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Abstract

A key issue in the spatial and temporal analysis of residential burglary is the choice of scale:

spatial patterns might differ appreciably for different time periods and vary across geo-

graphic units of analysis. Based on point pattern analysis of burglary incidents in Columbus,

Ohio during a 9-year period, this study develops an empirical framework to identify a useful

spatial scale and its dependence on temporal aggregation. Our analysis reveals that resi-

dential burglary in Columbus clusters at a characteristic scale of 2.2 km. An ANOVA test

shows no significant impact of temporal aggregation on spatial scale of clustering. This

study demonstrates the value of point pattern analysis in identifying a scale for the analysis

of crime patterns. Furthermore, the characteristic scale of clustering determined using our

method has great potential applications: (1) it can reflect the spatial environment of crimino-

genic processes and thus be used to define the spatial boundary for place-based policing;

(2) it can serve as a candidate for the bandwidth (search radius) for hot spot policing; (3) its

independence of temporal aggregation implies that police officials need not be concerned

about the shifting sizes of risk-areas depending on the time of the year.

Introduction

In spatial analysis of crime such as residential burglary, a key issue is the choice of the spatial

scale of analysis. In areal data analysis, the spatial scale of analysis refers to the unit of analysis.

In the literature [see 1 for a brief review], studies have adopted different units/scales varying

from the macro level (nation, state, county or city) to meso level (neighborhood, census tract),

to the micro level (street addresses or street segments). The spatial patterns of crime may vary

across geographic units of analysis [2–5], which is the well-known Modifiable Areal Unit Prob-

lem [MAUP; 6–8]. Therefore, it is difficult to compare or generalize across different studies

due to the issues of the ecological fallacy and the atomistic fallacy [3]. For example, statistical

inferences about the nature of larger geographic units (groups) are not necessarily applicable
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to smaller geographic units due to the issue of the ecological fallacy [3,5,9]. Similarly, statistical

inferences based on smaller geographic units cannot be directly applied to larger geographic

units due to the issue of the atomistic fallacy [3,10,11].

Another issue is the choice of the most useful temporal scale. In its finest scale, crime inci-

dents are recorded at the resolution of the minute. In practice, crime data are usually aggre-

gated based on a certain time interval, mostly on a yearly basis to be consistent with the

temporal scale of other covariates with available data such as socio-economic status (SES).

Some studies have also aggregated multiple years of crime data to minimize yearly fluctuations

[12,13]. However, the existence of seasonality [14–16], repeat and near-repeat victimization

[17–19], and periodic change of guardianship for homes [20,21] can all affect the temporal pat-

terns of residential burglary. The seasonality observed for property crimes and specifically for

burglary has been confirmed by many other studies [15,22–25] and has mostly been explained

with reference to routine activity theory. Andresen and Malleson [14] argued that, due to the

seasonal patterns and related distinct spatial patterns, analysis based on yearly aggregated

crime rates and census data may not be suitable for inference. Studies of repeat and near-

repeat victimization reveal that victimization recurs quickly to the same victim or to targets

with similar characteristics or situation [19,26]. The time intervals between recurrence can be

as short as one week but are mostly within 4–6 weeks [21,27,28]. Periodic change of guardian-

ship for homes refers to the difference of guardianship for weekday/weekend and day/night

wherein the least degree of guardianship usually occurs during the daytime of weekdays

[20,29]. The interaction among seasonality, periodic change of guardianship, and repeat/near

repeat victimization creates complex spatio-temporal patterns that may be masked by the

yearly aggregated data.

Previous studies have made significant contributions in searching for a useful scale of analy-

sis. Criminologists have examined crime concentration at various spatial levels (e.g., street seg-

ment, neighborhood, and district) and found that the majority of the variability can be

attributed to street segments [30–32], confirming the importance of crime analysis at micro-

scale [1,33–36]. Some scholars also investigated the in(stability) of residential burglary patterns

on street segments and found that burglary point patterns exhibit a moderate to high degree of

spatial stability over time [37]. Despite the current movement within criminology towards ana-

lyzing crime at finer spatial scales, some scholars have recently revealed otherwise different

results. For example, Malleson et al. [38] found that the choice of scale varies with the types of

crime, the number of events, and the degree of clustering, and Ramos et al. [39] revealed that

finer is not necessarily better in the micro-analysis of crime, and that units coarser than street

segments might be better.

