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Sound Stimulation Can Affect Saccharomyces cerevisiae Growth
and Production of Volatile Metabolites in Liquid Medium
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Abstract: The biological effect of sound on microorganisms has been a field of interest for many years,
with studies mostly focusing on ultrasonic and infrasonic vibrations. In the audible range (20 Hz to
20 kHz), sound has been shown to both increase colony formation and disrupt microbial growth,
depending upon the organism and frequency of sound used. In the brewer’s yeast Saccharomyces
cerevisiae, sound has been shown to significantly alter growth, increase alcohol production, and affect
the metabolite profile. In this study, S. cerevisiae was exposed to a continuous 90 dB @ 20 µPa tone at
different frequencies (0.1 kHz, 10 kHz, and silence). Fermentation characteristics were monitored
over a 50-h fermentation in liquid malt extract, with a focus on growth rate and biomass yield. The
profile of volatile metabolites at the subsequent stationary phase of the ferment was characterised by
headspace gas chromatography–mass spectrometry. Sound treatments resulted in a 23% increase in
growth rate compared to that of silence. Subsequent analysis showed significant differences in the
volatilomes between all experimental conditions. Specifically, aroma compounds associated with
citrus notes were upregulated with the application of sound. Furthermore, there was a pronounced
difference in the metabolites produced in high- versus low-frequency sounds. This suggests industrial
processes, such as beer brewing, could be modulated by the application of audible sound at specific
frequencies during growth.

Keywords: yeast; sonic vibration; sonic pressure; aromas; Solid-Phase Microextraction (SPME);
beverage; wine; beer; metabolism

1. Introduction

Sound is a mechanical vibration that propagates through elastic media, such as liquid,
air, and solids. Sound can comprise varying frequencies, with the audible frequency range
in air for humans commonly accepted as between 20 hertz (Hz) and 20 kHz (although this
range is significantly reduced with age) [1]. Sound, across the entire spectrum, has been
shown to influence organisms with traditional auditory pathways, such as humans, and
organisms without auditory pathways, such as a variety of plants [2,3]. Vibrations below
and above the audible range, infrasound and ultrasound, respectively, have been shown to
significantly affect the growth and development of microorganisms [4–8]. However, little
is known about the effect of audible sound range on microbial cells [9].

Studies that have investigated audible sound effects on microbes have typically found
impacts on the growth and metabolism of model microorganisms. For example, three
sound stimuli (1, 5, and 15 kHz pure tones) increased the biomass yield of Escherichia coli
compared to a silent control, with a 5 kHz pure tone producing the largest change [10].
Similarly, another study found that three different sound stimuli (1, 5 and 10 kHz pure
tones) promoted E. coli growth under normal and stressed conditions, with a significant
reduction in the inhibitory effect of 3% sodium chloride [11]. In our previous work with the
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yeast Saccharomyces cerevisiae, two continuous pure tones (0.1 and 10 kHz) at an intensity of
~90 dB increased growth rate during exponential phase by an average of 12% compared to
silence and altered the levels of 32 metabolites [12]. Furthermore, classical Indian music
was shown to increase S. cerevisiae growth by ~3% compared to silence [13].

It has even been reported that the bacterium Bacillus carboniphilus emits very low-
intensity sound that affects the growth of neighbouring colonies, significantly increasing
their colony-forming efficiency under heavy metal stress conditions [14]. Sound applied
to these microorganisms by loudspeakers mimicked the growth-promoting effect of this
microbial sound [15]. Similarly, S. cerevisiae has been shown to produce nanomechanical
motion in the range of 0.9–1.6 kHz, depending on the temperature of growth [16]. These
vibrations are sufficiently strong (~10 nN) to affect the cell membrane, propagating into the
surrounding media, and can be mimicked by artificial sound waves.

