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Abstract: The electrophysiological signatures of the myocardium in cardiac structures, such as the
atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during
development by the spatial and temporal expression of transcription factors that guide expression of
specific ion channels. Genome-wide association studies have shown that small variations in genetic
regions are key to the expression of these transcription factors and thereby modulate the electrical
function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies
such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventric-
ular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological
structures in the heart and their involvement in cardiac arrhythmias.
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1. Introduction

Components of the heart with distinct electrophysiological signatures ensure con-
trolled electrical impulse formation and propagation, and coordinated ventricular activa-
tion generating sufficient cardiac output required to maintain body homeostasis. During
cardiac arrhythmias, cardiac output decreases, which may cause syncope or sudden cardiac
death in case of fast heart rate. The origin of a significant part of these cardiac arrhythmias
can be traced to congenital or acquired changes in behavior of the electrophysiological
components in the heart. The combination of morphology and ion channel make-up
can provide different regions of the myocardium, such as the atrioventricular node, the
myocardial sleeve of the pulmonary veins or the right ventricular outflow tract (RVOT),
with electrophysiological signatures that distinguish them from the working myocardium.
During development, cardiogenic transcription factors guide the processes that shape
these components and determine the ion channels expressed within [1,2]. Variations in
regulatory genetic regions or mutations in genes encoding these transcription factors may
alter their expression levels and predispose them to or even cause cardiac arrhythmias
originating in these areas [3–7]. Here, we discuss the role of these transcription factors in
atrioventricular node function, arrhythmias based on the presence of accessory pathways
and arrhythmias originating in the RVOT or pulmonary veins.

2. General Cardiac Development

The heart forms from a pool of cardiac precursor cells located in a crescent-shaped
field of splanchnic mesoderm in the developing embryo. This heart field can be divided
into progenitor cells that are located lateral in the embryo and differentiate early into
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myocardium (referred to as the first heart field) [8], and cells that are located medially and
caudally and differentiate later during cardiac development (referred to as the second heart
field). The mesenchyme of the first heart field fuses at the midline forming a tube. This
early heart tube is composed of primary (embryonic) myocardium and has a venous pole,
an atrioventricular canal, a left ventricle and an arterial pole interconnected at the dorsal
side by the dorsal mesocardium. At this stage, a large part of the inflow tract, outflow
tract and cardiac chambers still need to develop. The cardiomyocytes of the heart tube
have a primary (immature) phenotype characterized by an underdeveloped sarcoplasmatic
reticulum, weaker contraction and slower conduction compared to cardiomyocytes of
the adult heart [9,10]. The slow conduction in the primary myocardium gives rise to a
sinusoidal electrocardiogram (Figure 1) [11] and a peristaltic contraction pattern.
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Further in development, the conduction in the atrioventricular canal retains its slow 
conducting properties, whereas the conduction velocity in the working myocardium in-
creases (Figure 2) [10]. This gradually results in an adult-like electrocardiogram in which 
the initial base to apex activation will transform into apex to base activation with an atri-
oventricular delay, although at this stage a fibrous annulus fibrosis has not formed yet 
[11]. The left ventricle will be formed first from progenitor cells, followed by the right 
ventricle, and finally the definitive OFT. The progenitor cells of these three compartments 
have a different developmental history and have been exposed to different signals and 
gene programs prior to their differentiation [12]. The OFT myocardium is initially situated 
entirely to the right ventricle, whereas the atrioventricular canal is initially situated en-
tirely above the left ventricle. The OFT myocardium will retain its primary myocardial 
phenotype and can be distinguished from the growing (ballooning) ventricles by its ex-
pression patterns of transcription factors [13]. It is likely that differences in the phenotype 
and epigenetic state of the mature right and left ventricles and OFT have their origin in 
these developmental processes. Mice and other small mammals are often used as models 

Figure 1. The electrocardiogram of the developing heart. The photographs are scanning electron microscope images of the
developing chicken heart of the following stages: from left to right, Hamburger/Hamilton state 11, 14 and 18 correspond
to 3, 4 and 5 weeks of human development, respectively. The electrocardiograms are recorded from different chickens of
similar developmental stages to the corresponding photographs. These figures are courtesy of S. Virágh and G. Steding. Ap,
arterial pole; vp, venous pole; V, ventricle; oft, outflow tract; avc, atrioventricular canal; A, atrium.

