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Background: In recent years, predicting and modeling the progression of Alzheimer’s
disease (AD) based on neuropsychological tests has become increasingly appealing in
AD research.

Objective: In this study, we aimed to predict the neuropsychological scores and
investigate the non-linear progression trend of the cognitive declines based on
multimodal neuroimaging data.

Methods: We utilized unimodal/bimodal neuroimaging measures and a non-linear
regression method (based on artificial neural networks) to predict the neuropsychological
scores in a large number of subjects (n = 1143), including healthy controls (HC)
and patients with mild cognitive impairment non-converter (MCI-NC), mild cognitive
impairment converter (MCI-C), and AD. We predicted two neuropsychological scores,
i.e., the clinical dementia rating sum of boxes (CDRSB) and Alzheimer’s disease
assessment scale cognitive 13 (ADAS13), based on structural magnetic resonance
imaging (sMRI) and positron emission tomography (PET) biomarkers.

Results: Our results revealed that volumes of the entorhinal cortex and hippocampus
and the average fluorodeoxyglucose (FDG)-PET of the angular gyrus, temporal gyrus,
and posterior cingulate outperform other neuroimaging features in predicting ADAS13
and CDRSB scores. Compared to a unimodal approach, our results showed that a
bimodal approach of integrating the top two neuroimaging features (i.e., the entorhinal
volume and the average FDG of the angular gyrus, temporal gyrus, and posterior
cingulate) increased the prediction performance of ADAS13 and CDRSB scores in the
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converting and stable stages of MCI and AD. Finally, a non-linear AD progression trend
was modeled to describe the cognitive decline based on neuroimaging biomarkers in
different stages of AD.

Conclusion: Findings in this study show an association between neuropsychological
scores and sMRI and FDG-PET biomarkers from normal aging to severe AD.

Keywords: Alzheimer’s disease, neuropsychological scores, structural MRI, FDG-PET, artificial neural networks
(AANs)

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease with
progressive loss of memory and other functions that can
be recognized using neuropsychological evaluation (Schmidtke
and Hüll, 2002). Different domains of brain functions can be
assessed through neuropsychological tests such as the Clinical
Dementia Rating Sum of Boxes (CDRSB), Alzheimer’s Disease
Assessment Scale Cognitive13 (ADAS13), Mini-Mental State
Exam (MMSE), and Rey Auditory Verbal Learning Test (RAVLT)
(Crane et al., 2012). Neuropsychological tests and neuroimaging
data have been increasingly used for identifying patients with
AD and mild cognitive impairment (MCI). MCI is typically
considered a stage between healthy aging and AD (Ramakers
et al., 2008; Duc et al., 2020). Some patients with MCI progress
to AD, MCI converter (MCI-C), and the rest of them do
not progress to AD, MCI non-converter (MCI-NC) (Gomez-
Sancho et al., 2018; Shen et al., 2018). Considering that
MCI-C and MCI-NC patients are in an intermediate stage
between healthy aging and AD, it is challenging to identify
robust and reliable biomarkers for prediction of progression of
these patients to AD.

AD is a complex brain disease and integration of different
neuropsychological tests is needed to adequately identify the
evidence of dementia. It has also been shown in previous
studies that neuropsychological scores are intrinsically correlated
with each other (Van Der Maas et al., 2006; Tosi et al.,
2020), and, thus, individuals with a healthy score in one
neuropsychological test are more likely to achieve a healthy score
in other tests. To efficiently identify the early stage of AD, it is
critical to find the relationship and association between different
neuropsychological tests.

It has been shown that AD starts years before any appearance
of symptoms, and alterations in the brain structural and network
characteristics occur while neuropsychological scores are still
normal (Sperling et al., 2014). In recent years, several studies
focused on diagnostic criteria for the early stage of AD based
on neuroimaging biomarkers (Moradi et al., 2015; Hojjati et al.,
2018, Hojjati et al., 2019). Neuroimaging-based diagnosis of AD
[e.g., using structural magnetic resonance imaging (sMRI) and
fluorodeoxyglucose (FDG) from positron emission tomography
(PET)] can identify biomarkers that are sensitive to changes in
the brain in the early stages of the disease (Eskildsen et al., 2013;
Pagani et al., 2015; Hojjati et al., 2019; Tabarestani et al., 2020).
Several neuroimaging studies have shown that the neuroimaging
biomarkers may be more capable than the neuropsychological

tests in identifying the early stage of AD (Leung et al., 2010; Gao
et al., 2015; Hojjati et al., 2018; Lu et al., 2018).

Recent advances in the neurobiology of AD suggested that
AD is a multifactorial and heterogeneous disease that cannot be
explained by a single biomarker (Jack et al., 2018). Over the past
decades, several projects have been funded to collect data from
large cohorts of older adults. However, less effort has been made
to implement integrative methods for aggregating data across
modalities and capture the heterogeneity of AD. Previous studies
utilized neuroimaging biomarkers, mostly in a single-modality
approach, to find a relationship between neuropsychological tests
and AD risk factors (Frisoni et al., 2002, 2010). It has been
demonstrated that the trajectories of neuroimaging biomarkers
for prediction of AD are complex and have a non-linear
trend due to the interactions with age (Sabuncu et al., 2011).
Hence, a non-linear relationship between neuropsychological
scores and neuroimaging features should be considered. In the
current study, we used artificial neural networks (ANNs) to
investigate a non-linear model for AD progression trend based on
neuropsychological scores. ANNs have been successfully utilized
for various brain imaging applications (Savioz et al., 2009; Choi
et al., 2020; Wen et al., 2020) and have gained increasing interest
in diverse applications, such as classification, speech recognition,
age modeling, modeling and forecasting extreme events, and even
face recognition (Cole et al., 2017; Tuan Tran et al., 2017; Duc
et al., 2020; Chowdhury et al., 2021). Moreover, ANN was utilized
to provide an effective method for early diagnosis of AD (Wang
et al., 2019). In particular, ANNs were shown to be effective in
predicting progression from healthy cognition to AD (Albright
and Alzheimer’s Disease Neuroimaging Initiative, 2019), and this
predictive ability of ANNs outperformed that of a linear model
(Grossi et al., 2007).