To understand how sound affects microbes requires an understanding of the pathways,
cellular changes, and other underlying mechanisms driving a microbial response. However,
due to the complexity of sound, these mechanisms could be extremely diverse, and as
such a well characterised model organism is required [17]. S. cerevisiae is the preferred
eukaryotic single cell model organism, with a well characterised protein network and
metabolic response in many conditions [18,19]. Furthermore, S. cerevisiae is extensively
used in industrial processes [20]. As such, S. cerevisiae is the perfect organism to extend
our understanding of the effect of sound on microorganisms, from the previous studies
conducted in E. coli, to an industrially relevant eukaryotic organism.

The metabolism of microorganisms is important for many industrial processes, includ-
ing the production of a wide variety of food products and high-value molecules [21]. Of
these processes, the production of alcoholic beverages through fermentation by S. cerevisiae
remains one of the largest industrial uses of microorganisms [20,22]. In the beer industry,
the fermentation of malt to ethanol is the major role of S. cerevisiae. However, the production
of secondary metabolites by yeast, such as higher alcohols, esters, and phenols, impacts the
flavour profile of beer [23]. In particular, volatile compounds provide a major proportion
of the sensory profile of beer. The compounds produced are determined by the strain
of yeast used, growth rate, and environmental conditions during fermentation [24,25].
Many of these volatile compounds are produced during the exponential growth phase
of fermentation [26,27]. Consequently, applying sound to alter the growth rate, thereby
altering the length of the exponential growth phase, may result in changes to the volatile
metabolite composition produced during fermentation.

In this study, we tested the effect of audible sound on S. cerevisiae growth and volatile
metabolite production during liquid fermentation. Both the medium, produced in bulk
to limit the effect of environmental differences, and the strain were selected to imitate the
production of beer. We found that sound increased the growth rate and altered the culture
headspace volatilome during fermentation. These results suggest that application of audi-
ble sound during beverage fermentation has the potential to modify the resulting flavour.

2. Results
2.1. Audible Sound Affects the Growth of S. cerevisiae during Liquid Fermentation

The most commonly reported effect of audible sound on microorganisms is increased
growth rate compared to cultures in silence [10–13,28–31]. Therefore, we measured the
growth rate of S. cerevisiae strain CLIB382 on malt extract broth exposed to two sound
stimuli (low-frequency at 100 Hz and high-frequency at 10 kHz) and compared this growth
profile to fermentations without sound (silence). All fermentations were conducted in
series in our Sound Isolation Chamber (See Section 4).

Biomass was measured using OD600 at several time points throughout the fermenta-
tions and was compared between sound conditions. Following the end of the lag phase
(16 h), there was significantly greater biomass in fermentations exposed to both sound
treatments compared to those treated with silence (Figure 1; p < 0.001). Furthermore, there
was a significantly higher OD600 observed in fermentations exposed to low-frequency
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sound (0.893 ± 0.07, 100 Hz) compared to high-frequency (0.683 ± 0.02, 10 kHz, p < 0.01,
Figure 1). However, the biomass at the end of the fermentations (33 h) was not significantly
different between cultures exposed to both sound treatments and silence (p > 0.05). We
compared the maximum growth rates, calculated from maximum change in biomass, in the
fermentations during the exponential growth phase. The maximum growth rate of cultures
grown without sound stimulus was 0.137 h−1 ± 0.005, which was lower than the maximum
growth rates of the cultures exposed to low- and high-frequency sound (0.155 h−1 ± 0.008
and 0.177 h−1 ± 0.011, respectively). However, only the maximum growth rate of cultures
exposed to high-frequency sound showed statistical significance when compared to the
control cultures exposed to silence (p < 0.05). Nonetheless, the length of the exponential
growth phase was reduced to 26.5 h under both sound treatments compared to 34.0 h in
the silence control.

Figure 1. Growth curves of Saccharomyces cerevisiae exposed to different sound conditions. Two
growth experiments under control silence conditions were averaged, shown in blue. Growth curves
exposed to high-frequency sound of 10 kHz (red) and low-frequency sound of 100 Hz (green) are
presented. Plotted values are means of biological replicates (n = 3) from each time point and error
bars (±Standard Error).