In this study, we borrow ideas from ecological and biological research and use L function to

identify the scale of analysis for crime patterns. In the biological literature, different forms of K
function (L function) have been used to investigate the spatial organization (random, cluster-

ing, or regularity) of molecules [40,41], to identify the domain size (cluster size) of micro-orga-

nization [42–44] or degree of clustering [45], and the change of spatial point pattern over time

[46]. This study uses residential burglary as an example and extends the ideas from the above

biological research in pursuit of two closely related objectives:

1. to develop an empirical framework that can facilitate the selection of the spatial scale of

analysis for residential burglary;

2. to examine the impact of temporal aggregation on the spatial scale identified in the first

objective.
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It is important to acknowledge at the onset that selecting the scale of analysis depends upon

the objectives of the research. For example, research on the influence of welfare policies on crime

rates in the U. S. has typically used the U. S. states as the units of analysis. This is justified on the

grounds that state-level agencies determine and administer the welfare policies which apply to the

respective residents [47,48]. Similarly, a macro-sociological theory such as Institutional Anomie

Theory [49] has stimulated a good deal of research at the level of nation-states, which makes sense

given that the core variables in the theory reflect features of societies, e.g., the interrelationships

among social institutions and dominant cultural values. We also acknowledge the practical bene-

fits of crime hot spot policing demonstrated in the literature [50–55].

In our study, the search for the spatial scale seeks to identify the geographic scale that cap-

tures faithfully the clustering of incidents in the data. This is thus an inductive, empirical

approach to identify meaningful areal units. Our approach is predicated on the assumption

that observed spatial clustering/spatial dependence of residential burglary is likely to indicate

social processes that do in fact operate at the corresponding geographic scale. The results of

our study shed light on the selection of appropriate units for areal studies, thus addressing the

modifiable areal unit problem (MAUP).

Data and methods

Study area and data

Our study area is based on data for the city of Columbus, Ohio, which is the capital of Ohio

and the county seat of Franklin County. From the U.S. Census TIGER website, we obtained

the boundary file of Columbus, which is a little messy and has many isolated holes or dangling

areas. To reduce the edge effect [56–58] due to complex boundaries, we determined the study

area with a balance between selecting as large an expanse of the Columbus city as possible and

as simple/compact a boundary as possible.

We obtained residential burglary data (TXT files) for the years 1994–2002 from the Colum-

bus Division of Police. We cleaned and geocoded the data to points using ESRI ArcGIS with a

96% match rate, which far exceeded the minimum acceptable match rate (i.e., 85%) of geocod-

ing proposed by Ratcliffe [59]. The mapped spatial point patterns of residential burglary dur-

ing 1994–2002 are shown in Fig 1, where the number of offenses appears in each subplot after

the year. The yearly number of offenses during 1994–2002 range from 8572 to 9796, with an

average of 9023. Other ancillary data include: (1) the block data and parcel data of Franklin

County, Ohio, all obtained from Franklin County Auditor; (2) the boundaries of census tracts

and zip codes obtained from the 2000 U.S. Census-TIGER/Line Shapefiles; (3) the boundaries

of the neighborhoods obtained from Google My Maps [60], (4) the boundaries of Columbus

communities obtained from City of Columbus Department of Technology [61].

To investigate the impact of temporal aggregation on the spatial scale of the crime pattern,

we classify residential burglary based on five temporal levels, with 1+4+12+2+7 = 26 temporal

scales and 26 x 9 = 234 spatial point patterns for the nine years (Table 1). The descriptive statis-

tics for all the 234 spatial point patterns are presented in the Supplementary Data (S1 Table).

Point pattern analysis

We investigate how each residential burglary offense (point) is located in space compared to

other residential burglary offenses (points) at various temporal scales. We conduct this analysis

using Ripley’s K function [57,62; for simplicity, K function hereafter], a statistic based on the

pairwise distances between events, i.e., burglary offences for this study. Based on the intensity

and the distance distribution of the events, K function can detect if the point patterns are

completely random, clustered, or regular (inhibition between events). Point pattern analysis
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Fig 1. Residential burglary (represented with black +) overlaid with kernel density map indicating hotspots around downtown Columbus

during 1994–2002. In each subplot, the year and the number of offenses are separated by “:”; For example, in the first subplot on the top left,

“1994: 8863” indicates that there were 8863 residential burglary offences in year 1994. The unit of the density map is one residential burglary per

km2.

https://doi.org/10.1371/journal.pone.0264718.g001

Table 1. Temporal scale of point pattern analysis.

