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INTRODUCTION

Low birthweight in livestock results from 
stress-induced intrauterine growth restriction 
(IUGR; Yates et al., 2018). IUGR fetuses exhibit 
diminished muscle growth that persists in the neo-
natal stage, leading to asymmetric body compos-
ition and decreased weight gain (Cadaret et al., 
2019). Ultimately, low birthweight diminishes 
yield and carcass merit at harvest (Greenwood 
et al., 2000), making effective postnatal treatment 
strategies to improve IUGR growth outcomes ne-
cessary. In this study, we examined the benefits 
of  injecting the β2 agonist clenbuterol daily to 
target adrenergic adaptations that we previously 
observed in IUGR muscle (Posont et  al., 2018; 
Yates et al., 2018). We hypothesized that IUGR-
induced growth deficits would persist at the 
juvenile stage, manifesting in inferior body com-
position and carcass traits. We also postulated 
that clenbuterol would at least partially recover 
growth and body symmetry. Our objective was 
to test this hypothesis by assessing growth met-
rics and body composition in IUGR-born lambs 
hand-reared to 60 d of  age and supplemented 
daily with injectable clenbuterol.

MATERIALS AND METHODS

These studies were approved by the 
Institutional Animal Care and Use Committee 
at the University of  Nebraska–Lincoln, which 
is accredited by AAALAC International. 
Placental insufficiency-induced IUGR lambs 
were produced from Polypay ewes as previously 
described (Cadaret et al., 2019). Briefly, timed-
mated ewes were housed at 40 °C, 35% humidity 
from the 40th to 95th days of  gestational age, 
then returned to 25 °C alongside their pair-fed 
controls until lambing. Lambs were weaned 
at 12  h of  age, raised on milk replacer (Land 
O’Lakes) for the first 30 d, and transitioned to 
an ad libitum grain diet by 45 d of  age. At birth, 
IUGR lambs were randomly assigned to receive 
clenbuterol (0.08 μg/kg in 1 mL saline; VetOne; 
n = 4) or saline only (n = 6). All control lambs 
(n = 7) received saline only. Bodyweights (BW), 
crown circumference, front cannon bone length, 
body girth, and crown-rump length were meas-
ured at birth, 30 d, and 60 d. Lambs were euth-
anized at 60 d of  age and internal organs and 
flexor digitorum superficialis (FDS) muscles 
were weighed. Lamb carcasses were chilled for 
24 h, and loin-eye area was measured between 
the 12th and 13th ribs. Bioelectrical impedance 
analysis was performed in live lambs at 30 and 
60 d and on the loin muscle at necropsy as pre-
viously described (Gibbs et al., 2019). Briefly, a 
Quantum V (RJL Systems) was used to meas-
ure reactance, resistance, and phase angle from 
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two sets of  equally spaced electrodes connected 
to aluminum 20G MONOJECT needles placed 
subcutaneous (SQ) in live animals and intra-
muscular (IM) in the loin. Outer electrodes were 
2.5 cm behind the point of  the scapula and 5 cm 
in front of  the hip bone, 1  cm off  the midline. 
Inner electrodes were 2.5 cm inside of  these. Six 
30-s measurements were averaged. Proximate 
analysis was performed on the contralateral loin 
muscle (Midwest Labs). Data were analyzed by 
ANOVA using the mixed procedure of  SAS. For 
growth metrics, day was treated as a repeated 
measure. Lamb was considered the experimental 
unit, and significant differences were declared at 
α ≤ 0.05 and tendencies at α ≤ 0.10.

RESULTS

Birthweights of IUGR lambs were 22% lighter 
(P  <  0.05) than controls. Thirty-day and 60-d 
BW and average daily gains were less (P  <  0.05) 
in unsupplemented IUGR lambs, but not in clen-
buterol-supplemented lambs compared with con-
trols. For all lambs, average daily gain from birth 
to 30 d tended to be greater (P = 0.10) than average 
daily gain from 30 to 60 d. Cranial crown circum-
ference, body girth, crown/girth, and cannon bone 
length did not differ among groups. Crown-rump 
length was less (P ≤ 0.05) in unsupplemented IUGR 
lambs, but not in clenbuterol-supplemented IUGR 
lambs compared with controls (Figures 1 and 2).

At necropsy, hindlimbs and FDS muscles tended 
to be lighter (P ≤ 0.09) in unsupplemented IUGR 
lambs, but not in clenbuterol-supplemented IUGR 
lambs compared with controls. Hindlimb/BW 
and FDS/BW did not differ among groups. Heart 
weights tended to be lighter (P = 0.09) in unsup-
plemented and clenbuterol-supplemented IUGR 
lambs compared with controls, but heart/BW did 
not differ among groups. Lung weights and lung/
BW were less (P ≤ 0.05) in unsupplemented IUGR 
lambs, but not in clenbuterol-supplemented IUGR 
lambs than in controls. Kidney weights were lighter 
(P ≤ 0.05) in unsupplemented IUGR lambs than 
controls, and were lighter (P ≤ 0.05) in clenbuter-
ol-supplemented IUGR lambs than in unsupple-
mented lambs or controls. Brain and liver weights 
were not different among groups, but brain/BW 
tended to be greater (P = 0.07) for unsupplemented 
and clenbuterol-supplemented IUGR lambs than 
for control lambs. Loin-eye areas were smaller (P ≤ 
0.05) in unsupplemented IUGR lambs but larger (P 
≤ 0.05) in clenbuterol-supplemented IUGR lambs 
than controls.