2.2. Profile of Volatile Metabolites

The profile of volatile metabolites in the headspace of the fermentation broths is of
particular importance to the food industry, imparting much of the flavour perception
to fermented beverages and foods. Many of these compounds are produced during the
exponential microbial growth phase [26]. Therefore, we investigated whether the effects on
yeast growth from applying audible sound would impact the profile of volatile compounds
produced during fermentation. To test this, the volatile compounds produced under the
two sound treatments were compared with the silence control. We putatively identified
a total of 522 compounds in the headspace of the samples analysed using the NIST 2017
mass spectral library. Among the 522 volatile compounds, 346 were present at significantly
different levels among the three different sound treatments (Table S1; p < 0.05).

Analysing the fold change differences between treatments revealed that the exposure
to sound appears to have significantly affected the development of aroma-related compounds
during fermentation. A total of 24 of the significantly altered volatile metabolites were iden-
tified as common aroma compounds found in fermented beverages (Appendix A; [32]). Of
these, the levels of citrus-related aromas, in particular, showed overall increases (Figure 2).
For instance, limonene (the orange/citrus peel aroma) was detected at levels 7.8-fold
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higher in the high-frequency sound treatment compared to the silence control. However,
compounds associated with sweet fruits, such as apricot aroma (ethyl octanoate), were
significantly reduced under both high- and low-frequency sound treatments compared
to silence (Figure 2). While most of the significant differences occurred between the two
sound treatments and silence, some differences were also observed between the high-
and low-frequency sound treatments. For example, production of benzoin by S. cerevisiae
was significantly (p < 0.001) elevated in ferments exposed to high-frequency compared to
low-frequency sound treatment (Figure 2).

Figure 2. Fold changes of aroma-associated volatile metabolite levels produced when exposed to high-frequency (10 kHz)
and low-frequency (Hz) sound when both are compared to silence. Data are displayed as a heat-map (right), with red-
shade indicating increased abundance blue-shade indicating decreased abundance (compared to silence). The pairwise
significance for each compound was assessed using a post-hoc Tukey ANOVA (p < 0.05); A- high-frequency versus silence,
B- low-frequency versus silence, C- high-frequency versus low-frequency. Methyl benzoate, grey, was outside the range
of our scale, with significantly higher abundance for both high-frequency and low-frequency sound treatments (33- and
30-fold, respectively).

To see if we could distinguish samples from different sound treatments based on the
profile of aroma-associated compounds, we projected the levels of these aroma compounds
from the three treatments onto a lower-dimensional space using linear discriminant analysis
(LDA; Figure 3). LDA revealed very clear separations between each sound treatment, with
100% accuracy based on leave-one-out cross-validation (Table 1). The most significant
compounds driving this separation (R-squared ≥ 0.9) were the aroma building block cis-2-
nonene, and the aroma compounds 1-nonanol and p-cymene, associated with citronella
and cumin/thyme, respectively (Appendix B).
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Table 1. Classification table obtained from leave-one-out cross-validation of 20 samples containing
24 aroma-associated volatile metabolites.

Original Source
Predicted Source

High-Frequency Low-Frequency Silence

High-frequency 6 0 0
Low-frequency 0 6 0

Silence 0 0 8
High-frequency = 10 kHz; Low-frequency = 100 Hz; Silence = no sound stimulus.

Figure 3. Aroma compounds identified from SPME GC-MS successfully separated the different
sound treatments. Log-transformed relative abundance data of the 24 putatively identified aroma
compounds from each ferment are projected onto two-dimensional space (following normalisation
against an internal standard), resulting in three distinct clusters. Red = high-frequency (10 kHz),
green = low-frequency (100 Hz), blue = silence.