Level Scale Number of temporal scale per year Number of years Total number of point patterns

Annual 1994–2002 1 9 9

Season Spring-Winter 4 9 36

Month January-December 12 9 108

Workday Weekday/Weekend 2 9 18

Day of week Monday-Sunday 7 9 63

Grant total 26 9 234

https://doi.org/10.1371/journal.pone.0264718.t001
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using K function has been widely used in statistics and geography and has gained increasing

use in criminology in recent years [e.g., 63–65]. One specific feature of K function analysis that

has been relatively neglected or underreported in previous studies is the scale of clusters,

which can be used to guide the determination of scale for crime studies.

Homogeneous K function. Ripley’s K function [62] measures the within-pattern point

interactions and can be used to create a summary graph of cumulative crimes indicating the

cluster pattern at multiple scales. Specifically, K function can reveal the spatial scales (dis-

tances) where significant spatially clustered point patterns occur. The original Ripley’s K-func-

tion assumes stationary point processes with a constant intensity. Consider a stationary spatial

point process U = {u1,. . .,un}. So, K value within a Euclidian radius distance of h for the

observed number of points N over a study area A is estimated as:

K̂ðhÞ ¼
1

jAj

XN

i¼1

XN

j¼1;j6¼i

eijIðdij � hÞ
l

2
ð1Þ

where λ is the intensity of the point process that can be estimated by λ = N(A)/|A|, which is

constant throughout the study area A, and |A| is the area of the study area A, N(A) is the num-

ber of events in study area A; dij is the distance between location of point i and location of

point j that fall inside a circle of radius h, so, I (dij< h) is the indicator function where:

Iðdij � hÞ ¼

(
1; If dij � h

0; If dij > h
ð2Þ

eij is an edge correction term to remove the bias introduced by the edge of study area A [57].

Point process under K-function is assumed as homogenous Poisson Process, also called com-

plete spatial randomness (CSR), where intensity is homogeneous throughout a study area.

Inhomogeneous K function. Exploratory analyses of the first order intensity maps (see

the maps in Fig 1 for some examples) indicate the presence of a large-scale (global) trend from

the downtown area outwards. This large-scale trend is likely due to the spatial variation of the

population at risk, i.e., the inhomogeneous distribution of residential properties [66]. This

means that applying the original K-function could be misleading because the significant spatial

dependence (clustering) could be a result of the first order intensity (due to inhomogeneous

point process) rather than the second order spatial dependence that occurs within the point

pattern. For example, the spatial point pattern of residential burglary could show a significant

spatial dependence within certain spatial scales due to a small-scale variation of the intensity

resulting from the variation of the spatial population of parcels rather than the real spatial

interaction within the crime point pattern. Here, the population parcels could be the hidden

covariate that resulted in the spatial trend of intensity in the residential burglary.

Therefore, when testing the null hypothesis of complete spatial randomness, it is necessary

to consider the spatial trend effects shown in the corresponding intensity map of Fig 1 [67,68].

In other words, the point patterns of residential burglary in Columbus can be modeled by a

nonstationary inhomogeneous Poisson process (IPP) with non-constant intensity [69,70]. To

do so, we separate the spatial trend and re-weight the first order intensity by using inhomoge-

neous K-function [71]. Such separation is necessary to avoid the confounding between inten-

sity and within-pattern interaction [72,73].

