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Abstract

Analysis of fusion transcripts has become increasingly important due to their link with cancer

development. Since high-throughput sequencing approaches survey fusion events exhaus-

tively, several computational methods for the detection of gene fusions from RNA-seq data

have been developed. This kind of analysis, however, is complicated by native trans-splicing

events, the splicing-induced complexity of the transcriptome and biases and artefacts intro-

duced in experiments and data analysis. There are a number of tools available for the detec-

tion of fusions from RNA-seq data; however, certain differences in specificity and sensitivity

between commonly used approaches have been found. The ability to detect gene fusions of

different types, including isoform fusions and fusions involving non-coding regions, has not

been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion

for fusion gene detection from RNA-seq data. InFusion introduces several unique features,

such as discovery of fusions involving intergenic regions, and detection of anti-sense tran-

scription in chimeric RNAs based on strand-specificity. Our approach demonstrates supe-

rior detection accuracy on simulated data and several public RNA-seq datasets. This

improved performance was also evident when evaluating data from RNA deep-sequencing

of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events

that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric

transcripts that include intergenic regions. The toolkit is freely available to download from

http:/bitbucket.org/kokonech/infusion.

Introduction

Since the discovery of the BCR–ABL1 fusion gene and its critical role in the development of

chronic myeloid leukemia [1] the search for gene fusions has attracted a great amount of
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interest among cancer researchers. Gene fusions, which result from genomic translocations,

inversions or deletions, may be closely related to cancer progression and play a driver role in

particular types of cancers [2]. Examples include the TMPRSS2–ERG fusion in a large family

of prostate cancers [3], EML4–ALK in non-small-cell lung cancer [4] and ETV–NTRK3 in sev-

eral different cancers [5, 6]. Chimeric transcripts, which are composed from exons of different

genes, can also occur in normal cells due to trans-splicing events [7], transcriptional slippage

[8] or errors of the transcription machinery such as gene read-through [9], and in certain cases

they have been reported to be functional in mammalian genomes [10]. While the recent prog-

ress of sequencing technologies has enabled the genome- and transcriptome-wide study of chi-

meric RNAs with unprecedented depth and sensitivity, there is a need to develop and apply

reliable and efficient computational methods for gene fusion and chimeric transcript detection

from sequencing data. As well as furthering basic cancer research, the discovery of gene

fusions by means of deep sequencing is also expected to play a useful role in personalized med-

icine and targeted therapy in the future.

High throughput RNA sequencing (RNA-seq) provides an effective way to study the tran-

scriptome [11]. Despite the smaller size of the transcriptome with respect to the genome,

RNA-seq data analysis is challenged by the existence of complex regulatory mechanisms like

alternative splicing, transcription of processed pseudogenes, dynamic concentration range of

isoform expression, etc. High-throughput sequencing also suffers from inherent difficulties

such as PCR-amplification bias, uneven fragment distribution [12, 13] and generation of false

chimeras due to template-switching during reverse transcription errors [14]. Thus, rigorous

quality control measures and advanced bioinformatics algorithms are required for processing

RNA-seq data [15–17].

Studying gene fusions in the transcriptome allows detection of rearrangements that might

be translated into novel functional proteins. Maher et al. [18] were one of the first to apply

RNA-seq for gene fusion discovery in several cancer cell lines. They were able to not only con-

firm previously described fusions and chimeric transcripts, but also detect and validate a num-

ber of novel events. After these pioneering studies demonstrated the suitability of the

approach, efforts intensified to develop efficient computational methods for the detection of

fusion genes from RNA-seq data.

FusionSeq was one of the first published computational pipelines for fusion gene discovery

from RNA-seq data [19]. The method is based on the detection of discordantly aligned read

pairs, which are used to construct a junction library of possible fused exon pairs. The sequenc-

ing reads are then realigned to this constructed library to find the exact fusion junctions.

Although the authors established the basis for organizing a pipeline for fusion gene detection,

practical application of FusionSeq on a variety of datasets revealed that it is not equally sensi-

tive in all cases [20]. Other methods such as TopHat-Fusion [21] and ChimeraScan [22] are

based on detecting reads that cover the junction of genes involved in a putative fusion event

(so-called SPLIT-read approach, see Materials and Methods for more details). However, due

to the small size of the sequencing reads and the repetitive nature of the genome, this approach

requires intensive filtering to remove the large number of false positives.

An advanced computational method, deFuse [23], employs discordantly aligned pairs

(so-called BRIDGE reads) for initial fusion discovery, followed by the application of the

SPLIT-read approach to find the exact fusion breakpoint location. It improves specificity of

the discovery by utilizing machine learning techniques to better distinguish between true

and false positive predictions. There are also several novel methods such as SOAPfuse [24]

and fusionCatcher [25] that advance various aspects of fusion gene discovery, e.g. fusion

isoform detection, prediction accuracy and computational resource usage. Additional

attempts have been made to discover fusions using reference-guided assembly of chimeric
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transcripts [26, 27]. A major drawback of such an approach is that it relies on detection of

possible discordant read alignments and also requires as much filtering as SPLIT-read based

methods

Although a number of state-of-the-art methods are currently available, reliable discovery of

the whole spectrum of different fusion events from RNA-seq data is a challenging task [28]

and, to our knowledge, a systematic assessment of the ability to report various fusion classes

such as genomic rearrangements [2] or trans- and cis-splicing events [29] among available

methods has not been performed so far. In addition, a recent analysis [30], as well as our own

investigations revealed differences in results between commonly used methods applied to the

same validated datasets. An additional complexity is presented by antisense transcription,

which can also occur in fusions [31]. Up to now, only TopHat-Fusion and ChimeraScan take

the strand specificity provided by the library preparation protocol into account, but they do

not mark whether a detected fusion was transcribed in the sense or antisense direction. Addi-

tionally, there is occasional evidence of functional fusion events with a breakpoint inside an

exon [32] or involving non-coding [33], intronic [34, 35] or even intergenic regions [36]. Sev-

eral studies have reported alternatively spliced isoforms of fusion genes [34, 37, 38]. Certain

existing tools, including TopHat-Fusion, deFuse, SOAPfuse and fusionCatcher, are capable of

detecting fusion isoforms. Likewise, deFuse and TopHat-Fusion can also discover fusions that

involve intronic regions.