In this study, we investigated finding neuroimaging
biomarkers as inputs features of an ANN to accurately model
target neuropsychological scores (e.g., ADAS13) in a wide range
of cognitive impairments, from healthy aging to severe AD,
in four groups of subjects (healthy controls (HC), MCI-NC,
MCI-C, and AD). By including data from MCI-C patients
in our study, we investigated the accuracy of this model in a
challenging condition by using their data in the baseline (when
they showed a MCI) before they progressed to AD in the next
several months or years. There are a few studies that proposed
methods to predict and model the neuropsychological scores
(Apostolova et al., 2006; Ferrarini et al., 2008). Duc et al. (2020)
predicted the Mini-Mental State Exam (MMSE) score based on
resting-state functional MRI using various regression methods
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(e.g., support vector regression and bagging-based ensemble
regression) and utilized the 3-D convolutional neural network
to classify two groups of subjects (HC and AD). In Ferrarini
et al. (2008), the authors investigated an association between the
atrophy in periventricular structures and cognitive impairment
in MCI and AD, as estimated by the MMSE score. Moradi
et al. (2017) utilized whole-brain gray matter density maps for
predicting the RAVLT Immediate and RAVLT Percent Forgetting
scores based on a machine learning approach. They reported
R = 0.50 and R = 0.43 correlation between the estimated and
observed RAVLT Immediate and RAVLT Percent Forgetting,
respectively. Ito et al. (2011) attempted to fit a linear model for
the longitudinal ADAS scores by including age, apolipoprotein
34 [APOE 34] genotype, gender, family history of AD, years
of education, and baseline severity as inputs of the model.
Their results showed that AD progression increased with
baseline severity while age, APOE 34 genotype, and gender also
influenced this progression. In another study, Liu et al. (2019)
proposed supervised densely connected neural network methods
to predict neuropsychological scores (i.e., CDRSB and MMSE)
in three groups (HC, MCI, and AD). They utilized the landmark
detection algorithm and found future multiple clinical scores in
four different time-points using single modal neuroimaging of
baseline MRI data.

This is the first study to our knowledge that attempted to
model the progression trend of neuropsychological scores using
a non-linear ANN approach based on bi-modal neuroimaging
data in a large sample size (n = 1143) and four groups of
subjects (HC, MCI-NC, MCI-C, and AD). In the current study
we: (1) applied a machine learning approach based on ANN
to predict ADAS13 and CDRSB scores (as the target scores)
from normal aging to AD using neuroimaging biomarkers and
other neuropsychological scores; (2) compared the performances
of sMRI and PET in single- and bi-modal approaches to find
the best neuroimaging biomarkers for predicting the target
neuropsychological scores; (3) evaluated the ability of the best
neuroimaging biomarkers in predicting the ADAS13 score in
stable (i.e., MCI-C) and converting (i.e., MCI-NC) stages of
AD; and (4) compared the progression trend of sMRI and
PET biomarkers based on ADAS13 to find the prediction
power of these biomarkers in different stages of AD. It is
noteworthy that we chose the CDRSB and ADAS13 as the
target tests because of their sensitivity to the assessment of
the severity of AD progression and general cognitive functions
(Kueper et al., 2018).

MATERIALS AND METHODS

Overall Procedure
The preprocessed structural MRI (T1-weighted images), PET,
and neuropsychological data of 1143 subjects from The
Alzheimer’s Disease Prediction Of Longitudinal Evolution
(TADPOLE) challenge1 were used in this study (Figure 1;
Marinescu et al., 2018). In the first part of this study, we applied

1https://tadpole.grand-challenge.org

randomization test in predicting ADAS13 based on the RAVLT
immediate to demonstrate feasibility of using ANN algorithm
for this prediction. The subjects were randomly split to train,
validation, and test sets (Figure 1) and the performances of ANN
for prediction of ADAS13 were evaluated based on real and
random shuffled (across subjects) RAVLT immediate data.

In the second part of this study, we used an ANN to predict
the ADAS13 and CDRSB based on other neuropsychological
scores and neuroimaging data. Three stable groups of subjects
were used in this part: HC, patients with AD, and patients with
MCI-NC whose diagnosis did not change in their follow-up
visits. We excluded the MCI-C patients in this part of our study
because their state was not stable, as these patients had multiple
conversions and revisions from MCI to AD and vice-versa in
their follow-up visits (Hojjati et al., 2018). Another reason for
excluding MCI-C patients was to use them as an independent
test-set to evaluate performance of the trained ANN model based
on other three groups of subjects. The data of 951 subjects
(341 HC, 393 MCI-NC, and 217 AD) were used in the first
part of this study. We utilized an ANN with two hidden layers
(Figure 2) to predict the target scores (ADAS13 or CDRSB). The
sMRI and PET features (single-modal or bimodal) and other
neuropsychological scores (e.g., MMSE and RAVLT) were used
as input features of the ANN. Subjects were randomly split 500
times into training (80%), cross-validation (10%), and test (10%)
sets, and performance of the ANN models in cross-validation and
test sets were evaluated.