The inhomogeneous K-function (Kinhom) is an extension of Ripley’s homogeneous K-func-

tion to an inhomogeneous point process, where spatial dependence and associated spatial

scales are examined with non-constant intensities throughout a study area. Under Kinhom func-

tion, the spatial varying intensities and the spatial trend are adjusted by an intensity function
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l̂ðuÞ. Consider a non-stationary spatial point process U = {u1,. . .,un} with an intensity function

l̂ðuÞ, the Kinhom is estimated as [71,74]:

K̂ inhomðhÞ ¼
1

jAj

XN

i¼1

XN

j¼1;j6¼i

eijIðdij � hÞ

l̂ðuiÞl̂ðujÞ
ð3Þ

where |A|, dij, I(dij< h), and eij are defined as before; l̂ðuiÞ and l̂ðujÞ are the intensity function

λ(u) at point ui and uj, respectively, which are estimated using the method in next section. To

stabilize the variance of K function and for visualization purpose, we use L function which is a

centered linear transformation of K function [66,74–76]:

L̂ inhomðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂ inhomðhÞ=p
q

� h ð4Þ

To determine the significance of the L function, we construct a simulation envelope using

the Monte Carlo test [57,77,78], which only requires a relatively small number of simulations

to achieve high accuracy [73]. In this study, we conduct 39 Monte Carlo simulations, resulting

in a significance level of α = 2/(1+39) = 0.05 according to Baddeley et al. [73]. Again, the bor-

der correction method developed by Ripley [79] is used to remedy the possible edge effect bias

(eij). The border correction strategy is preferable for large point data set to allow faster compu-

tation. In addition, compared to other edge effect strategies and methods, the border correc-

tion estimate is consistent and approximately unbiased [73].

Modeling the spatial trend. This intensity function l̂ðuÞ can be estimated non-paramet-

rically by using kernel smoothing estimators or nearest-neighbor estimators [71,80,81] or

parametrically by applying a parametric model (e.g., a log-linear model). To investigate the

general spatial patterns of residential burglary, we estimate the first order intensity of each

point pattern using kernel smoothing with a bandwidth of 2000 m. Fig 1 shows the intensity

maps for each year of 1994–2002. To avoid bias due to edge effect and to obtain better statisti-

cal performance, we use the edge correction method proposed by Diggle [80]. The estimated

intensity map, with relatively large bandwidth (i.e., 2000 m here), reveals the general spatial

trend of the point patterns [69,80].

To further characterize the first order intensity used for the within-pattern interaction anal-

ysis, a parametric model is preferred for two main reasons. First, the non-parametric estima-

tion through kernel smoothing is using the same spatial point pattern data, which can lead to

substantial bias in the estimate of the inhomogeneous K-function, which is more responsive to

local fluctuations in the data [73]. Second, the non-parametric estimation has the assumption

that the scale of the first order is larger than that of the second order [67].

For this study, the global trend for the point pattern of residential burglary can be estimated

with a log-linear additive model [73]:

l̂ðuÞ ¼ expfb0 þ b1x1ðuÞ þ b2x2ðuÞ þ . . .þ bpxpðuÞg ð5Þ

where β0, β1, β2,� � �,βp are the parameters to be estimated; x1(u), x2(u),� � �,xp(u) are the covari-

ates at location u. The spatial covariates used in Eq 5 should be the populations at risk, where

we include two variables (Fig 2): residential area (RA) and parcel density (PD).

By definition, residential burglary should only happen in the residential area. However, due

to mixed parcel/land use, there are a significant number of residential burglary incidents in

areas classified as non-residential. To characterize this variation, we include residential area as

a dummy variable in all our candidate models. The spatial covariates are converted to raster

images to link with the point pattern through the model in the R environment. The residential
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areas are represented as a dummy variable: 1 for residential areas and 0 for non- residential

areas. The raster image of parcel density is estimated using kernel density estimation.

The models are validated using the relative intensity, r(u), which measures the agreement

between the true intensity λ(u) and the estimated intensity l̂ðuÞ [73]. The relative intensity is

defined as rðuÞ ¼ lðuÞ=l̂ðuÞ. The closer r(u) to 1, the better the model. In practice, r(u) is esti-

mated by kernel smoothing [73]:

r̂ðuÞ ¼
1

eðuÞ

X

i

1

l̂ðuiÞ
kðu � uiÞ ð6Þ

where k is a smoothing kernel and e(u) is the edge correction factor.

Spatial scale of interaction. The K function reflects the number of events separated by

certain distance h. The L function is the standardized K function, indicating the standardized

strength of interaction. Fig 3 shows an example of an estimated L function (thick black line)

and simulation envelope (gray shaded area).

For a clustered point pattern, the inhomogeneous L function starts inside the simulation

envelope and increases with distance h. At a certain distance, inhomogeneous L function rises

consistently above the simulation envelope. After a certain distance, the inhomogeneous L
function decreases until below the simulation envelope (Fig 3). Here we define three scales of

interaction.