Further in development, the conduction in the atrioventricular canal retains its slow
conducting properties, whereas the conduction velocity in the working myocardium in-
creases (Figure 2) [10]. This gradually results in an adult-like electrocardiogram in which
the initial base to apex activation will transform into apex to base activation with an atri-
oventricular delay, although at this stage a fibrous annulus fibrosis has not formed yet [11].
The left ventricle will be formed first from progenitor cells, followed by the right ventricle,
and finally the definitive OFT. The progenitor cells of these three compartments have a
different developmental history and have been exposed to different signals and gene pro-
grams prior to their differentiation [12]. The OFT myocardium is initially situated entirely
to the right ventricle, whereas the atrioventricular canal is initially situated entirely above
the left ventricle. The OFT myocardium will retain its primary myocardial phenotype and
can be distinguished from the growing (ballooning) ventricles by its expression patterns of
transcription factors [13]. It is likely that differences in the phenotype and epigenetic state
of the mature right and left ventricles and OFT have their origin in these developmental
processes. Mice and other small mammals are often used as models to study human cardiac
diseases. It is therefore important to comprehend the similarities and differences in cardiac
development and electrophysiology between mice and humans [13–15].
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Figure 2. Phenotypes of the embryonic and adult heart (A). The embryonic myocytes in the early heart tube possess a
phenotype typical for the conduction system with a high automaticity and a low conduction velocity, contractility, and
sarcoplasmic reticulum activity. (B). The chambers balloon out from the initial heart tube and immediately initiate a fast
conducting working myocardial phenotype. The myocardium at the venous pole, and the region interposed between the
developing chambers, the atrioventricular canal, initially retains the conduction system phenotype and will form the cardiac
conduction system. ra, right atria; la, left atria; oft, outflow tract; rv, right ventricle; lv, left ventricle.

3. Development of the Pulmonary Vein Myocardium and Atrial Arrhythmias
3.1. Development of the Pulmonary Vein Myocardium

The pulmonary vein myocardium forms around E11.5 in mice (week 5 in human)
from mesenchyme surrounding the dorsal atrial wall. This mesenchyme expresses the
transcription factor Nkx2-5 and develops in close proximity to the caval vein myocardium
that encompasses the developing sino-atrial node and does not express factor Nkx2-5 [16–18].
After initial differentiation, the newly formed myocardium proliferates and forms the
myocardial sleeves surrounding the pulmonary veins. This proliferation step depends
on the expression of the transcription factor Pitx2c [19]. Moreover, the myocardialization
process may depend on the connection of the pulmonary veins to the left atrium. This
is suggested by the absence of myocardial sleeves surrounding the pulmonary veins in
patients with congenital heart disease in which the pulmonary veins fail to drain into the
left atrium [20].

In mice, as well as in humans around 8 weeks of development, the pulmonary veins
drain in the common atrium through a solitary vessel. Lineage studies in mice suggest that
pulmonary vein myocardium does not contribute to the formation of the atrial myocardium.
In humans, however, this may be different as the walls of the initial solitary vessel will
become incorporated into the left atrium around 15 weeks of development, resulting in
up to four separate pulmonary venous orifices draining into the left atrium [21]. The total
number of orifices may vary depending on the extent of incorporation. This suggests
that the atrial myocardium in between the orifices of the pulmonary veins is composed
of a mixture of vascular wall and myocardium that during development enclosed the
pulmonary veins (pink area in Figure 3), providing it with a distinct developmental history
compared to the remainder of the atria [22]. Nevertheless, the pulmonary vein and atrial
myocardium both express the working myocardial gene program, indicated by absence of,
e.g., Hcn4 and presence of Cx40 [23]. Action potential duration, however, is shorter and
the upstroke velocity is lower in pulmonary vein compared to atrial myocytes [24]. The
latter is not caused by reduced sodium current (INa) but is the result of more depolarized
resting membrane potential due to reduced expression of inward rectifier channels [25].
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3.2. Pulmonary Vein Myocardium and Arrhythmias

