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Abstract

The phenomenon of de novo gene birth from junk DNA is surprising, because random 

polypeptides are expected to be toxic. There are two conflicting views about how de novo gene 

birth is nevertheless possible: the continuum hypothesis invokes a gradual gene birth process, 

while the preadaptation hypothesis predicts that young genes will show extreme levels of gene-like 

traits. We show that intrinsic structural disorder conforms to the predictions of the preadaptation 

hypothesis and falsifies the continuum hypothesis, with all genes having higher levels than 

translated junk DNA, but young genes having the highest level of all. Results are robust to 

homology detection bias, to the non-independence of multiple members of the same gene family, 

and to the false positive annotation of protein-coding genes.

Introduction

It has become clear that protein-coding genes can originate de novo from non-coding 

sequences1. This is surprising, because amyloid is a generic structural form of any 

polypeptide, making the expression of random polypeptides a dangerous affair2. De novo 
gene birth is a radical evolutionary transition, and two hypotheses have previously been 

presented to explain how it is possible. The “continuum” view posits that there is a series of 

intermediate stages, or “proto-genes”, between non-genes and genes3. In contrast, the 

“preadaptation” theory posits that de novo birth is an all or nothing transition to 

functionality, and the key to successful innovation is the imperative to avoid the most toxic 

“hopeless monster” options in favor of “hopeful monsters”4–6; given a marker for such 

avoidance, newborn genes will therefore have exaggerated, rather than intermediate, gene-

like characteristics. In other words, newborn gene birth occurs only from sequences that 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
**Correspondence to: masel@email.arizona.edu.
2Current affiliation: St. Jude Children's Research Hospital, Memphis, Tennessee
4Current affiliation: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York

Source data and code availability: Source data for the statistical analyses and figures are provided in Supplementary Tables 2-7. 
Code associated with generating and analyzing these tables is publicly available at https://github.com/MaselLab.

Author contributions: J.M and R.N. conceived the approach, R.N. performed the phylostratigraphy, B.W. and S.F. completed all 
other data analyses, and J.M. wrote the paper.

Europe PMC Funders Group
Author Manuscript
Nat Ecol Evol. Author manuscript; available in PMC 2017 October 24.

Published in final edited form as:
Nat Ecol Evol. 2017 June ; 1(6): 0146. doi:10.1038/s41559-017-0146.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.nature.com/authors/editorial_policies/license.html#terms
https://github.com/MaselLab


happen to be pre-adapted to “first, do no harm” in the most direct way possible. Only later 

do they adapt to protect themselves against risks in subtler ways, increasing tolerance with 

respect to other more subtle characteristics7.

These two theories can be empirically distinguished, given a simple trait that systematically 

makes proteins less likely to be harmful. According to the continuum theory, the trait should 

be strongest in old genes, intermediate in young genes, and weakest in non-coding 

sequences. According to the preadaptation theory, the trait should be strongest in young 

genes, intermediate in old genes, and weakest in non-coding sequences (Fig. 1).

A good candidate trait is the degree of intrinsic structural disorder (ISD), i.e. the degree to 

which a given peptide folds as a stable three-dimensional structure (i.e., ordered) vs. as a 

rather flexible and unstructured entity (i.e., disordered)8. Predicted levels of ISD can 

conveniently be calculated from sequence alone9. Natural protein sequences are more 

intrinsically disordered than random sequences10. Meantime, there is conflicting evidence 

as to whether young genes are more or less disordered than old genes. Elevated ISD is found 

in orphan domains and recent extensions to domains11–14. Elevated ISD was found in 

complete orphan genes in Leishmania15, and in genes created de novo in alternative reading 

frames of existing viral genes16, but low ISD was found in Saccharomyces orphan 

genes3,13.

In this study, we stratify genes in two distantly related eukaryotic organisms, the house 

mouse and baker’s yeast, by age, and use predicted ISD values to show that young genes do 

not behave like intermediates between non-genic sequences and older genes as predicted by 

a continuum theory. Instead, young genes have exaggerated gene-like structural properties, 

as expected from sequences biased by the demands of preadaptation.

Results and Discussion

We rigorously determine how ISD depends on gene age in mice, using a phylostratigraphy 

approach17 to assign ages to genes. We exclude genes unique to a single species, as these 

are likely to be contaminated with many false positives that are not protein-coding genes at 

all. Mouse is a good choice of taxon because of the quality of its gene annotation and the 

large number of genome sequences available for closely related species7, which together 

provide temporal resolution among young protein-coding genes. The rarity of horizontal 

gene transfer in the ancestors of mouse is also an important consideration.