• Minimum Scale of Interaction (h0): the distance where the L function starts to increase

above the simulation envelope as indicated by the blue dashed line in Fig 3 where h0 = 520

meters.

• Range of Interaction (hr): the distance where the L function decreases below the upper enve-

lope as indicated by the blue solid line in Fig 3 where hr = 3247 meters. hr�H, where H is

the maximum distance between events in the study area.

• Characteristic Scale of Clustering (hc): the weighted average scale of interaction defined as,

Fig 2. Spatial covariates for modeling the spatial trend. a–residential area, b–parcel density (unit: One parcel per km2).

https://doi.org/10.1371/journal.pone.0264718.g002
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hc ¼

X

hn�hi�hr

Lihi

X

hn�hi�hr

Li

ð7Þ

where Li is the estimated L value for hi, h0�hi�hr, i.e., hc is estimated based on the thick black

line between the blue dashed line and blue solid line.

Under some conditions, particularly for the point patterns at annual aggregation, the L
function stays above the envelope all through the h values. In such case, hr is calculated as the

maximum distance (H) between events in the study area.

Dependence of spatial scale on temporal aggregation

To examine the impact of temporal aggregation on the spatial scale of clustering, we analyze

spatial point patterns with various temporal aggregations. In other words, we subset the point

pattern data by different temporal scales, and then conduct point pattern analysis using Rip-

ley’s K function to detect the spatial scales of clustering. As discussed in Table 1 above, we

Fig 3. An example inhomogeneous L function, assuming inhomogeneous Poisson process (IPP). The black line (including the

thick segment in the middle) is the estimated L function from the data; the red dashed line is the theoretical L function (null model)

for IPP; the shaded area indicates the simulation envelope constructed with 39 Monte Carlo simulations of the fitted IPP model. The

blue dashed line indicates the minimum scale of interaction (h0); the blue solid line indicates the range of interaction (hr).

https://doi.org/10.1371/journal.pone.0264718.g003
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analyze 234 spatial point patterns with various temporal aggregations, resulting in 234 sets of L
functions and spatial scales of interaction. We use a one-way ANOVA test to compare the dif-

ference and significance of the characteristic scale of clustering among the 234-point patterns.

Most of the analyses in this paper are carried out using R [82]. Specifically, the point pattern

analysis (K function and L function) is implemented using functions from the spatstat package

[73].

Results

Spatial trend of residential burglary

The estimated spatial trend model is: l̂ðuÞ ¼ expf� 2:83þ 2:63RAðuÞ þ 0:34PDðuÞg, where

RA is the residential area and PD is the parcel density as shown in Fig 2. All the parameters, β0,

β1, β2, are significant at the level α = 0.001. The map and histogram of estimated relative inten-

sity are shown in Fig 4.

The range of the relative intensity is concentrated around 0.7–1. Fig 5 shows the fitted

intensity map for all residential burglaries during 1994–2002. The map indicates that the spa-

tial trend of residential burglary is well captured by the spatial covariates. The estimated

parameters of the model indicate that the intensity of residential burglary is e2.63�14 times

higher in residential areas than non-residential areas (i.e., mixed use parcel/areas). For each

additional parcel per km2, the residential burglary incidents increase by (e0.34−1)×100%�

40.5%.

Spatial scale of clustering

For all the 234 point patterns, the inhomogeneous L functions stay above the simulation enve-

lopes for at least a certain distance. In other words, all the point patterns are significantly clus-

tered. For each of the 234 point patterns, we extracted the minimum scale of interaction (h0),

the range of interaction (hr), and the inhomogeneous L function values (Li) associated with

distances hi (h0� hi� hr). For the example L function shown in Fig 3, the extracted Li and hi
are shown in S2 Table of the Supplementary Data. Using Eq 7, we calculated the characteristic

scale of clustering (hc) (Table 2), which varies across the temporal scales with a grand mean of

Fig 4. Estimated relative intensity.

https://doi.org/10.1371/journal.pone.0264718.g004

PLOS ONE Spatial scale for analysis of residential burglary

PLOS ONE | https://doi.org/10.1371/journal.pone.0264718 February 28, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0264718.g004
https://doi.org/10.1371/journal.pone.0264718


2243 meters. As shown by the histogram (Fig 6), the distribution of hc across values most con-

centrated between 1500 m and 3000 m.