Atrial fibrillation (AF) is the most prevalent arrhythmia in adults and is related to a
high risk of stroke [26]. The pulmonary vein myocardium is often the origin of arrhyth-
mia in AF patients [27]. Both structural and electrical remodeling are thought to play an
important role in the development of AF [28,29]. In addition, several transcription factors
determining pulmonary vein fate during development have been implicated in susceptibil-
ity to AF, and some reports suggest the presence of nodal-like cells in the myocardial sleeve
of the pulmonary veins [30,31]. Mutations in NKX2-5 are found in a subset of patients
with atrial fibrillation, together with several mutations in genes encoding for potassium
channels [32,33]. In Nkx2-5 haploinsufficient mice, expression of Hcn4 is increased whereas
that of Gja5 (Cx40) is decreased in the pulmonary vein myocardium compared to their
wild-type littermates. The ectopic activity seen in AF patients could be the result of the
altered critical balance between phase 4 depolarization of the action potential (controlled by
HCN4) and coupling between cells (modulated by Cx40) [27]. Similarly, PITX2C is an AF
susceptibility locus [34]. The expression of PITX2C is decreased in patients with sustained
AF when compared to healthy individuals, and mice haploinsufficient for Pitx2c show
increased expression of ion channels linked to AF [35,36]. Furthermore, we have recently
shown that Pitx2c modulates atrial electrophysiology through a T-box factor 5 (Tbx5)-
dependent gene regulatory network involving Scn5a, Gja1, Ryr2, Dsp, and Atp2a2 [37].
Abnormal calcium homeostasis also caused atrial arrhythmias in mice with reduced ex-
pression of Prrx1, a transcription factor that is related to AF in human [38,39]. Unravelling
the role of loci (of transcription factors) provided by genome-wide association studies in
altering the molecular make-up of atrial and pulmonary vein myocardium will contribute
to the understanding of initiation and maintenance of AF and may foster future patient
risk stratification.
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4. Development of Atrioventricular Canal and Accessory Pathways Formation
4.1. Development of the Atrioventricular Canal

Slow conduction in the atrioventricular canal results from the absence of Gja5 (Cx40)
and Gja1 (Cx43), which form gap junctions with high conductance, and the absence of
Scn5a (NaV1.5, voltage gated sodium channel type V) [41]. In addition, Gjd3 (Cx30.2 in
mice; Cx31.9 in humans) is expressed in the atrioventricular canal and forms gap junctions
with low conductance leading to slow conduction [41,42]. The expression of Gjd3 (Cx30.2)
in the atrioventricular canal is regulated by transcription factors Gata4 and Tbx5 [43]. The
expression of Gja5 (Cx40), Gja1 (Cx43) and Scn5a in the atrioventricular canal is repressed
by Tbx2 and Tbx3, which in turn are regulated by Wnt-, bone morphogenetic protein (Bmp)
2- and Notch signalling [9,44–47]. Not surprisingly, genome-wide association studies have
linked genetic variations in (non)coding regions of these genes to QRS duration and PR
interval in healthy individuals [48–50].

During early development, there is myocardial continuity between the atria and
ventricles via the atrioventricular canal myocardium. Correct patterning of the atrioven-
tricular canal is essential for initiating the formation of the annulus fibrosis, which will
electrically insulate the atria and ventricles in the adult heart [41]. The annulus fibrosis
will form from mesenchyme derived from the epicardium [51,52]. Most of the embryonic
atrioventricular canal myocardium differentiates to ventricular working myocardium,
whereas a small part forms the atrioventricular node and ring bundles [53–55]. Nkx2-5,
Tbx5 and Notch-signaling are part of the transcriptional network underlying formation
of the atrioventricular node [17,56–58]. The atrioventricular junction in the adult heart
can be identified based on the expression of Tbx3, Hcn4, Gjc1 (Cx45) and Gjd3 (Cx30.2) in
mice, and the absence of atrial natriuretic peptide (Nppa), Gja5 (Cx40) and Gja1 (Cx43) [9].
Working myocardial gene expression in the atrioventricular junction (e.g., Scn5a) tapers
off towards the compact atrioventricular node, whereas the nodal genes (Hcn4, Cacna1g)
show the complementary pattern (Figure 4A) [53,59]. This differential gene expression
profile in the atrioventricular junction relates to the transitional cells, which have been
found to be of crucial importance for impulse conduction [60]. It has been reported that
Gja1 (Cx43) and Gja5 (Cx40) are expressed in the lower part of the compact atrioventricular
node (lower nodal cells) [61]. However, based on their origin and gene expression pattern
we rather consider these myocytes part of the atrioventricular bundle [53]. In mice, the
atrial myocardium is directly connected to the compact atrioventricular node and part
of the right atrioventricular ring bundle, which are often referred to as the inferior nodal
extension and transitional zone, thereby creating the basis for what in humans is commonly
referred to as the fast and slow atrioventricular nodal pathway [53]. Based on expression
patterns of Islet1, cardiac troponinI and Hcn4 in chick embryos, it has also been postulated
that the myocardium of the sinus venosus contributes to nodal extensions or transitional
cells of the atrioventricular node [62].