3. Discussion

In this study, we demonstrated that sound impacts the fermentation performance of
brewer’s yeast S. cerevisiae CLIB382. Specifically, the growth rate was increased, particularly
through the application of high-frequency sound, and the levels of many volatiles were
altered in the headspace of the fermentation. Interestingly, the production of several volatile
compounds associated with flavour and aroma was affected differently, depending on
the frequency of sound applied to fermentations. These results are relevant to industrial
fermentation applications that require both high throughput batch cultures and specific
flavour profiles, such as the brewing industry.

Our results are consistent with several studies that have shown that exposure to
sound, compared to a silent control, results in increases in the rate of growth and/or
biomass production of plants, bacteria, and yeasts [2,3,33,34]. In microbes, the magnitude
of change in observed growth varies significantly, with the growth rate increase varying
from 3.2% in S. cerevisiae to more than 300% in Brevibacterium sp. [13,33]. However, it is
unclear how the growth is affected or why the response varies so dramatically between
species. In contrast, a previous study employing S. cerevisiae [12] showed decreased
biomass production following exposure to sound, whereas our study showed no difference
in the final biomass concentration between fermentations exposed to either high- or low-
frequency sound or silence. This previous study found an increased growth rate of the
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yeast in response to sound exposure, similar to ours, albeit with a lower magnitude (~3–10%
compared to 28.9% for the high-frequency sound treatment in our study). The previous
study was performed with minimal medium, versus the rich medium we employed, and
the yeast strain (beer versus wine), aeration (anaerobic versus aerobic), agitation, and vessel
(stirring flasks versus stationary tubes) were different, all of which could affect overall
biomass production.

The composition of volatiles produced during fermentation was shown to be markedly
altered by the application of sound in our study. The production of these compounds is
directly impacted by both yeast metabolism and the rate of fermentation. For example,
increased yeast growth has been shown to increase the production of fusel oils and sulphite
compounds [34]. Therefore, it is not unexpected that an increased growth rate due to sound
could result in changes to the volatile fraction. Furthermore, physiological stress can also
alter the production of many of these compounds [35]. Sound, which produces changing
zones of high and low pressure, may directly stress the cellular membrane, causing cells
to flex and thereby potentially increasing cell membrane tension. Physiological stress on
the cell membranes may, in turn, alter the production of secondary metabolites, such as
volatiles. However, the mechanism(s) through which sound produces the effects we report
has yet to be determined. In E. coli, sound was shown to increase the motility, particularly
by treatment with high-frequency sound, which could increase access to nutrients and
hence increase growth [36]. Furthermore, sound was shown to affect the intracellular RNA
production [37], which could drive some changes in metabolism, but changes in the yeast
transcriptome have yet to be determined.

Volatile compounds directly impact the flavour profile of fermentation beverages,
such as beer. Recently, it was shown that sound can significantly impact various sensory
descriptors, such as foam height, in beer fermentations [38]. This study used low fre-
quencies, varying from 20–75 Hz, cycling across the frequency range each minute during
the experiment. However, a sensory panel (n = 10) was unable to identify differences in
the flavour profile of the beers produced compared to silence. This may suggest that the
differences we observed in the range of volatiles produced do not alter the flavour of a
beverage sufficiently to be perceived by the human olfactory–gustatory systems. However,
the sound in this previous study was applied during the maturation of the beer (secondary
fermentation), rather than during primary fermentation, which makes a direct comparison
of the results with our study less certain.

The volatile compounds present in beer are derived from hops, malt, microorganisms
(predominantly yeast), and adjuncts [39]. In our study, the medium and yeast strain were
designed to mimic brewing; however, hops were not included to reduce the complexity
of the medium. Even with this limitation, we demonstrated that sound can affect the
production of many citrus- and floral-associated aroma compounds, such as limonene,
geraniol, and linalool. These compounds have previously been associated with hop-
derived compounds and biotransformation carried out by yeast during fermentation [40].
As such, it is likely that the application of sound has significant effects on other hop-derived
compounds. Furthermore, our study demonstrated the frequency of sound can also impact
this process, with the production of geraniol ~1.8-fold higher in fermentations exposed to
high-frequency sound compared to low-frequency.