In the third part of this study, we investigated the ability
of the best neuroimaging biomarkers for predicting ADAS13
in MCI and AD using data of 748 subjects (339 MCI-NC,
192 MCI-C, and 217 AD). It is noteworthy that predicting
the cognitive scores of MCI-C patients is a challenging task
since we used their baseline neuroimaging data, and they
converted to AD in their future follow-up visits. In addition,
the MCI-C group had heterogeneity in their conversion time
to AD from 6 to 36 months. Therefore, the MCI-C patients
who converted to AD in a longer time (e.g., at 36 months)
after baseline may have similar brain functional and structural
characteristics compared to the MCI-NC patients. On the other
hand, the MCI-C patients who converted to AD in a shorter
time (e.g., at 6 months) after baseline may have similar brain
characteristics compared to AD patients. To test our model in a
challenging condition, we utilized a subset of MCI-NC patients
(80%; n = 271) and a subset of AD patients (80%; n = 173)
to train and cross-validate an ANN using the neuroimaging
biomarkers as input features and ADAS13 as a target of
prediction. Subsequently, we tested the ANN using the following
three test sets: untrained MCI-NC patients (20%; n = 68 patients),
untrained AD patients (20%; n = 44), and all MCI-C patients
(100%, n = 192).

In the last part of this study, we used the best neuroimaging
biomarkers for each modality (sMRI and PET) to fit non-linear
progression trends from normal aging to AD for ADAS13. All
four groups of subjects (341 HC, 192 MCI-C, 393 MCI-NC, and
217 AD) were included in this part. The ANN and statistical
analyses were implemented in MATLAB (Mathworks, Natick,
MA, United States).
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FIGURE 1 | Overall procedures of this study.

FIGURE 2 | The schematic diagram of the architecture of ANN used in this study.

Neuroimaging and Neuropsychological
Data
We used a subset of data provided by TADPOLE challenge. The
aim of this challenge was to compare the performance of different
algorithms for predicting the future evolution of individuals at
risk for AD. Data for this challenge were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database23.

2adni.loni.usc.edu
3Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-
info.org

In the current study, we used neuropsychological scores and
neuroimaging data (MRI and PET) in 217 AD (73.2 ± 7.5 years;
124 male), 192 MCI-C (73.5± 7.1 years; 111 male), 393 MCI-NC
(74.1 ± 7.5 years; 232 male), and 341 HC (74.8 ± 5.7 years; 157
male) subjects from the TADPOLE challenge database (Table 1).

Cognitive Assessments
Cognitive assessments in this study comprised different
neuropsychological tests including CDRSB, MMSE, ADAS13,
RAVLT Immediate, RAVLT Learning, and RAVLT Forgetting.
The CDRSB is the global clinical measure that represents six
cognitive areas (i.e., memory, orientation, judgment, community
affairs, home and hobbies, and personal care) (Morris, 1991;
Rogers et al., 2000). The MMSE is a cognitive function test of
orientation, attention, memory, language, and visual-spatial
skills (Folstein et al., 1975). The ADAS13 is a measure of
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TABLE 1 | Demographic and clinical information of four groups of subjects.

HC MCI-NC MCI-C AD

Number of subjects 341 393 192 217

Male/Female 157/184 232/161 111/81 124/93

Age, year (mean ± SD) 74.85 ± 5.66 74.10 ± 7.52 73.49 ± 7.07 72.24 ± 7.54

ADAS13 score (mean ± SD) 8.46 ± 4.36 14.36 ± 6.46 20.41 ± 6.41 30.38 ± 8.37

CDRSB score (mean ± SD) 0.06 ± 0.30 1.39 ± 0.88 1.92 ± 0.97 4.47 ± 1.71

MMSE score (mean ± SD) 29.04 ± 1.13 27.80 ± 1.96 27.05 ± 1.88 23.10 ± 2.20

RAVLT immediate (mean ± SD) 46.02 ± 9.86 36.81 ± 10.48 28.33 ± 7.87 22.30 ± 7.43

RAVLT learning (mean ± SD) 6.06 ± 2.17 4.63 ± 2.59 2.99 ± 2.29 1.74 ± 1.64

RAVLT forgetting (mean ± SD) 3.81 ± 2.76 4.43 ± 2.59 5.06 ± 2.07 4.41 ± 1.78

multiple cognitive domains including memory, language,
praxis, orientation, executive functioning, and functional ability
(Skinner et al., 2012). The RAVLT is sensitive to verbal memory
deficits and consists of presenting 15 words (a trial) across five
consecutive trials (Rey, 1958). The participants are instructed
to recall as many as words they remember after each trial. The
RAVLT Immediate is the sum of scores of 5 trials. The RAVLT
Learning is the score of Trial 5 minus the score of Trial 1. The
RAVLT Forgetting is the score of Trial 5 minus the score of
the delayed recall trial (Trial 6). In Trial 6, the participant is
asked to recall the words from the first list after presenting a list
of new 15 words.

Neuroimaging Data
For sMRI biomarkers in the current study, we included the total
intracranial volume (ICV) and the volumes of the following five
ROIs as input features of the ANN: the middle temporal gyrus
(MIDTEMP), hippocampus, entorhinal cortex, ventricles, and
fusiform gyrus. We also used fluoro-deoxyglucose (FDG) and
AV45 PET as input features of the ANN models. The FDG-
PET measures cell metabolism in the brain areas where the
affected areas by AD show reduced metabolism. The AV45 PET
measures density of amyloid-beta (Aβ) protein in the brain,
where improper construction of Aβ can lead to AD. As provided
by the TADPOLE database, the average FDG of angular gyrus,
temporal gyrus, and posterior cingulate and the average AV45 of
frontal, anterior cingulate, precuneus, and parietal cortex were
used as the FDG and AV45 input features in our ANN model.
To increase the reliability of this study, we worked to select the
maximum number of HC, MCI-NC, MCI-C, and AD subjects
having both sMRI and PET features.