At 60 d of age, fat-free lean mass was indicated 
by one of three equations to be lower (P ≤ 0.05) in 
unsupplemented IUGR lambs, but not in clenbuter-
ol-supplemented IUGR lambs compared with con-
trols (Table 1). Fat-free soft tissue mass did not differ. 
The estimated sum of the leg, sirloin, rack, shoul-
der, neck, riblets, shank, and lean trim mass (SUM); 
the sum of the leg, sirloin, loin, rack, and shoulder 
mass (LSRLS); and the sum of the leg, sirloin, and 

Figure 1. Growth metrics of birthweight (A), average daily gain (B), 
crown to girth ratios (C), and body length (D) in intrauterine growth 
restriction (IUGR)-born juvenile lambs supplemented daily with in-
jectable clenbuterol. a,bMeans with different superscripts differ (P ≤ 
0.05). x,yMeans with different superscripts tend to differ (P ≤ 0.10).



Translate basic science to industry innovation

S55Competition: IUGR growth and body composition

loin mass (LSL) were all less (P ≤ 0.05) in unsup-
plemented IUGR lambs, but not in clenbuterol-sup-
plemented IUGR lambs than in controls. Nutrient 
composition estimations indicated no difference in 
moisture, lean mass, or protein content but less (P ≤ 
0.05) fat content for unsupplemented IUGR lambs, 
but not in clenbuterol-supplemented IUGR lambs 
than for controls. Estimated crude fat content was 
indicated by one of three equations to be reduced 

(P ≤ 0.05) in unsupplemented IUGR lambs, but not 
in clenbuterol-supplemented IUGR lambs com-
pared with control. In the carcass, estimated fat-free 
lean mass, fat-free soft tissue mass, SUM, LSLRS, 
LSL, protein, fat, and protein/fat were reduced (P ≤ 
0.05) in unsupplemented IUGR lambs, but not in 
clenbuterol-supplemented IUGR lambs compared 
with controls. Proximate analysis of the loin muscle 
showed no differences in moisture, ash, or carbo-
hydrate content, but loin fat content was increased 
(P ≤ 0.05) and protein content and protein/fat were 
reduced (P ≤ 0.05) in unsupplemented IUGR lambs 
compared with controls. In clenbuterol-supple-
mented IUGR lambs, loin fat content and protein/
fat did not differ from controls but loin protein con-
tent was greater (P ≤ 0.05) than in controls.

DISCUSSION

In this study, we found that poor growth and 
body composition previously observed in fetal and 
neonatal IUGR lambs (Yates et al., 2016; Cadaret 
et  al., 2019; Posont et  al., 2019) persisted in juve-
nile-aged IUGR lambs. However, daily treatment 
with injectable clenbuterol for 2 mo improved post-
natal growth and body composition in IUGR lambs. 
Morphometrics and lean tissue indicators in juvenile 
IUGR lambs reflected asymmetrical growth pat-
terns that were compounded by deficits in feed effi-
ciency, weight gain, and most of all muscling. This 
shows that adipose-driven catch-up growth expected 
in low-birthweight offspring (Yates et al., 2018) had 
not fully occurred in our IUGR lambs over this 
timeframe. Additionally, reduced gain for all lambs 
in the second month compared with the first month 
indicates decreasing capacity for growth over time. 
For IUGR offspring, this mean less opportunity to 
recover growth deficits. The impact of IUGR on 
muscle growth was particularly evident postmortem 
and shows the persistent effect of nutrient-repar-
titioning fetal adaptions. Loin-eye area and esti-
mated lean mass were diminished in IUGR lambs, 
presumably the product of reduced fetal myoblast 
function (Yates et  al., 2014) and impaired protein 
anabolism (Soto et al., 2017) that was not reconciled 
at the juvenile stage. Persistent poor muscle growth 
at this stage explains reduced yield and carcass 
merit previously observed at harvest (Greenwood 
et al., 2000). Although IUGR-born juvenile lambs 
had less total fat mass, the percentage of their loin 
muscle and soft tissue that was comprised of fat was 
increased. Moreover, estimated and actual protein-
to-fat ratios were reduced in IUGR lambs even at 
this age, which perhaps reflects the beginning of the 

Figure 2. Muscle growth and composition metrics of BIA esti-
mated fat to protein ratio (A), loin eye area (B), protein and fat content 
(C), and actual fat to protein ratio in intrauterine growth restriction 
(IUGR)-born juvenile lambs supplemented daily with injectable clen-
buterol. a,b,cMeans with different superscripts differ (P ≤ 0.05).
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adipose-driven pattern of postnatal catch-up growth 
that arises from the reduced capacity for muscle 
growth (Cianfarani et al., 1999). Nevertheless, post-
natal supplementation of clenbuterol recovered 
indicators of muscle-centric growth, thus improving 
a hallmark pathology of IUGR. This was perhaps 
unsurprising, as it reflects the β2 agonist’s ability to 
enhance muscle growth (Johnson et al., 2014). We 
conclude that the impact of IUGR on growth, par-
ticularly in muscle, extends beyond early life and 
continues in juvenile-aged offspring. However, daily 
treatment with clenbuterol demonstrated a potential 
avenue to recover muscle growth and weight gain in 
IUGR-induced low-birthweight livestock.

IMPLICATIONS

Lambs born with low birthweight due to IUGR 
continued to exhibit diminished muscling, feed 
efficiency, and carcass merit as juveniles, which 
confirms that IUGR pathologies persist beyond 
early life. It also demonstrates the importance of 
developing preventative and therapeutic strate-
gies to improve muscle growth and metabolic effi-
ciency in low birthweight livestock. Our findings 
in clenbuterol-treated lambs demonstrates that 

postnatal pharmaceutical supplements may be a 
valid approach to improving diminished growth 
and body composition in IUGR offspring and thus 
warrant continued research.
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