In wine, the effect of non-Saccharomyces strains on the production of volatile com-
pounds has recently received greater attention [41]. These organisms have been shown to
positively influence sensory quality through their unique metabolic processes. Presumably,
sound could similarly influence the metabolism of these organisms, resulting in even
greater influence on the sensory profile than suggested by this study. Many of these strains
enter the wine fermentation from the vineyard rather than via purposeful addition by the
winemaker [42]. Recently, a study showed that sound could alter the native plant micro-
biome in the vineyard [43]. This could further drive changes in the fermentation profile
by altering the starting composition of ferments. The difference in volatile production
could be driven by changes in the metabolism of yeast during exponential growth. For
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instance, it has been demonstrated that low-frequency sounds can increase the activity
in numerous yeast metabolic pathways, whereas high-frequency sound depressed the
activity of pathways associated with aromatic amino acid biosynthesis [12]. However,
this previous study analysed the change in intracellular metabolites during exponential
growth, whereas our volatile metabolites were measured in samples harvested the during
post/late-exponential growth phase, which is a more metabolically heterogeneous phase
of growth [44,45]. Nonetheless, together, the results of these studies suggest sound could
be used to modulate S. cerevisiae metabolism and growth, albeit dependent on the general
fermentation and growth conditions. Methods of online monitoring of volatile organic
compounds have the potential to be effectively deployed to determine changes in the
metabolism of yeast during the various growth phases [25,46].

4. Materials and Methods
4.1. Yeast Strain

Saccharomyces cerevisiae strain CLIB382, isolated from an Irish brewery in 1950, was
maintained at 28 ◦C on malt extract agar (MEA) plates containing malt extract (20 g·L−1);
dextrose (20 g·L−1); peptone (6 g·L−1); and agar (15 g·L−1) at pH 5.5.

4.2. Malt Extract Micro-Fermentations

The strain of S. cerevisiae was grown anaerobically in capped 13-mL polypropylene
test tubes (Sarstedt Inc, Nümbrecht, Germany) containing 10 mL malt extract broth (MEB,
as described above without agar). A bulk volume of MEB was prepared to avoid com-
position differences between tubes. MEB (250 mL) was inoculated with one colony of
S. cerevisiae and grown at 28 ◦C under constant agitation (160 rpm, 48 h). This inoculum
was pelleted, the medium discarded, and the pellet used to inoculate a fresh aliquot of MEB
(250 mL) to an optical density of 0.1 at 600 nm (OD600) (measured with a Hitachi (model
U-1100) spectrophotometer). Then, 10 mL aliquots were aseptically transferred into the test
tubes. Test tubes were placed in an experimental soundproof chamber (Figure 4) inside a
temperature-controlled room (28 ◦C). Sound was applied into the chamber by a Logitech
LS-21 loudspeaker set connected to a laptop using VLC media player (version 2.2.8) to play
the sound file. The liquid cultures were incubated in the chamber without agitation and
under constant sound treatment until reaching stationary phase.
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Figure 4. Sound Isolation Chamber used to house the fermentations and apply sound stimuli. The
entire setup was placed inside a temperature control room at 28 ◦C and allowed to acclimatise.
(A) Low-frequency subwoofer. (B) Two middle-high frequency speakers. (C) Sound isolation
chamber, cross-sectioned to show internal position of fermentations and the experimental 22 mm
thick medium density fibreboards that act as soundproofing walls, lowering the internal sound
intensity. (D) Position of the circular fermentation tube rack, which ensures equal sound intensity
within each fermentation.

4.2.1. Sound Treatments

Two sound treatments and two silence controls were performed. For each treatment,
21 replicate fermentations were prepared. The sound treatments were a continuous pure
tone of low-frequency (100 Hz), and one of high-frequency (10 kHz), both at the same
intensity (90 dB @ 20 µPa), measured at the location of the fermentation tubes using a
Digitech QM1592 professional sound meter. The background noise level in the sound
chamber was 41 dB @ 20 µPa when the speakers were not activated, and the results of the
two silence controls were combined for further analysis.