Data Preprocessing
The neuroimaging measures (i.e., sMRI and PET) used in the
current study were provided by the TADPOLE database and
were extracted from individual subjects’ brains after normalizing
to the “standard” brain space (standardization) (Marinescu
et al., 2018). Normalization removes the effects of inter-subject
anatomical variability due to differences in brain size and
shape. The T1-weighted MRI of all subjects was processed by
ADNI-MRI-preprocessing pipelines for gradient non-linearity
correction, B1 non-uniformity correction, and peak sharpening4.

4http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing

After the preprocessing steps, the volumes of different brain
areas were extracted using the Freesurfer cross-sectional and
longitudinal pipelines (Reuter et al., 2012). PET images (FDG
and AV45), which had a series of dynamic frames, were
processed by ADNI-PET-preprocessing pipelines consist of
the following steps: frames co-registered, averaged across the
dynamic range, standardized with respect to the orientation
and voxel size, and smoothed using a uniform resolution with
FWHM of 8 mm5. After preprocessing, the PET images were
registered to corresponding MR images using the SPM software
(Ashburner, 2009). From the registered and normalized PET
images, standardized uptake value ratio (SUVR) measures for
relevant regions of interest (ROI) were extracted. In addition to
the spatial brain normalization and to address sensitivity of the
ANN to feature scaling, we normalized each of the neuroimaging
features across all subjects (n = 1143) using the Min-Max scaling
method to shift and rescale them so that they ended up ranging
between 0 and 1.

Artificial Neural Network Fitting
Artificial neural network (ANN) fitting is a logic-based method
that uses a network architecture of interconnected hidden layers
to model the relationship between input and output variables
(Pao, 1989; Bullinaria, 2004). The ANN is an efficient machine
learning algorithm that offers a number of advantages over
other algorithms, including demanding less statistical training,
capability to model complex non-linear relationships between
dependent and independent variables, detecting interactions
between predictor variables, and the accessibility of several
training algorithms (Yegnanarayana, 2009). In the current study,
we used the feed-forward multilayer perceptron (MLP) structure
for the ANN with two hidden layers and 20 neurons based
on experimental analysis (Figure 2). We observed that the
complexity and processing time of the ANNs increased using
more than 2 hidden layers and 20 neurons in each layer while
performance of the ANNs did not improve substantially. The
initial weights of ANN had random values between –1 and 1 and
were initialized using a symmetric random weight function. The
network was trained using the Levenberg–Marquardt learning
algorithm (Fun and Hagan, 1996) and the sigmoidal tangent
activation function (Zadeh et al., 2010). We used a learning

5http://adni.loni.usc.edu/methods/pet-analysis/pre-processing
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rate of 0.001 and a maximum number of epochs of 1000 for
generalization of the ANN training. The training of the ANN
continued until generalization stops improving as specified by
an increase in the mean square error (MSE) of the validation set
for six iterations (validation pause). The MSE-observation and
R-square were used to evaluate the performance of ANN fitting.
The MSE is the average squared difference between the estimated
output and target and was minimized as the loss-function during
training and validation of the ANN. The R-square is the square
of the correlation between the estimated output and target. We
used the R-square in addition to the MSE in order to have a
performance measure that is independent of the scale of data. We
split data into training (80%), validation (10%), and test (10%)
sets in this study and reported the performance of the ANN
on the test set in the result section. Furthermore, the feasibility
of prediction based on this ANN approach was verified by the
random shuffling test (Figure 3).

RESULTS

Capability of Artificial Neural Network in
Predicting ADAS13 Based on Rey
Auditory Verbal Learning Test
We evaluated the ability of the ANN in predicting ADAS13
based on RAVLT Immediate in subjects with a stable state (i.e.,
HC, MCI-NC, and AD) using a random shuffling approach. To
this end, ADAS13 was predicted in two conditions where either
value of RAVLT Immediate in all subjects or random values (by
shuffling subjects) were used for this prediction. Considering that
ADAS13 and RAVLT have overlaps over the different cognitive
domains, we hypothesized that the ANN with real RAVLT
Immediate as input feature can predict ADAS13 but random
shuffling of this input feature cannot provide a meaningful
prediction. Figure 3 shows the predicted and observed ADAS13
based on real and shuffled RAVLT Immediate. As expected, the
ANN could not predict the ADAS13 with random shuffling values
(R-square = 0.01 and RMSE = 116.42 based on test set), but
the ADAS13 was predicted well with the real RAVLT Immediate
values (R-square = 0.80 and RMSE = 33.10 based on test set).

Predicting Target Neuropsychological
Scores Based on Other Scores
We used HC, MCI-NC, and AD datasets (by including all subjects
with a stable state from normal aging to AD) to predict ADAS13
and CDRSB target scores based on other neuropsychological
scores as input features of an ANN. Figure 4 shows linear
regressions for the predicted vs. observed values of ADAS13 (left
panel) or CDRSB (right panel) using MMSE, RAVLT Immediate,
RAVLT Learning, and RAVLT Forgetting as an input feature of
the ANN. In addition, we predicted the ADAS13 and CDRSB
using one of these scores as input and another one as output of
the ANN. It can be seen from Figure 4A and Table 2 that RAVLT
Immediate provided the best prediction for the progression trend
of ADAS13 (R-square = 0.80 and MSE = 33.10) from normal
aging to AD that shows a high association between ADAS13

and RAVLT Immediate scores. The ADAS13 provided the best
prediction (R-square = 0.80 and MSE = 1.15) in estimating
the progression trend of CDRSB from normal aging to AD
(see Figure 4B and Table 2). The CDRSB is commonly known
as the severity indicator of AD and our results revealed an
association between CDRSB and ADAS13. Notably, the RAVLT
Forgetting had the worst performances in the prediction of
ADAS13 and CDRSB (R-square = 0.25 and 0.13 and MSE = 97.65
and 3.02, respectively).