4.2. Mispatterning of the Atrioventricular Canal and Arrhythmias
4.2.1. Atrioventricular Conduction Disorders

A high-degree of atrioventricular conduction block is life-threatening and is a major
indication for pacemaker implantation [63]. Atrioventricular block may result from various
causes, including increased collagen deposition within the compact atrioventricular node
during ageing, a diseased His-Purkinje system or prominent vagal activity [15,64,65]. Mu-
tations in NKX2-5 and TBX5 are also found in a subset of patients suffering from impaired
atrioventricular conduction [33]. Moreover, genome-wide association studies have impli-
cated several loci in atrioventricular conduction, including TBX3/TBX5, NKX2-5, SOX5,
WNT11, SCN10A, SCN5A, CAV1-CAV2, and MEIS1 [48–50,66]. Recent evidence points to
an even finer regulation of transcription factors activity by regulatory elements in the DNA.
In turn, transcription factors regulate in a dose-dependent manner the expression of their
target genes [67,68]. For example, Tbx3 dosage controls downstream atrioventricular canal
expression of calcium channel CACNA1G, thereby impacting on PR and QRS durations [69].
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Thus, transcriptional regulators important for heart development play a major role in the
function of the atrioventricular conduction system. Variations and mutations in these
genes may impact on each component involved in PR interval (atria, atrioventricular node,
atrioventricular bundle, branches and Purkinje fibers), but the difficulty lies in identifying
which of these components has been affected.
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Figure 4. Atrioventricular junction and impulse propagation (A). Schematic representation of the
different components of the atrioventricular junction (Inspired by [53,70]). Note that lower nodal
cells share a common origin with the His bundle cells. (AV: atrioventricular) (B). In normal hearts,
the electric impulses initiated by pacemaker cells in the sinoatrial node propagate through the atrial
myocardium and trigger its contraction. At the atrioventricular node, the impulses are delayed
for a period to facilitate alternating contraction of the atrial and ventricular myocardium. After
the atrioventricular delay, the electrical impulses rapidly travel to the ventricular myocardium via
the His-Purkinje system and stimulate the ventricular myocardium. In Notch1-activated and Tbx2-
deficient hearts, accessory pathways are formed as a result of malformation of the atrioventricular
canal myocardium, commonly right-sided in Notch1-activated mice and left-sided in Tbx2-deficient
mice. Because of faster conduction through the accessory pathways than through the atrioventricular
node, the ventricular myocardium is prematurely stimulated (preexcitation). The ECG shows a short
PR interval, a slurred upstroke (“delta wave”) of the QRS complex and a widened QRS complex.

4.2.2. Re-Entry Tachycardias Involving the Atrioventricular Junction

Several types of arrhythmias involve atrioventricular conduction. In atrioventricular
nodal re-entrant tachycardia (AVNRT), the slow and the fast pathway within the atrioven-
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tricular junction and part of the transitional myocytes in the atrium form a re-entrant
circuit [60]. Which factors underlie the development of this type of arrhythmia is not
known, although some familial cases of AVNRT suggest a heritable component [71,72].
Atrioventricular re-entrant tachycardia (AVRT) results from an accessory myocardial con-
nection between the atrial and ventricular myocardium (Figure 4B). The myocardium of
the accessory connection can have a slow conducting nodal (Mahaim) or a fast conducting
working myocardial (Öhnell) phenotype [73]. An accessory connection can lead to ventric-
ular preexcitation and AVRT, as seen in patients with the Wolff-Parkinson-White (WPW)
syndrome [74,75]. In the presence of atrial fibrillation, preexcitation may cause ventricular
fibrillation and sudden death.

