection of summary statistics that can be automatically
extracted from patterns using agent coordinates. By reduc-
ing the role of visual inspection in describing patterns, our
interpretable methodology provides a means of analyzing large
datasets and studying how stochasticity in agent interactions
affects pattern variability. To illustrate the promise of our meth-
ods, we applied our methodology to an extensive dataset of
in silico zebrafish skin patterns that we generated using the
agent-based model (20). Our methods allowed us to make quan-
titative predictions about the types and amounts of variability
that may arise in wild-type and mutant zebrafish patterns due
to stochasticity in cellular communication. We used our meth-
ods to distinguish and characterize similar mutant patterns, and
we showed how to track pattern features across spatial scales
to study the role of different cellular interactions in pattern
formation.

Many of our results, which provide a broader view of the agent-
based model (20), can be experimentally tested in the future.
In particular, after extracting cell coordinates from zebrafish
images, one could compute summary statistics for the empiri-
cal data and compare these measurements to our simulations.
Our methods could also be applied to other models of zebrafish
patterning, including partial differential equations (e.g., refs. 8
and 15–17), stochastic cellular automaton perspectives (17, 18),
and agent-based models (e.g., refs. 19 and 21). In the future, one
could use our methods to optimize model parameters or con-
duct large screens for cell interactions that may be altered in
mutations. Although we focused primarily on analyzing zebrafish
patterns at a fixed point in development, future work could track
pattern features across developmental timelines.

Our approach to quantifying zebrafish patterns begins to
address major challenges associated with quantifying agent-

based dynamics in an objective and automated way, but there
are also limitations to our methods. First, we make underly-
ing assumptions about the patterns that we are studying. As an
example, when we use topological methods to quantify spots
or stripes, we assume that the input patterns have certain fea-
tures (e.g., we assume a wild-type input has stripe patterns). It
may be useful for future studies to automatically classify each
input pattern as spots or stripes prior to applying the appro-
priate pattern quantification methods. Moreover, we focused
primarily on spots and stripes, but methods for characterizing
other patterns [e.g., labyrinth patterns on the choker mutant
(11)] could be developed in the future. Finally, we note that
we built our methodology to take data in the form of agent
coordinates. Empirical images and simulations from partial dif-
ferential equation models, however, are continuous functions
defined over 2D domains. In the former case, one option would
be to extract cell locations from image data, and, in the latter,
one could apply our methods to cell densities after discretizing
space and applying a density threshold. Fortunately, functional
persistent homology could avoid both of these extra steps as it
takes function data as its input. In the future, one could apply
our approach to continuous-pattern data by replacing the TDA
tools that we used with functional persistence throughout our
methodology.

Although we focused on analyzing pattern variability in
zebrafish, we expect that a similar approach can be used to
quantify agent-based dynamics in other biological settings. Meth-
ods that provide summary statistics for pattern features across a
range of length scales open up many possibilities for quantita-
tively comparing large datasets of in silico and in vivo pattern
data in the future. By working closely with the needs of each
application, we expect that our topological perspective can be
extended to analyze agent-based dynamics in wound healing,
animal flocks, and other forms of collective behavior.

Materials and Methods
Data and Code Availability. Implementation details and code are freely avail-
able on GitHub: https://github.com/sandstede-lab/Quantifying Zebrafish
Patterns. Simulated data are publicly available on Figshare: https://figshare.
com/projects/Zebrafish simulation data/72689 (53).
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