Predicting Target Scores Based on
Unimodal and Bimodal Neuroimaging
Data
Independent ANN models were separately trained and tested
using sMRI and/or PET input features to predict ADAS13
and CDRSB in order to find the best unimodal and bimodal
neuroimaging features for this prediction. Prediction of the target
scores based on six sMRI features (ICV and the volumes of five
ROIs) are shown in Figure 5. As listed in Table 2 and shown in
Figure 5, the volume of entorhinal cortex was the best predictor
for ADAS13 (R-square = 0.67 and MSE = 58.27) and CDRSB (R-
square = 0.67 and MSE = 1.87). The volume of the hippocampus
was the second best predictor for ADAS13 (R-square = 0.57 and
MSE = 61.66) and CDRSB (R-square = 0.54 and MSE = 1.91).
These results are in line with the fact that the volumes of the
hippocampus and entorhinal cortex are highly associated with
memory function in the brain. As expected, the ICV was the worst
predictor for both ADAS13 (R-square = 0.12 and RMSE = 113)
and CDRSB (R-square = 0.15 and RMSE = 3.44).

Figure 6 shows the prediction results for ADAS13 and CDRSB
based on PET biomarkers (FDG and AV45). Compared to
AV45, the FDG had a superior association with both ADAS13
and CDRSB from normal aging to AD (R-square = 0.66 and
0.70 and MSE = 48.33 and 1.64 for ADAS13 and CDRSB,
respectively). For prediction based on bimodal neuroimaging
data, the following best biomarkers were selected based on the
results of unimodal prediction: the volumes of the entorhinal
cortex and hippocampus for sMRI and FDG for PET. Figure 7
shows the results of unimodal and bimodal prediction of ADAS13
and CDRSB. It can be seen from Figure 7 and Table 2 that
integration of FDG and volume of entorhinal cortex had the
best performance for both ADAS13 (R-square = 0.74 and
MSE = 37.61) and CDRSB (R-square = 0.80 and MSE = 1.35).
It is interesting to note that the combination of FDG and the
volume of the entorhinal cortex was optimal for prediction of
CDRSB and, especially, ADAS13. Adding the volume of the
hippocampus to the two features did not improve performance of
the prediction, likely due to the association between the volumes
of the hippocampus and entorhinal cortex and a preference of
the ANN model for having a smaller number of features to
prevent overfitting.

Predicting ADAS13 in Converting and
Stable Stages of Alzheimer’s Disease
We used FDG-PET and the volume of entorhinal cortex (as
the best bimodal neuroimaging biomarkers) for predicting three
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FIGURE 3 | Evaluating the ability of the ANN in predicting ADAS13 based on RAVLT Immediate in subjects with a stable state (i.e., HC, MCI-NC, and AD) using a
random shuffling approach where either real value of RAVLT Immediate or its random value by shuffling subjects (black color in the figure) were used for this
prediction. The subplots are corresponding to (A) training set [80%] (B) validation set [10%], and (C) test set [10%] of the subjects in the three groups.

stages from MCI to AD (i.e., MCI-NC, MCI-C, and AD).
Our main goal was to investigate the ability of the bimodal
neuroimaging biomarkers in modeling the target cognitive scores
in the three stages. It is important to note that the baseline
values of these neuroimaging biomarkers for MCI-NC and MCI-
C groups were used in the prediction models while only patients
in the latter group converted to AD in their follow-up visits.
We trained ANN models to predict the two target scores in
MCI-NC and AD groups using the FDG-PET and the volume
of entorhinal cortex as input features. The MCI-NC and AD
patients were chosen for training since they had a stable stage
in their follow-up visits. Then the trained models were tested
using the testing set of patients in MCI-NC, MCI-C, and AD
groups. As shown in Figure 8, the predicted value of ADAS13
was different in the three groups and increasing trend for this

value was observed from MCI-NC to MCI-C and from MCI-
C to AD. We performed a one-way ANOVA to compare the
predicted value of ADAS13 across three groups (MCI-NC, MCI-
C, and AD). We performed the Shapiro–Wilk test for normality
of the distributions of the predicted ADAS13 in the three groups
and found that the distribution was significantly departed from
normality (P < 0.007) in AD but was normal (P > 0.095) in
MCI-NC and MCI-C. Therefore, we performed Kruskal-Wallis
non-parametric ANOVA test and found a significant difference
in predicted ADAS13 scores across the three groups (χ2 = 202.0,
DF = 2, P < 0.0001). Post hoc comparisons using the Tukey HSD
test indicated that the average rank of the predicted ADAS13
was significantly different in all combinations of two-group
pairs (P < 0.0001). It is noteworthy that the predicted values
of ADAS13 in the MCI-C group were significantly larger than
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FIGURE 4 | Predicting target neuropsychological scores based on other scores to find the association between neuropsychological tests. Various
neuropsychological scores in three groups of subjects (i.e., HC, MCI-NC, and AD) were used as input features of an ANN to predict (A) ADAS13 and (B) CDRSB
from normal aging to AD. Linear regressions for the predicted vs. observed values of ADAS13 and CDRSB are shown. R-squares of the linear regressions are listed
in Table 2.

TABLE 2 | R-square and mean square error (MSE) for modeling the progression trend of ADAS13 or CDRSB from normal aging to AD based on different inputs features
(neuropsychological scores and single and multiple neuroimaging measures).