The mechanism underlying the development of accessories pathways with a nodal
phenotype is not fully understood. In the adult heart, the largest remnant of the em-
bryonic atrioventricular canal is the dorsal-caudal portion of the right atrioventricular
ring bundle. The right-caudal position and nodal properties of Mahaim bundles sug-
gest that they are remnants or ill-localized atrioventricular canal tissue, or are caused by
deficient remodeling of the RV inflow tract components during development [76]. Connec-
tions with a working myocardial phenotype may also be remnants of the atrioventricular
canal myocardium and result from abnormal patterning of the embryonic atrioventric-
ular canal [41,58]. Bmp2, Notch1 and Tbx2 (the latter being downstream of Bmp2) are
important for correct patterning of the atrioventricular canal myocardium. Inactivation
of Bmp-signaling or Tbx2, or activation of Notch-signaling in mice, causes ventricular
pre-excitation (Figure 4B) [41,58,77]. Indeed, deletions have been found in BMP2 and in
JAGGED1 (Notch ligand) in patients with WPW syndrome [3,4].

5. Developmental Basis for RVOT Arrhythmias
5.1. Development of the RVOT

During the fetal period, the muscular part of the embryonic OFT will be incorporated
into the right ventricular free wall and form the RVOT, whereas a small part will form the
connection between the left ventricle and the aorta and form the LVOT (Figure 5) [78,79].
Thus, the RVOT and the LVOT have a common origin, which may point to a common
mechanism underlying OFT arrhythmias. However, the inferior part of the embryonic OFT
gives rise to the subpulmonary myocardium (corresponding to RVOT) and the superior
part to the subaortic myocardium. These two parts show differential gene expression
(e.g., inferior part expresses Sema3C), and the subpulmonary myocardium is specifically
affected and possibly largely absent in Tbx1 mutant mice [80,81]. Therefore, the RVOT
and LVOT are not molecularly identical [82]. The RVOT and LVOT acquire the working
myocardial phenotype just before birth [83]. The myocardium just below the valves,
however, retains its primary phenotype similar to the atrioventricular ring myocardium
around the entrance of the left and right ventricle [83].

5.2. Predisposition of the RVOT for Arrhythmias

Arrhythmias originate predominantly in the RVOT in idiopathic outflow tract tachy-
cardia, Brugada syndrome. Arrhythmias in these cardiac pathologies usually do not occur
at young age but rather in adulthood, indicating that postnatal development and matu-
ration play an important role in disease development. The electrophysiological signature
of the RVOT, however, develops prenatally and is different from that of the left and right
ventricle [84]. The developmental history and phenotype of the RVOT are not intrinsically
arrhythmogenic but may predispose to arrhythmias in the setting of an active pathological
mechanism that progresses during life (Figure 5).

5.3. Brugada Syndrome

The Brugada syndrome is characterized by ST segment elevation in the right precor-
dial leads of the electrocardiogram, highly fractionated local electrograms in the RVOT
and ventricular arrhythmias [85–88]. The mechanism underlying these characteristics is
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debated, but evidence supporting conduction delay or block as a potential mechanism is
accumulating. In 20–30% of the Brugada syndrome patients, a loss of function mutation in
SCN5A has been found [86]. A reduction in INa itself, however, does not lead to the Brugada
characteristics [89]. In contrast, reducing the INa is used to discriminate between patients
who have the Brugada syndrome and patients who have not [86]. In patients with the
Brugada syndrome, subtle small structural discontinuities have been demonstrated in the
right ventricular wall and RVOT [90,91]. Experimental and clinical studies have shown that
conduction can be delayed in myocardium with small structural discontinuities or even be
blocked by a mechanism called current-to-load mismatch [92,93]. The conduction block is
a prerequisite for re-entry and may generate a substrate for re-entrant based arrhythmias
as seen in Brugada syndrome patients [90]. In addition, conduction delay or block can
cause ST segment elevation on the body surface ECG, which is a hallmark of the Brugada
syndrome [94,95].