4.2.2. Fermentation

Sampling began 16 h after inoculation and continued every 4 h until the stationary
growth phase was reached (after ~40 h). At each time point, three microfermentation tubes
were harvested and OD600 measured. Contamination was assessed using light microscopy.

The specific growth rate (µ) was calculated as:

µ =
2.303(log(OD)− log(OD0))

(t− t0)
(1)

To test for significant differences in biomass and specific growth rate among the treat-
ments, ANOVA was performed in R Studio. A post hoc Tukey HSD was used to isolate sig-
nificant treatment means while applying a correction to account for multiple comparisons.

4.3. Analysis of Volatile Metabolites

Fermentations that had reached stationary phase were analysed for volatile com-
pounds released into the headspace. Yeast cells were pelleted by centrifugation (3000× g,
5 min), and the supernatant was stored at −20 ◦C prior to volatile metabolite analysis.

4.3.1. Sample Preparation for Volatile Metabolite Analysis

Prior to the analysis, samples were defrosted at 4 ◦C, aliquoted (5 mL) into a 20 mL
amber glass vial, and internal standard 12-bromo-1-dodecanol (5 µL, 10 mM) was added to
each. Vials were fitted with an 18-shore PTFE septum and cap.
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4.3.2. Headspace Solid-Phase Microextraction (HS-SPME)

Extraction of volatile compounds from the sample headspace was achieved using a
SPME fibre coated with DVB/CAR/PDMS and with a film thickness of 50/30 µm (Supelco
57329-U). Samples were incubated (60 ◦C, 10 min) with agitation at 200 rpm. Following
incubation, the SPME fibre was exposed to the vial headspace (10 min) to allow absorption
of the compounds.

4.3.3. GC-MS Analysis

Following HS-SPME extraction, the fibre was injected into an Agilent 7890B gas
chromatograph coupled with a 5977A inert mass spectrometer (GC–MS) under splitless
mode at 250 ◦C and held in the injection port for 1 min to allow complete desorption
of analytes. The fibre was held at 250 ◦C for a further 1 min to ensure the fibre was
clean for subsequent analyses. The GC oven started at an initial temperature of 35 ◦C.
Following injection, the temperature was raised at 4.5 ◦C·min−1 to 180 ◦C. The temperature
was then raised at 40 ◦C·min−1 to 160 ◦C. Finally, the temperature was raised to 260 ◦C
at 10 ◦C·min−1. The carrier gas used was helium (He) at 7.7 psi with a flow rate of
1.09 mL·min−1 through a Rtx-5MS column with a coating thickness of 0.25 µm, diameter of
0.25 mm, and total length of 30 m. Interface temperature was held at 250 ◦C and quadrupole
temperature was at 200 ◦C. The ion source was operated in electron impact ionisation mode
at 70 eV. Compounds were detected using mass spectra acquired in scan mode in the range
of 33 to 400 m/z.

4.3.4. Data Analysis

Raw GC–MS data generated from SPME analysis were processed through the Auto-
mated Mass spectral Deconvolution and Identification System (AMDIS) software. Identi-
fication of compounds was based on the National Institute of Standards and Technology
(NIST) 2017 mass spectral library, only considering those with a match quality above 90%.
Compounds were considered tentatively identified (putative identification). The R package
MassOmics was used for automated integration of reference ion peak area [41]. Each iden-
tification was individually screened, and manual retention time correction and subsequent
reintegration were performed where required. To enable comparisons between samples,
the data were normalised by the internal standard peak intensity and log-transformed to fit
normal distribution criteria for downstream statistical analyses. Two silence samples were
removed due to mishandling during the sample preparation stage. The relative abundances
of each compound were analysed for differences between sound treatments using ANOVA
followed by post hoc Tukey multiple comparisons to isolate significant means whilst using
a correction for p-values for multiple comparisons. To attempt to distinguish samples
among classes (sound treatment), a linear discriminant analysis (LDA) was used as LDA
maximises separation between classes, rather than a PCA which maximises variation in the
reduced dimension [47]. We applied LDA to visualise samples using the top 20 identified
common aroma compounds, by relative abundance, detected across all samples and all
conditions. The LDA results were then validated using leave-one-out cross-validation
(LOOCV) [13]. All statistical analyses were carried out using RStudio 3.4.1.