Biomarker ADAS13 CDRSB

R-square MSE R-square MSE

Neuropsychological Tests MMSE 0.77 38.12 0.78 1.25

ADAS13 – – 0.80 1.15

CDRSB 0.82 37.23 – –

RAVLT learning 0.67 52.60 0.51 2.79

RAVLT forgetting 0.25 97.65 0.13 3.02

RAVLT immediate 0.80 33.10 0.67 1.66

sMRI [volumes of brain structures] MIDTEMP 0.55 70.94 0.55 2.07

Hippocampus 0.57 61.66 0.54 1.91

Entorhinal 0.67 58.27 0.65 1.87

Ventricles 0.27 81.32 0.28 2.81

Fusiform 0.41 75.03 0.44 2.10

ICV 0.12 113.71 0.15 3.44

PET FDG 0.66 48.33 0.70 1.64

AV45 0.39 75.00 0.41 2.40

sMRI + PET Entorhinal + FDG 0.74 37.61 0.80 1.35

Hippocampus + FDG 0.65 38.26 0.73 1.69

Entorhinal + Hippocampus + FDG 0.69 40.95 0.79 1.55

Note that the predictions with the best performance are shown in bold font.

that in the MCI-NC group, although the values of the input
neuroimaging feature in baseline were used for both groups.

Progression Trend of ADAS13 Based on
Neuroimaging Biomarkers
The FDG-PET and volumes of the entorhinal cortex and
hippocampus provided the best performance in predicting
ADAS13 for PET and sMRI modalities. We used these features
in all subjects (HC, MCI-NC, MCI-C, and AD) to model the
progression trend of ADAS13 from normal aging to AD. As
shown in Figure 9, there was a reducing trend in the values

of the FDG-PET and volumes of the entorhinal cortex and
hippocampus from normal aging to AD. We performed a one-
way ANOVA to compare four groups (HC, MCI-NC, MCI-C,
and AD) across the three neuroimaging features. Because of
the non-Gaussian distributions of the FDG-PET and volume of
hippocampus in AD based on the Shapiro–Wilk test (W = 0.99,
P > 0.037), the Kruskal–Wallis non-parametric ANOVA test
was used that revealed a significant effect for the volume of the
entorhinal cortex (χ2 = 266.6, DF = 3, P < 0.0001), the volume
of hippocampus (χ2 = 331.3, DF = 3, P < 0.0001), and the FDG-
PET (χ2 = 428.7, DF = 3, P < 0.0001) across the four groups.
Post hoc comparisons using the Tukey HSD test indicated that the
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FIGURE 5 | Predicting target neuropsychological scores based on structural biomarkers to find the best predictors of the scores. Volumes of different brain
structures (extracted from sMRI) in three groups of subjects (i.e., HC, MCI-NC, and AD) were used as input features of an ANN to predict (A) ADAS13 and
(B) CDRSB from normal aging to AD. Linear regressions for the predicted vs. observed values of ADAS13 and CDRSB are shown. R-squares of the linear
regressions are listed in Table 2.

FIGURE 6 | Predicting target neuropsychological scores based on PET biomarkers to the best predictors of the scores. The average FDG of the angular gyrus,
temporal gyrus, and posterior cingulate and the average AV45 of frontal, anterior cingulate, precuneus, and parietal cortex in three groups of subjects (i.e., HC,
MCI-NC, and AD) were used as input features of an ANN to predict (A) ADAS13 and (B) CDRSB from normal aging to AD. Linear regressions for the predicted vs.
observed values of ADAS13 and CDRSB are shown. R-squares of the linear regressions are listed in Table 2.

average ranks of the volume of the entorhinal cortex, the volume
of hippocampus, and the FDG-PET were significantly different in
all combinations of two-group pairs (P < 0.0021).

Figure 10A shows a non-linear relationship between the
values of the neuroimaging biomarkers and the predicted values
of ADAS13 by the ANN in all subjects. The values of the
neuroimaging biomarkers (the x-axis in Figure 10A) were
normalized from 0 to 1 to represent the neurodegeneration trend
from healthy aging to severe AD, respectively. Figures 10B,C
show the distributions of the ADAS13 where the normalized
values of the neuroimaging measures (i.e., FDG-PET and
volumes of hippocampus and entorhinal cortex) were between
0.2 to 0.3 for mild neurodegeneration and between 0.7

and 0.8 for severe neurodegeneration, respectively. In mild
neurodegeneration, the predicted values of ADAS13 by the
non-linear model using FDG-PET were significantly smaller
than that using the entorhinal cortex volume (P < 0.0001)
based on the Wilcoxon rank-sum test. Conversely, in the severe
neurodegeneration, the predicted values of ADAS13 by the non-
linear model using FDG were significantly larger than that using
the entorhinal cortex volume (P < 0.0001). Nevertheless, the
predicted values of ADAS13 by the non-linear model using
the hippocampus volume were significantly smaller than that
using FDG and the entorhinal cortex in both mild and severe
neurodegenerations. It is noteworthy that we performed the
non-parametric Wilcoxon rank-sum test instead of a t-test here
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FIGURE 7 | Comparing the unimodal and bi-modal predictors of the target neuropsychological scores. Combination of sMRI and PET features cortex in three
groups of subjects (i.e., HC, MCI-NC, and AD) were used as input features of an ANN to predict (A) ADAS13 and (B) CDRSB from normal aging to AD. Linear
regressions for the predicted vs. observed values of ADAS13 and CDRSB are shown. R-squares of the linear regressions are listed in Table 2.

FIGURE 8 | Predicting ADAS13 in converting and stable stages of AD by
combination of the best bimodal biomarkers. The average FDG of the angular
gyrus, temporal gyrus, and posterior cingulate and volume of the entorhinal
cortex were used as input features of an ANN to predict ADAS13 and CDRSB
in three stages from MCI to AD (i.e., MCI-NC, MCI-C, and AD). The ANN
model was trained using the training-set of date in MCI-NC and AD groups.
The trained model was then tested using the test-set data in the three groups
(i.e., MCI-NC, MCI-C, and AD). Linear regressions for the predicted vs.
observed value of ADAS13 are shown. The R-square of the linear regression
model for the MCI-NC and AD [training-set] was 0.75. The R-squares of the
linear regression models for the MCI-NC, MCI-C, and AD [test-set] were 0.43,
0.38, and 0.54, respectively.

since the distributions of the three neuroimaging measures were
significantly departed from normality (P < 0.0035) based on the
Shapiro–Wilk test.