Although a unifying mechanism explaining arrhythmias in Brugada syndrome pa-
tients has been proposed [95], it does not offer an explanation for the preferential location of
these arrhythmias in the RVOT. We surmise that genes of the ventricular working myocar-
dial gene program are less active in the RVOT, resulting in a reduced conduction reserve,
thereby facilitating current-to-load mismatch and subsequently arrhythmias [84,96–98].
Indeed, lower expression of CX43 protein has been found in the epicardial region of the
RVOT when compared to the right ventricle in patients with Brugada syndrome [99].
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Figure 5. Developmental basis for RVOT arrhythmias. The adult RVOT has formed from the embryonic outflow tract (left),
which is composed primary of myocardium exhibiting slow conduction and spontaneous activity. During development, the
embryonic outflow tract acquires a working myocardial phenotype, e.g., fast conduction, and transforms into the RVOT.
A small ring of primary myocardium, however, still remains just below the pulmonary valve, which may give rise to
automaticity as seen in patients with idiopathic RVOT tachycardia. The myocardium of the free wall and septum of the
adult RVOT has a working myocardial phenotype, although expression of Cx43 is lower than in the right ventricle. This
may set the stage for re-entrant-based arrhythmias as seen in patients with the Brugada syndrome. Modified from [100] LV,
left ventricle; RV, right ventricle; OFT, outflow tract; RVOT, right ventricular outflow tract; AO, aorta; PT, pulmonary trunk;
LVOT, left ventricular outflow tract; Ca, calcium; EAD, early after depolarization; DAD, delayed after depolarization.

5.4. Idiopathic Outflow Tract Tachycardia

Idiopathic RVOT tachycardia are catecholamine-sensitive, suggesting automaticity or
triggered activity as an underlying mechanism [101]. Accordingly, idiopathic arrhythmias
can be treated with adenosine or beta-blockers [102]. A subset of myocytes in the RVOT
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have longer action potentials, do not repolarize fully to resting membrane potential, have a
higher sarcoplasmic reticulum calcium content and easily develop early after depolariza-
tions when compared to right ventricular myocytes [103,104]. This electrophysiological
phenotype is expected from primary ring myocardium that is present just below, and
above, the valves of the pulmonary artery. These primary myocytes may, in the presence of
structural changes or uncoupling, give rise to spontaneous activity [105,106]. Consistently,
ectopic beats in the RVOT are reported to originate from the myocardium just below the
pulmonary valve and even from myocardial sleeves into the pulmonary artery [107,108].
For the moment, however, a direct relationship between these primary cells and idiopathic
RVOT tachycardia remains hypothetical and further research is required to determine a
causal relationship.

Typically, idiopathic RVOT tachycardia arises more frequently during periods of
wakefulness, stress and activity while disappearing entirely during rest [101]. Current
evidence strongly points towards a role for the autonomic nervous system, and in specific
sympathovagal balance, to the initiation and maintenance of these arrhythmias. Studies in
patients with idiopathic RVOT tachycardia showed that episodes of ventricular tachycardia
were typically preceded by a sudden shortening of the RR interval on electrocardiogram,
likely attributable to abrupt sympathetic predominance [109–111]. In canines, RVOT
tachycardia induced by catheter-mediated high-frequency stimulation of the pulmonary
artery originated most often from sites of the RVOT septal wall, the same sites that showed
a greater density of tyrosine hydroxylase-positive (sympathetic) neurons compared to
non-origin sites [112,113]. The RVOT septal wall also previously found the preferential site
of occurrence of RVOT tachycardia in patients compared to other RVOT sites [114].

Other than its anatomical site of origin, the mechanism of idiopathic RVOT tachycardia
can be considered well established and involves cAMP-mediated intracellular calcium over-
load that, in turn, predisposes it to afterdepolarizations and triggered activity [100,115,116].
In particular, genes involved in intracellular calcium regulation were differentially regu-
lated in RVOT septal wall biopsies taken from patients with idiopathic RVOT tachycardia
compared to control subjects, further indicating a calcium-dependent mechanism [117].
The distinctive electrophysiological properties of a subset of RVOT myocytes similar to that
of the primary ring myocardium may predispose them to an increased triggered activity
and tachycardia upon conditions of increased sympathetic tone.

6. Conclusions

In this review, we show a direct relation between the spatio-temporal activity of
particular cardiac transcription factors and the electrophysiological characteristics of
myocardial components. Insight into the mechanisms that regulate the expression of
these factors and their consequences on the expression of their target ion channel genes
could lead to the identification of new approaches and candidate markers for improved
arrhythmogenic risk stratification.
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