5. Conclusions

This study demonstrates that audible sound stimuli can significantly alter S. cerevisiae
growth and the volatile compounds it produces. The growth rate of yeast in fermentations
exposed to sound was increased, with a 28.9% higher specific growth rate in fermentations
exposed to high-frequency (10 kHz) sound compared to silence. Furthermore, the volatile
profile of the resulting ferments was modulated by the sound frequency applied. Of partic-
ular interest was the alteration of levels of aroma compounds produced in the synthetic
liquid medium by the different frequencies of sound. The levels of citrus compounds,
such as limonene (orange) and isocyclocitral (leafy citrus), were increased by both sound
treatments, whereas sweet fruit compounds, such as ethyl hexanoate (banana) and ethyl
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octanoate (apricot), decreased. The production of benzoin (vanilla) was elevated by the
application of low-frequency sound, yet decreased by high-frequency treatment. Overall,
these results suggest that specific audible sound stimuli could be employed by beverage
fermentation industries to increase productivity and achieve desired aroma profiles, thus
providing a novel avenue with which to diversify product styles.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11090605/s1, Table S1: Potentially common aroma compounds (found in fermented
beverages) amongst the putatively identified compounds.
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Appendix A

We identified potentially common aroma compounds (found in fermented beverages)
amongst the putatively identified compounds (Table S1; p < 0.05). Of the 346 putatively
identified compounds, 24 were identified as aroma compounds (Table A1; [32]).

Table A1. Putatively identified aroma compounds that were significantly altered between sound
treatments and silence.

Name of Volatile Odour Description

Benzoic acid, methyl ester Phenolic, dry-fruity, feijoa
Cyclohexanol, 1-methyl-4-(1-methylethylidene)- Terpinol, pine

Limonene Oranges
Benzene, (ethoxymethyl)- Fruity pineapple

7-Octen-2-ol, 2,6-dimethyl- Lime-like, citrusy-floral
Benzene, 1,1′-[oxybis(methylene)]bis- Slightly mushroom/damp

Isocyclocitral Leafy citrus
p-Cymene Cumin and thyme

(+)-4-Carene Sweet and pungent
1-Nonanol Citronella

Linalool Floral
Carvone Dill, caraway or spearmint

cis-2-Nonene Aroma building block
Camphene Citronella or Cypress

Citral Lemon
Benzoin Sweet vanilla, balsam woody
Geraniol Geranium flowers, coriander

Benzeneacetaldehyde Honey, floral
Hexanoic acid, ethyl ester Banana, pineapple (sweet fruit)

Phenylethyl Alcohol Rose
Benzaldehyde, 2,4-dimethyl- Almond, cherry, spicy vanilla

Octanoic acid, ethyl ester Sweet apricot, banana, brandy, pear
Benzenepropanal, 4-(1,1-dimethylethyl)- Bourgeonal, floral, watery

https://www.mdpi.com/article/10.3390/metabo11090605/s1
https://www.mdpi.com/article/10.3390/metabo11090605/s1
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Appendix B

The LOOCV of the LDA showed a 100% accuracy for identifying fermentations
from different conditions. Most aroma compounds showed a high correlation with this
discrimination, with the R-squared value ≥ 0.8 for all, bar three, compounds.

Figure A1. Accuracy of the LDA model tested using a LOOCV. The average log10(relative abundance) of each putatively
identified compound for each sound stimulus is shown. The R-squared column shows the proportion of variance within
each row that is explained by the categories. As such, cis 2 Nonene is the best discriminator.
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