Our results indicate that the volume of the entorhinal cortex
may be a better biomarker for identification of the early stage
of AD compared to the FDG-PET. However, in the severe stage

of neurodegeneration, the predicted value of ADAS13 based on
the FDG-PET is larger than that based on the volume of the
entorhinal cortex, which indicates that the former neuroimaging
may be a better biomarker in the identification of late stage AD.

DISCUSSION

We utilized the ANN to investigate the association between the
sMRI and PET biomarkers with two target neuropsychological
scores (i.e., ADAS13 and CDRSB) from normal aging to AD.
Using data in 951 subjects (341 HC, 393 MCI-NC, and 217
AD), our results revealed that the RAVLT Immediate, among
five different neuropsychological tests (e.g., MMSE), provided the
best prediction for the progression trend of ADAS13. Compared
to other neuropsychological tests, however, the ADAS13 was
the best predictor for the CDRSB score. Two remarks can be
inferred from Figure 4 by exploring the association between
ADAS13/CDRSB and other neuropsychological scores. First, the
RAVLT Immediate was the best predictor for ADAS13 and the
ADAS13 was the best predictor for the CDRSB. In addition,
we observed a strong association between ADAS13, CDRSB,
RAVLT Immediate, and MMSE. Second, the RAVLT Forgetting
score is not correlated with ADAS13 or CDRSB scores, and,
thus, the former score may provide independent information
about the cognitive declines in AD compared to the latter
scores. These observations indicate that the RAVLT tests should
be integrated with other tests to assess different domains of
cognitive declines in AD (Tosi et al., 2020). Previous studies
reported that the RAVLT test can assist in identifying patients
with subjective memory complaints who progress to AD, and
this test can be used to differentiate MCI from normal aging
(Estévez-González et al., 2003).

We found an association between neuroimaging (sMRI and
PET) biomarkers and the target cognitive scores (i.e., ADAS13
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FIGURE 9 | Box plot for values of (A) volume of the entorhinal cortex, (B) volume of the hippocampus, and (C) average FDG of the angular gyrus, temporal gyrus,
and posterior cingulate in four groups (HC, MCI-NC, MCI-C, and AD).

and CDRSB) across a wide range of cognitive declines from
normal aging to AD (Table 2). Uni-modal prediction of the
target scores based on six sMRI features provided a competitive
performance, but the entorhinal volume (followed by the
hippocampus volume) outperformed other features (Figure 5).
For PET features, results in Figure 6 show that the FDG
outperformed AV45 for association with ADAS13 and CDRSB
in three groups of subjects (i.e., HC, MCI, and AD). Our
results for association of cognitive declines in AD (measured
by the ADAS13 and CDRSB scores) with the volumes of the
entorhinal cortex and hippocampus (extracted from sMRI) and
the average FDG of the angular gyrus, temporal gyrus, and
posterior cingulate are in line with previous studies (Wang
et al., 2018; Prosser et al., 2020). The hippocampus is the core
of the neural memory system and the entorhinal cortex is
the hub for the widespread network for memory, navigation,
and perception of time (O’Keefe, 1976; Eichenbaum et al.,
2007). Atrophy of the hippocampus and entorhinal cortex have
been highly associated with AD progression (Jessen et al., 2006;

Devanand et al., 2007, 2012; Stoub et al., 2010). FDG-PET is
also a well-known technique to identify the brain glucose
metabolism which is mainly determined by synaptic activity in
the brain. Previous studies reported capability of the FDG-PET
in identification of neurocognitive declines in AD (Liu et al.,
2018; Ding et al., 2019). It has been reported that AD patients
have significantly reduced glucose metabolism in the angular
gyrus, temporal gyrus, and posterior cingulate (Hunt et al., 2007).
These areas are involved in memory deficit in the early stages of
AD. A severe hypometabolic pattern has been associated with
awareness of memory deficit (Nobili et al., 2010). It is well
known that the posterior cingulate cortex and entorhinal cortex
are involved in memory retrieval and self-referential processes
(Izquierdo et al., 1997; Maddock et al., 2001), and a strong
relationship between atrophy in these cortices with cognitive
declines in AD has been reported (Mosconi et al., 2004; Hirao
et al., 2006).

By comparing performances of the unimodal neuroimaging
features for prediction of the target scores (i.e., ADAS13 and
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FIGURE 10 | Finding the progression trend of ADAS13 score based on biological biomarkers from HC to AD. (A) The non-linear relationship between ADAS13 score
and volumes of entorhinal cortex and hippocampus and the average FDG of the angular gyrus, temporal gyrus, and posterior cingulate. The values of the
neuroimaging biomarkers (the x-axis in the figure) were normalized from 0 to 1 to represent the neurodegeneration trend from healthy aging to severe AD,
respectively. (B) Values of the ADAS13 in mild neurodegeneration where the normalized values of the neuroimaging measures (i.e., FDG-PET and volumes of
hippocampus and entorhinal cortex) were between 0.2 and 0.3. (C) Values of the ADAS13 in severe neurodegeneration where the normalized values of the
neuroimaging measures were between 0.7 and 0.8.