Dependence of spatial scale on temporal aggregation

The ANOVA test among the spatial patterns of residential burglary based on the temporal

scale indicates that changing temporal scale has no significant impacts on the spatial scale of

interaction (hc) (Table 3). In other words, the spatial scales of interaction are relatively stable

across various temporal scales.

Summary and discussion

Spatial trend of residential burglary and population at risk

Our spatial trend model captured most of the first order intensity of residential burglary and

thus served the purpose of separating the global trend and local within pattern variation of res-

idential burglary. As noted, this separation is essential to investigate spatial dependence. For

Fig 5. Fitted intensity map for mapped point pattern (all residential burglary during 1994–2002). Unit: One residential burglary

incident per km2.

https://doi.org/10.1371/journal.pone.0264718.g005
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Columbus Ohio, compared to mixed parcel/land use, the residential area has a much higher

risk of residential burglary as expected. Parcel density, as an indicator of the population at risk,

captures the spatial patterns of residential burglary very well.

Spatial scale of clustering

The characteristic scale of clustering (hc = 2243 m) is the radius of the geographic unit where

the spatial variation of the residential burglary is captured. For a given residential burglary

Fig 6. The distribution of the characteristic scale of clustering (hc) across the 234-point patterns. The red vertical line highlights the

grand mean of hc (2243 m).

https://doi.org/10.1371/journal.pone.0264718.g006

Table 3. ANOVA test for the characteristic scale of clustering among the spatial point patterns based on temporal

aggregations.

Df Sum Sq Mean Sq F value Pr (>F)

Characteristic scale of clustering 25 9048921 361957 1.239 0.209

Residuals 208 60781093 292217

https://doi.org/10.1371/journal.pone.0264718.t003
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event, the chance of finding another residential burglary event within 2243 meters is higher

than beyond 2243 meters. We compared the characteristic scale of clustering with the equiva-

lent radius of four geographic units in the study area: census tracts, neighborhoods, communi-

ties, and zip codes (Table 4). The average sizes of the equivalent radius for census tracts and

neighborhoods are 829 meters and 911 meters, respectively, which are less than half the char-

acteristic scale of clustering (2243 meters). The average of the equivalent radius for zip codes

(2290 meters) is the closest to the characteristic scale of clustering. However, the spread distri-

bution shows that the radius of the zip code is positively skewed with the maximum of 4472

meters, resulting in several units that are much larger than the average of the characteristic

scale of clustering (Fig 7(E)). This can result in overestimating the geographic area of the pro-

cesses of residential burglary and the cluster of residential burglary, as will be discussed later in

this section.

Table 4. Descriptive statistics of the equivalent radius for zip code, community, neighborhood, census tract, and

the characteristic scale of clustering (hc) in the study area.

Geographic Unit No. of Units Radius

Min Max Median Mean SD

Zip code 21 1029 4472 2007 2290 1000

Community 35 336 3698 1730 1776 1074

Neighborhood 163 338 2734 859 911 376

Census tract 179 136 2142 748 829 354

hc 234� 614 3208 2286 2243 547

� Represents the number of spatial scales, i.e., 234 spatial point patterns. The equivalent radius is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=p

p
, i.e., the radius of the equivalent circles.

https://doi.org/10.1371/journal.pone.0264718.t004

Fig 7. The boundaries and radius distribution for four area units: zip codes (a and e), communities (b and f), neighborhoods (c and g), and census tracts (d and

h). For the boundaries of communities and zip codes, we included only the units that most of their areas fall within the study area and excluded those that most

boundaries extend beyond the study area.

https://doi.org/10.1371/journal.pone.0264718.g007
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The characteristic scale of clustering reflects, to a large extent, the size and distribution of

commonly understood communities in the study area (Table 4, and Fig 7(F)), which are com-

posed of several neighborhoods and used by the city of Columbus for planning and reporting

purposes (Fig 8). The community units have the mean and medium equivalent radius of 1776

meters and 1730 meters, respectively, with the maximum radius of 3698 meters, which is the

closest to the maximum characteristic scale of clustering (3208 meters). As shown in (Fig 7

(F)), the radius for 83% of the community units are equal to or less than the average character-

istic scale of clustering, and the radius for the rest of the units fall within the range of the char-

acteristic scale of clustering, suggesting the community unit is the most suitable unit of

analysis among the other geographic units.