We find that young mouse genes have higher ISD (Fig. 2). Our statistical analysis avoids 

pseudoreplication in the form of phylogenetic confounding among multiple members of the 

same gene family, by controlling for gene family as a random effect within a linear model; 

this is not a technique we have previously encountered in related literature.

The validity of phylostratigraphy has been challenged on the grounds of homology detection 

bias18–20. Disordered proteins evolve faster15,21,22; if this makes homology undetectable, 

then high ISD could cause young gene status, rather than young gene status being the cause 

of high ISD23. Homology detection bias is minimized by focusing on the youngest genes20; 

we therefore collapsed all pre-vertebrate phylostrata into a single “old gene” category, in 
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order to focus on gene ages with the least homology detection bias. What is more, correcting 

for the influence of evolutionary rate, via a linear regression analysis, had no effect on the 

predictive power of gene age (p>0.05), despite the fact that evolutionary rate and age are 

correlated (Fig. 3A). Both proponents24 and detractors18,19 of phylostratigraphy have used 

simulations of protein evolution to justify their position on the impact of homology detection 

bias – unfortunately, this line of argument relies on our ability to model protein evolution 

realistically. Our more empirical approach suggests low impact, in a more direct and less 

model-dependent fashion.

Homology is also easier to detect for longer genes, and in agreement with previous 

findings7, length and age are correlated (Fig. 3B). However, longer genes have higher ISD 

as scored with IUPred, with quite large effect sizes – we find a Pearson correlation 

coefficient (following transformation for normality) of 0.17 for old genes, and in the range 

0.32-0.44 within newer phylostrata. Using a linear model to correct for the length-ISD 

relationship therefore makes our ISD-age relationship stronger not weaker (Fig. 2, green).

Note that our ISD scores strongly reflect amino acid composition, with low ISD representing 

hydrophobicity. In this light, our findings agree with previous results on length-dependent 

frequencies of particular amino acids25, but contradict previous studies, restricted to single-

domain globular proteins, that showed no length-dependence for hydrophobicity as a 

whole26,27. Using the Irbäck and Sandelin26 hydrophobicity measure on our more 

comprehensive protein set, we continue to find that long genes have more hydrophilic amino 

acids (Pearson correlation coefficients only slightly lower, at -0.13 for old genes, and in the 

range –(0.24–0.45) within new phylostrata).

The high ISD of young genes is primarily due to amino acid composition (calculated as the 

ISD of scrambled versions of a gene; Fig 4A, orange) rather than the exact order of the 

amino acids (calculated as the difference between the ISD of the real gene and that of a 

scrambled control; Fig. 4B). This suggests that genes are born with high ISD, driven by 

amino acid composition. Amino acid composition can therefore be seen as a 

preadaptation28, or “non-aptation” in the terminology of Gould and Vrba29, for de novo 
gene birth. This does not imply any kind of pre-adaptive process of the kind postulated 

elsewhere4–6,30. Instead, the term preadaptation simply refers to backward-time conditional 

probability; given that gene birth occurred, the non-coding sequence from which the gene 

was born is likely to have had more favorable characteristics for gene birth than the average 

non-coding sequence. Note that while higher GC content leads to higher ISD31, GC content 

is not the primary driver of the high ISD-promoting amino acid composition of young genes 

(Fig. 4A).

In contrast, the contribution of amino acid order to ISD appears to be an adaptation rather 

than a preadaptation in young genes (those born in vertebrates), because it is not initially 

present but appears only after some time. This contributes an independent line of evidence 

that high ISD values are favored in young genes.

Now that we have determined how ISD depends on gene age, the non-coding sequences 

from which de novo proteins must be born allow us to distinguish between the continuum 
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and preadaptation hypotheses. The continuum theory predicts that non-coding sequences 

will resemble exaggerated versions of young genes, and hence have the highest ISD. In 

contrast, the preadaptation theory expects young genes to show the most extreme deviation 

from random sequences, predicting that non-coding sequences will have the lowest ISD.