CDRSB), we found that the FDG-PET outperformed the six
sMRI features, including the volumes of the entorhinal cortex
and hippocampus. Furthermore, the bimodal prediction results
(Table 2 and Figure 6) show that integrating two modalities
(i.e., sMRI and PET) outperformed the unimodal approach.
A previous study compared performance of FDG-PET and
voxel-based morphometry (VBM) on MRI for classification of
mild AD in unimodal and bimodal approaches (Kawachi et al.,
2006). Results of this study revealed that the combination of
two modalities provided a higher diagnostic accuracy (94%)
compared to the unimodal approach based on FDG-PET (89%)
or VBM-MRI (83%). Results of this study are in line with our
findings showing superior performance of the bimodal approach
compared to a unimodal approach. However, it is noteworthy
that no study, to our knowledge, has yet investigated integrating

PET and sMRI for predicting the ADAS13 and CDRSB across
a wide range of cognitive decline from normal aging to severe
AD. Previous studies investigated the relationship between the
neuropsychological assessments and neuroimaging biomarkers
(Godbolt et al., 2005; Musicco et al., 2009; Ito et al., 2011), and
most of them utilized a single modality (typically sMRI) approach
for this investigation (Frisoni et al., 2002, 2010; Apostolova et al.,
2006). The structural-based biomarkers, such as gray matter
volume and cortical thickness, have been utilized to find the
association between neuropsychological scores and brain atrophy
in AD (Frisoni et al., 2002; Zhou et al., 2013).

Our results in Figure 8 confirmed that integration of
the entorhinal volume with the average FDG of the angular
gyrus, temporal gyrus, and posterior cingulate was capable of
predicting ADAS13 in the MCI-C, MCI-NC, and AD groups.
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Interestingly, the predicted trends of the ADAS13 score in the
three groups show that the MCI-C group is an intermediate
stage between MCI-NC and AD groups (Borroni et al., 2006).
Another observation in Figure 8 for MCI-C subjects is that
the ANN algorithm predicted a larger value for the ADAS13
score than its real value. This observation indicates that the
neuroimaging biomarkers may be more sensitive in identification
of the early stage of AD as the predicted value of ADAS13 by
these biomarkers is larger than its real value in MCI-C patients.
It has been reported that there is a long asymptomatic period
(up to two decades) between the onset of brain changes and
reaching an endpoint with the earliest development of clinical
symptoms of AD (Mesulam, 1999; Perry and Hodges, 1999). In
fact, many patients reach their end of life without developing
fully characterized AD (Sperling et al., 2011). Therefore, current
diagnostic criteria for AD depends significantly on the imaging
biomarkers of the AD pathologies (DeKosky and Marek, 2003;
Johnson et al., 2012; Bonifacio and Zamboni, 2016; Jagust, 2018)
as the biological processes underlying AD may occur while the
patient’s cognitive scores are still in MCI stage.

We investigated a relationship between the brain structural
and functional neurodegeneration and the ADAS13 score from
normal aging to severe AD (Figure 10). The curves related to
the atrophy of the hippocampus and entorhinal cortex showed
a plateau at the severe stage of AD (i.e., x > 0.75 in Figure 10)
while the FDG-PET curve did not show this plateau. This
observation indicates that the volumes of the entorhinal cortex
and hippocampus have less sensitivity than the FDG-PET to
model progression of AD in the severe stage of this disease. By
comparing the structural atrophy in healthy aging subjects and
patients with a very MCI, we found that the average volumes
of hippocampus and entorhinal cortex across MCI-NC patients
were 6.1 and 3.7%, respectively, smaller than that across HC
subjects (Figure 9). These results are in agreement with previous
studies that age-related atrophy in the medial temporal lobes
occurs with larger hippocampal decline than the entorhinal
cortex (Raz et al., 2004; Rodrigue and Raz, 2004). We also found
that the average ADAS13 in MCI-NC patients corresponded
with a larger atrophy in the hippocampus compared to the
entorhinal cortex (57.32% vs. 46.73%, Figure 10). Considering
that the ADAS score measures the severity of cognitive and non-
cognitive dysfunction from mild to severe AD (Rosen et al., 1984),
our results support a more important role of the hippocampus
in this dysfunction compared to that of the entorhinal cortex.
Specific to memory decline, Jessen et al. (2006) reported that
the significantly affected entorhinal cortex causes slight memory
dysfunction at the earliest clinically detectable stage of AD when
patients experience worsening memory and the hippocampus
is significantly affected with disease progression. Our results
revealed that the volumes of hippocampus and entorhinal cortex
reduced approximately 25% from a mild to severe stages of AD
by comparing the average volumes of these structures in MCI-
C and AD patients (Figure 9). Referring to the large atrophy of
these structures in the mild to severe stages of AD, these two
biomarkers showed a plateau for modeling ADAS13 in these
stages in Figure 10. Based on the estimated ADAS13 curves
corresponding to the volumes of hippocampus and entorhinal

cortex, it can be inferred that these structural biomarkers had
a good sensitivity in identification of the early stage of AD and
they may not be sensitive for identification of the severe stage of
AD. This observation is consistent with a general understanding
of AD progression and the different stages of progression of
dementia (Kung et al., 2021).

Our results revealed an association between FDG-PET and
ADAS13/CDRSB. This observation shows that the glucose
metabolism can measure alteration of cognition and functional
ability in patients with MCI and AD. We also found that FDG-
PET can track the AD progression and has a potential to be used
as a clinically helpful measure of cognitive decline, particularly
in MCI and AD patients. Previous studies reported that a lower
FDG-PET at baseline has an association with greater longitudinal
cognitive decline in AD (Alexander et al., 2002; Ottoy et al.,
2019) and FDG-PET at a pre-dementia stage (MCI) has higher
sensitivity to subsequent decline than neuropsychological tests
(Chételat et al., 2005).

In this study, we used ANNs for quantitative analysis of the
AD progression. This analysis can be used as a guide to help
in the evaluation of different AD study designs, as well as to
understand the complex relationship between various factors
such as neuropsychological scores and imaging data. Establishing
the relationships between neuropsychological scores and imaging
data can help identify potential surrogates of clinical outcome and
may guide to design future clinical trials.
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