Fig 8. The configuration of communities and neighborhoods in the study area.

https://doi.org/10.1371/journal.pone.0264718.g008
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Our empirical, inductive approach yields useful information to help guide conventional

analyses of crime rates in urban communities. For areal data analysis, crime data are com-

monly aggregated into areal units so that crime rates for these units can be correlated with

social-economic factors. One important consideration for the selection of the size of such areal

units is that they conform to the area defined by the characteristic scale of clustering.

1. If analysts choose an areal unit larger than ph2
c , they would be aggregating significant clus-

ters with non-clustered areas, i.e., smoothing residential burglary rates, leading to the loss

of information.

2. If they choose an areal unit smaller than ph2
c , there is chance of dividing a significant cluster

into multiple area units.

Given that the clusters do not necessarily coincide with areal units, there is always the

chance of dividing significant clusters into multiple areal units even when choosing one with

size equal to ph2
c . This is not particularly problematic because each areal unit tends to be

homogeneous, without the loss of information. In other words, analysts are on solid ground

when implementing an areal unit that comes as close to our criterion given the available data.

For the residential burglary of Columbus, ph2
c ¼ 15:8 km2

, which is about the mean size of

communities in the study area. These results suggest that the community is a geographic unit

that is particularly well suited for the spatial analysis of residential burglary in Columbus.

Impact of temporal scale on the spatial scale of interaction

We found no significant impact of temporal aggregation on the spatial scale of interaction.

Changing the temporal aggregation level could result in a changing frequency of crime or a

different spatial pattern in terms of location. However, the results indicate that the spatial scale

and geographic level of significant–clustered pattern (the size of that spatial pattern) does not

depend on the temporal scale. This stability across various temporal scales suggests strong

social or spatial processes that operate within that range of spatial scales. It is important to

mention that the large variation in the number of crime incidents across the 234-point patterns

(mean = 1735, standard deviation = 1919, see S1 Table in the Supplementary Data for details)

does not necessarily impact the values of the characteristic scale of clustering (hc).
Our results regarding the independence of the spatial scale with respect to the temporal

scale are consistent with previous spatio-temporal studies where spatial dependence is more

significant and has a larger influence on crime patterns than spatio-temporal interaction

[83,84]. It also implies that police officials need not be concerned about shifting sizes of risk-

areas with the time of the year.

Further implications

Our paper addresses the well-known Modifiable Areal Unit Problem (MAUP), whereby differ-

ent boundaries and spatial scales result in different visual representations and hot spots of

crime [85]. As shown in previous studies [86], burglary is related to both neighborhood-level

and target-level attributes. The MAUP is a potential concern for researchers who are interested

in causal studies of crime (e.g., residential burglary here) and the effects of explanatory vari-

ables [87]. Thus, this paper provides a preliminary attempt and framework that can help

researchers deal with the issue of geographic aggregation level.

Another implication is related to the issue of using fixed pre-existing geographic units

with non-overlapping boundaries as the units of analysis. Lee and colleagues [88,89] argued

that such geographic units (e.g., census tracts) do not reflect the actual area for the
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community concept (e.g., neighborhood) or the spatial environment of criminogenic pro-

cesses. They therefore proposed a tract-free approach across egocentric local environments

of varying size (radius). Hipp and colleagues [12,90] similarly argued that neighborhoods

defined based on nonoverlapping boundaries (such as block groups or tracts) are funda-

mentally flawed in investigating the spatial processes of crime. They proposed a new defini-

tion of neighborhoods labelled “egohoods”, which are conceptualized as waves washing

across the surface of cities using overlapping boundaries. The new measures proposed by

Lee, Hipp and colleagues [12,88–90] used (weighted) averages of data within circles of vari-

ous radii centered on the target block. The characteristic scale of clustering hc derived

using our method might serve as a promising candidate for the radius put forth by Lee,

Hipp and colleagues.