We sampled intergenic sequences near each mouse gene in our analysis as representative of 

the raw material from which de novo genes are born, rather than analyzing randomly 

generated sequences matching only a subset of known variables, such as GC-content31. Our 

intergenic controls reflect the subtleties found in a real genome with a complex evolutionary 

history, e.g. the avoidance of CpG sites. We find strong evidence refuting the continuum 

hypothesis and supporting the preadaptation hypothesis (Fig. 2). This result is not 

attributable to repetitive sequences; results are nearly identical when RepeatMasker is used 

to filter the intergenic control sequences (Fig. 2). The size of the gap between the average 

ISD of a translated intergenic sequence and that of young genes strikingly illustrates the 

nature of the filter applied during de novo gene birth, and the relevance of ISD to the 

process.

Why then did a previous yeast study3 find that young genes and “proto-genes” have low 

ISD? We believe that the difference lies in the annotation procedure. Our study included 

only genes with BLASTp homology across at least two species, whereas the previous study 

accepted BLASTn homology, which might result in homologous non-coding sequences 

being scored as protein-coding genes. When there is a mixture of true protein-coding genes 

combined with sequences that do not encode a functional polypeptide, the mean of the entire 

mixture will of course be intermediate between the means of the two groups. The overall 

mean will depend strongly on the ratio between the two components. Specifically, if the 

proportion of non-functional ORFs decreases with conservation level, then a continuum will 

automatically be observed, and in the wrong direction as a function of apparent gene age. 

Fig. 5 illustrates, in context, the statistical problem known as Simpson’s paradox32, which 

drives this effect.

To confirm that this is responsible for the discrepancy, we repeated our mouse pipeline on 

yeast (Fig. 6A) and confirmed that following our methods, young yeast genes, like young 

mouse genes, have higher ISD. To pinpoint the source of the discrepancy, we used the gene 

age classifications of Carvunis et al. (personal communication of dataset), and omitting gene 

families from the analysis, reproduced the previously reported trend of low ISD in young 

“proto-genes” (Fig. 6B, black). Details such as the treatment of disulfide bonds made no 

substantive difference (Fig. 6B, dark blue). However, filtering out potentially non-coding 

sequences eliminated the previously reported trend (Fig. 6B, light blue). Details of the 

elimination criteria are shown in Table 1; the preferential elimination of younger phylostrata 

is consistent with the operation of Simpson’s paradox. Fig. 6 shows that the differences 

between our conclusions and those of Carvunis et al.3 are due to the categorization of what 

is a gene, not to the details of the ISD calculations or of how genes are assigned to 

phylostrata. In both our mouse and yeast analyses, we were careful to discard all possible 

non-genes, leaving us looking at a single group and not a mixture in each phylostratum. 

Mouse has more well-verified young protein-coding genes, allowing for clearer resolution of 

ISD at shorter timescales.
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Note that if a continuum of increasing ISD with age were to take place at short time scales 

only (a less parsimonious hypothesis than ours, and one that Simpson’s paradox would make 

difficult to confirm), our mouse analysis restricts it to, at most, the last ˜21-82 million years, 

before the split of mouse and rat and after the split of mouse and rabbit. In contrast, the 

continuum of ISD scores reported in Carvunis et al.3 is claimed to go all the way back to the 

split between S. cerevisiae and C. albicans (˜300 million years), despite the much shorter 

generation times of yeast.

Fig. 5 shows that the existence of intermediate “proto-genes” is not necessary to explain data 

on trends in mean properties. What is more, the very concept of a “proto-gene” as 

intermediate between gene and non-gene is problematic, with inappropriately teleological 

connotations. However, as a non-teleological definition, it may be useful to refer to slightly-

expressed but non-functional ORFs as “proto-genes”. ORFs, i.e. stretches between a start 

codon and a stop codon in a transcript, occur frequently by chance. ORFs that encode highly 

deleterious polypeptides, and that are translated at low levels, are purged from a population 

more rapidly than relatively harmless ORFs, and this fact could help explain the 

phenomenon of de novo gene birth6. Pervasive transcription subject to rapid evolutionary 

turnover33, and leading to non-functional translation6, provides the raw materials for proto-

genes defined in this fashion. However, it must be noted that even harmless ORFs, in the 

absence of selection for some beneficial property, are rapidly disrupted by mutation. There is 

therefore a discrete dichotomy between the states of “gene” and “non-gene”, determined by 

whether the selection coefficient is greater than zero, and hence capable of sustaining their 

continued existence in the face of mutational onslaught34. A dichotomy of functionality 

(defined in evolutionary terms) is still compatible with the idea that some non-genes are 

under selection that weeds out the most deleterious of options, in a manner that promotes 

evolvability4,5.

In terms of the adaptive potential of non-coding sequences, while even the young genes have 

much higher ISD on average than found in sequences translated from randomly chosen junk 

DNA, these averages conceal considerable variation, with greater variation among gene 

families than among intergenic sequences35 (see Supplementary Figure 1), suggestive of 

diversifying selection. 12.7% of our intergenic sequences yield ISD levels within the range 

of the highest 75% of all genes in the youngest phylostratum considered here, creating 

relatively little barrier to de novo gene birth. On the surface, protein length would appear to 

be a stronger constraint – only 25% of annotated young genes are less than 108 amino acids 

long, far longer than expected by chance in junk DNA – although biases in gene annotation 

may mean that typically young genes encode, in reality, even shorter proteins.

Once proteins are born with a given ISD, evolutionary tinkering and differential loss seem to 

change ISD only slowly, resulting in the consistent trend seen over hundreds of millions of 

years in Fig. 2. While gene birth is a sudden transition to functionality, subsequent descent 

with modification can generate extraordinarily slow trends.
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Methods

M. musculus proteins from Ensembl (v75)36 were subjected to a BLASTp37 search with an 

E-value threshold of 0.001 20 against the National Center for Biotechnology Information 

(NCBI) nr database (June 2014). The most phylogenetically distant hit was used to place the 

gene into one of the 20 phylostrata (gene ages) listed in Table S1, following Dollo’s 

parsimony and neglecting horizontal gene transfer. 126 from 22,778 available protein 

sequences could not be successfully assigned to any phylostratum due to BLASTp-related 

problems such as too short queries, majority of query composed of low-complexity 

sequences, or a combination of both. These sequences were not considered for further 

analysis.

In order both to remove dubious genes and to perform evolutionary rate controlled ISD 

estimates, dN/dS values were downloaded for all mouse proteins from the Ensembl 

BioMart38 (accessed February 18, 2016) and mapped to our dataset using the Ensembl 

protein ID. Evolutionary rates were calculated using PAML by comparing all mouse proteins 

with their orthologs in rats. Genes with no rat ortholog of amino acid sequence identity 

greater than 50% were excluded, leaving 17,762 non-orphan mouse genes, all with dN/dS 

values, for further study. When rat had multiple orthologs meeting this quality filter, the one 

with the highest rate was taken (to prevent any further exclusion of genes with high 

evolutionary rate, beyond the low bar of detectable mouse-rat homology). Restricting 

analysis to one-to-one orthologs did not qualitatively change the results.

Pairwise paralog information among non-orphan mouse genes was taken from Ensembl, 

from which gene families were constructed via a single-link cluster analysis. This yielded 

8124 gene families, 7113 of which showed complete agreement among their member genes 

regarding age. Of the remainder, 824 gene families contained genes assigned to exactly two 

different phylostrata: 526 of these had only a single gene in the younger phylostratum, 

which was reassigned back to the older phylostratum. Of the remainder split across exactly 

two phylostrata, 150 had only a single older member, which we reassigned to be younger, 

leaving 148 gene families unclassified. In addition, 187 gene families contained genes split 

among more than 2 phylostrata, of which 86 could similarly easily be reconciled by 

discounting the gene age status of singletons, leaving another 101 gene families unclassified. 

Most of the 249 gene families with unclassified ages are split between multiple old 

phylostrata: since we had no shortage of data in these older phylostrata, and since this group 

includes complex scenarios such as gene fusion and repetitive sequences, these gene families 

were excluded from further analysis, leaving 15,347 total genes for our analysis.

Twenty six gene families, consisting of 29 M. musculus genes, did not originally return 

NCBI nr BLAST hits outside their own species, yet Ensembl reported dN/dS values relative 

to a rat ortholog that met our sequence identity filter. Fourteen of the genes also returned this 

rat ortholog from NCBI’s nr database as of August 2016. A sample of those that did not 

return the rat ortholog nevertheless passed manual inspection of the protein-coding status of 

the Ensembl-identified ortholog. These were therefore assigned to the Rodentia 

phylostratum.
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Our single-link clustering plus cleanup procedure to construct gene families produced a 

much better fit to the data than treating genes as independent, explaining far more variance 

than phylostratrum, the property of interest (ΔAIC=114 removing phylostratum from the 

model vs. ΔAIC=9,928 removing the random effect of gene family from the model).