Moreover, our approach provides important information to those who conduct hot spot

analyses, especially those involving bandwidth selection such as in kernel density estimation,

where the characteristic scale of clustering can be used to facilitate the determination of the

bandwidth. Our study can be combined with hot spot analyses to help effective policing: Our

method reveals the characteristic scale of clusters, while the hot spot analyses reveal the loca-

tion of clusters. The characteristic scale of clustering (hc) also complements the hot spot polic-

ing strategy by serving as a radius search for residential burglary hot spots. For the case of

residential burglary in Columbus, Ohio, our results can guide police agencies in their efforts to

control and prevent residential burglary by extending their interventions to 2.2 km from the

highly focused spots of residential burglary.

Our study also supports previous research in geographic profiling that has documented

processes underlying target selection for residential burglary. Summers et al. [91] found that

burglars have a consistent pattern of semi-radial movement in different directions from their

home. The characteristic scale of clustering in our study may represent such a radius of the cir-

cle wherein burglars commute to commit burglaries. Our results for the characteristic scale of

clustering (2.2 km) in residential burglary is comparable to the travel distances of burglars

revealed in previous studies, such as 2.6 km in Rhodes & Conley [92], 2.8 km in White [93],

2.6-3km in Wiles & Costello [94]. Similarly, in a study of burglary in the Hague, the Nether-

lands, Bernasco [95] found that the majority (about 90%) of the solitary burglars travel a dis-

tance of 1–4 km to commit crime, with an estimated mean of 2.6 km.

Our analytic framework can be used to address MAUP by a wide range of applications that

use areal units for spatial analysis, such as disease outbreak, public health issues, and health

inequalities [96,97], environmental risk analysis [98], social and population analysis [99], spa-

tial politics analysis [100]. Moreover, the framework can be used to address the Modifiable

Temporal Unit Problem (MTUP) that is associated with MAUP [101,102].

Limitations and future study

Our spatial trend model (Eq 5) mainly relies on the population at risk (parcels) and the poly-

gons that determine the residential areas (dummy variable). This model can be improved to

capture more accurately the first order effects (intensity of residential burglary) by including

more covariates that contribute to the large-scale variation of residential burglary.

Although our findings provide valuable insight about the spatial pattern of residential bur-

glary and the selection of an appropriate spatial scale of analysis, the theoretical rationale and

social spatial processes that generate such spatial patterns are not clear. In addition, the appro-

priate scale presented here applies to residential burglary in Columbus, Ohio. It may vary

across different offenses and differ for different cities. Thus, one potential and useful extension

of this study is to apply the basic analytic framework to different types of crime across different
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cities. This comparison can help develop a theoretical framework that can explain the variation

or uniformity of spatial patterns for different types of crime. In the case where the appropriate

scale resulting from point pattern analysis does not overlay well with census units, area based

interpolation can be applied to generate areal data at the appropriate scale [103–105].

It is also important to investigate the possible presence of micro space-time interaction that

can change the location of clusters over time. This stability or instability of cluster locations

reveal how long the crime clusters persist at the determined spatial scale of analysis, which has

important implications for deploying resources from the police force.

Conclusion

In this study, we applied spatial point pattern analysis to characterize the within pattern inter-

action of residential burglary incidents and its dependence on temporal variability. The inho-

mogeneous L functions was used to determine the characteristic scale of clustering, which can

serve to identify a reasonable spatial scale of analysis. Residential burglary mostly clusters at a

spatial scale of 15.8 km2, which is about the size of communities in our study area. This finding

suggests that the community is well suited for spatial analysis of residential burglary in Colum-

bus, Ohio. We found no significant variation of the spatial scales of clustering for spatial pat-

terns aggregated at different temporal scales. Thus, it is reasonable to use a yearly temporal

aggregation level for spatial analyses of residential burglary.

Overall, we call attention to two main implications from this study. First, it has policy impli-

cations given that the characteristic scale of clustering can be used to define the spatial bound-

ary for place-based policing. Second, it can lay the foundation for theoretical explanations of

the social processes that operate within the characteristic scale of clustering. In areal data anal-

ysis of crime risk, we suggest that crime data and socioeconomic factors be aggregated at a spa-

tial scale that comes close to our criterion given the available data.

Supporting information

S1 Table. Counts (number of incidents) and distances (km) between residential burglary

incidents for all the 234 point patterns.

(DOCX)

S2 Table. Li and hi for Fig 3: h0�hi�hr, h0 = 519.5, hr = 3247.2.

(DOCX)

S1 Data.
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