We calculated ISD using IUPred9, after first excising all cysteines from the protein sequence 

(from Ensembl v.73), because of uncertainty about their disulfide bond status combined with 

a profound impact of disulfide bond status on ISD39. For each gene, we averaged the ISD 

across all other amino acids, and performed a Box-Cox transformation (λ = 0.66, λ 
optimized using only coding genes not controls) prior to linear model analysis. Central 

tendency estimates and confidence intervals were then back transformed for the plots.

Protein lengths were approximately log-transformed (Box-Cox λ = -0.0432). 

Hydrophobicities were calculated first for amino acids: leucine, isoleucine, valine, 

phenylalanine, methionine, and tryptophan were scored as +1, and all other amino acids 

were scored as -1. Then the mean hydrophobicity for a protein was used to examine the 

length-dependence of amino acid composition.

For each gene, we generated scrambled controls by resampling amino acids without 

replacement. To generate GC-matched controls, the numbers of GC and AT nucleotides were 

calculated excluding the stop codon, then GC vs AT identity was resampled without 

replacement, and then G vs C and A vs T were assigned at 50% probability. If a premature 

stop codon arose, one of the three stop codon nucleotides was switched with another 

nucleotide position chosen at random. This process was iterated until no premature stop 

codons remained, and then a stop codon was appended to the end.

To generate one intergenic control per gene, we took one intergenic sequence 100nt 

downstream from the end of the 3' end of the Ensembl v80 annotation of the transcript, and 

progressed further, excising stop codons along the way, until a length match to the 

neighboring protein-coding gene was obtained. We then obtained a second control sequence 

near each gene, by repeating the process after starting a search 100nt further downstream. 

For the RepeatMasked40 controls, intergenic sequences further downstream were used as 

necessary in order to extract the control sequence from a contiguous non-masked intergenic 

sequence.

Saccharomyces cerevisiae genes taken in June 2014 from the Saccharomyces Genome 

Database (SGD)41 were assigned gene ages according to the procedure described above for 

mouse. We supplemented our phylostratigraphic analysis of species supported by the NCBI 

taxonomy browser with a selection of more closely related yeast species; our youngest 

phylostratum contains any S. cerevisiae genes with a homolog found in S. kudriavzevii (in 

most cases) or in a still more closely related yeast species (for a handful of genes). As for M. 
musculus, we constructed gene families using single-link cluster analysis on pairwise 

paralog information from Ensembl, and the ages of single discordant genes were reconciled 

as described above with the other age assignments within their gene family. Genes classified 

by us as specific to S. cerevisiae were excluded from many analyses, as were genes that we 

failed to classify using BLAST, and those classified as “dubious” in SGD. “Conservation 
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Level” (an alternative phylostratigraphy that includes BLASTn homology detection) was 

provided via personal communication to reproduce the classification presented by Carvunis 

et al.3. ISD values were calculated as for mouse except with Box-Cox λ = 0.554.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The continuum and preadaptation hypotheses make incompatible predictions about the 
properties of intergenic sequences relative to young vs. old genes.
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Fig. 2. Young genes have higher ISD (black circles) than old genes.
This result from the analysis of 15,347 mouse genes is unchanged by correction for 

evolutionary rate, and only becomes stronger after correction for length (green squares). 

Back-transformed central tendency estimates +/- one standard error come from a linear 

mixed model, where gene family, phylostratum, and length are random, fixed, and 

quantitative terms respectively. Importantly, this means that we do not treat genes as 

independent data points, but instead take into account phylogenetic confounding, and use 

gene families as independent data points. Length-corrected ISD values are with respect to a 
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standardized length of 179 amino acids. Both young genes and old genes have higher ISD 

than intergenic sequences (blue diamond) and repeat-masked intergenic sequences (light 

blue triangle). Phylostrata on the x-axis are labeled according to the clade in which the 

oldest detectable homolog of a gene can be found. To minimize homology detection bias, the 

oldest phylostrata have been condensed into a single Pre-vertebrate phylostratum.
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Fig. 3. In agreement with many previous studies, young genes evolve faster (A) and are shorter 
(B).
These properties are directly causal for homology detection bias, and hence there is no way 

to produce bias-corrected values as for Fig. 2. However, the statistical insignificance of rate-

correction in Fig. 2 suggests that homology detection bias is negligible. Back-transformed 

central tendency estimates +/- one standard error come from a linear mixed model, where 

gene family and phylostratum are random and fixed terms respectively.
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Fig. 4. Elevated ISD can be broken down into contributions from amino acid contribution and 
from exact amino acid order.
(A) ISD in real proteins (black circles) relative to amino acid scrambled controls (orange 

squares), and controls generated to have matched GC content (yellow diamonds), with error 

bars showing the back transform of the central tendency estimates +/- 1 standard error 

derived from mixed models as in Fig. 2. Excess ISD is driven primarily by amino acid 

composition, not GC content or precise amino acid order. (B) Paired comparisons show that 

the small excess in ISD relative to that predicted from amino acid composition is statistically 
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significant (95% confidence intervals are shown) in all young genes except the very 

youngest, despite the broad confidence intervals in (A) that do not take into account the 

paired nature of the data.
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Fig. 5. Putative evidence for the continuum hypothesis can be explained as a statistical artefact 
known as Simpson’s paradox.
A) The continuum view posits the existence of “proto-genes” that have “characteristics 

intermediate between non-genic ORFs and genes”3. Candidate proto-genes were classified 

on the basis of being annotated as ORFs, and having detectable sequence homology in sister 

species (without necessarily retention of approximate ORF boundaries), and Carvunis et al 

(2012) claimed to show a continuum of properties as a function of conservation level, shown 

as a greyscale. B) The same data can be explained without resorting to the existence of such 

intermediates. Sequence homology for ORFs that are not protein-coding genes (white 

circles) becomes more difficult to detect as a function of age, such that the proportion of true 

genes (black circles) increases with age, giving rise to the same observations as A. The 

downward trend in ISD arises as an example of Simpson’s paradox32. C) By carefully 

excluding all non-genes, we see the true relationship between gene age and ISD, and 

compare it to intergenic control sequences that are definitely not protein-coding genes. Note 

that if true protein-coding genes were excluded in B (rather than excluding non-genes as in 

C), there would be no relationship with conservation levels.
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Fig. 6. Young yeast genes, like the young mouse genes in Fig. 2, have higher ISD.
A) Back-transformed central tendency estimates +/- one standard error come from a linear 

mixed model, where gene family and phylostratum are random and fixed terms, respectively. 

Phylostrata are labeled according to the species most closely related to S. cerevisiae in 

which a homolog is still found, except for the “S. kudriavzevii” group, which includes 

younger genes found in at least two species. The analysis includes 5452 yeast genes that 

overlap with the genes used by Carvunis et al. (2012) with filtering indicated in Table 1. B) 

Using the age classifications of Carvunis et al. (2012) (Table 1, 2nd column), and ignoring 
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gene family, we reproduce the trend of low ISD in young “proto-genes” using our slightly 

different ISD measurement. Standard means +/- one standard error are reported for 

untransformed ISD estimates. This trend is insensitive to whether cysteines are included 

(black circles) or excluded (blue diamonds) from the protein primary sequence. This trend 

disappears when we screen out “proto-genes” that lack strong evidence for a functional 

protein product (light-blue squares), by excluding genes whose age we could classify or 

which were unique to S. cerevisiae, and those classified as “dubious” in SGD (Table 1; last 

column). Correspondences between the ages assigned by the two phylostratigraphies are 

indicated with shaded triangles between the two figure parts.
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Table 1

Number of genes assigned to each of the “Conservation Levels” annotated by Carvunis et al.3.

Conservation level Genes matching our 
dataset

After excluding 
dubious genes

After excluding genes that we 
found to be unique to S. 

cerevisiae

After excluding genes 
whose age we were unable 

to classify

1 (S. cerevisiae) 143 35 3 2

2 (S. paradoxus) 172 44 2 2

3 (S. mikatae) 137 31 4 4

4 (S. bayanus) 325 162 28 27

5 (S. castellii) 94 88 53 53

6 (K. waltii) 511 501 489 489

7 (C. albicans) 411 405 398 398

8 (Y. lipolytica) 81 79 78 77

9 (N. crassa) 499 491 483 482

10 (S. pombe) 3935 3925 3918 3918
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