In this work we describe InFusion, a novel computational method for the discovery of chi-

meric transcripts from RNA-seq data capable of detecting alternatively spliced chimeric tran-

scripts and fusion genes involving non-coding regions. Specifically, InFusion allows detection

of fusions that involve intergenic regions, which to our knowledge has not been addressed pre-

viously. The method applies a novel algorithmic approach to cluster and reconstruct fusions

from SPLIT and BRIDGE reads. Additionally, it analyzes and filters putative fusion events

based on coverage depth, genomic context and strand specificity. We found that InFusion

shows improved accuracy on simulated and a number of public datasets. We experimentally

validated our method by performing strand-specific deep RNA-sequencing of two well-char-

acterized prostate cancer cell lines. Overall, InFusion discovered more than 400 fusions for

each cell line (from ~ 80M RNA-seq reads each), and from 40 tested fusions we confirmed 10

known and 26 previously unreported fusion transcripts using qRT-PCR. Among these vali-

dated transcripts are several novel alternatively spliced isoforms of well-known fusions and

some that involve fusion of an intergenic region with a coding one.

The InFusion pipeline was developed in C++ and Python. It is capable of working with

both single-end and paired-end sequencing reads. It is free for academic use and can be down-

loaded from https://bitbucket.org/kokonech/infusion.

Materials and Methods

InFusion Pipeline

The InFusion pipeline consists of several independent steps, each of which is controlled by a

number of configuration parameters. The typical input for the pipeline is a set of single-end or

paired-end RNA-seq reads. Most of the pipeline components are implemented in C++ using

the SeqAn bioinformatics library for efficient computations [39]. InFusion relies on the

genome and transcriptome information from the organism of interest in an indexed format.

The pipeline provides the functionality to automatically download required annotation and

sequence files and perform indexing of genome and transcriptome sequences.

Our algorithm is based on detection of two basic events that allow gene fusion detection

from sequencing reads. These events can be demonstrated using a hypothetical fusion of two
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genes (Fig 1). The first event occurs when the read spans the fusion junction, termed a SPLIT

read. The second event requires the reads to be paired-end. In this case, a pair of reads from

the same fragment spans the fusion within the non-sequenced part of the insert, termed a

BRIDGE read pair.

The InFusion analysis pipeline is outlined in Fig 2. The pipeline starts with the mapping of

reads to the transcriptome and, optionally, to the genome (Step 1), while keeping track of the

unmapped reads. The unmapped reads from the previous step are aligned locally to the

genome (Step 2). The resulting local alignments are used to detect potential SPLIT reads (Step

3). Next, the reads aligned to transcriptome and genome are analyzed to collect insert size sta-

tistics and detect discordantly mapped read pairs that form BRIDGE read pairs (Step 4). This

step is skipped for single-end sequencing experiments. Next, SPLIT and BRIDGE reads that

potentially belong to the same fusion are clustered (Step 5). During this step, the pipeline tries

to rescue SPLIT reads that were not detected during initial analysis of local alignments. Finally,

putative fusions are analyzed to filter false positive events (Step 6), and discovered chimeric

transcripts are reported (Step 7). The first four analysis steps were introduced previously and

are used by tools such as chimeraScan, deFuse, SOAPfuse and others. However, InFusion pro-

vides several improvements to these steps, and there are a number of novelties in the following

analysis procedure: clustering of detected SPLIT and BRIDGE reads, advanced filtering and

recovery along with special statistics computation for fusion reports. Below, each step of the

pipeline is described in detail.

Alignment of Short Reads

The main task of the read alignment is to find short reads that could reveal putative fusion

events and separate them from those originating from “normal” genes. In addition, the

Fig 1. Example of fusion detection from RNA-seq data. The fusion consists of exons 1 and 2 from gene A and exons 3 and 4 from

gene B. SPLIT reads cover the junction point, while BRIDGE reads span the junction point within the insert region, which is not

sequenced.

doi:10.1371/journal.pone.0167417.g001
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alignment of reads is used to collect statistical information about the sequencing experiment,

such as insert size distribution and gene expression levels, which is used later in the analysis

and filtering of putative fusion events. Firstly, the given short-reads are mapped to the tran-

scriptome. To reduce the pipeline running time, reads that were not mapped to the transcrip-

tome can optionally be mapped to the genome, since there could be reads that are only fully

mapped to the genome. Additionally, by default the reads mapped to the mitochondria are dis-

carded from further analysis. For the alignment of the reads InFusion uses Bowtie2 [40] by

default, however, any modern short read aligner could potentially be used.

Fig 2. InFusion pipeline overview. Outline of the different steps of the analysis pipeline. Properly aligned pairs require the distance between alignments to

be within the maximum intron size on the same chromosome.

doi:10.1371/journal.pone.0167417.g002
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Local Alignment of the Short Reads

In order to search for possible SPLIT candidates, unmapped reads reported during the initial

alignment are further aligned locally to the genome. Local alignment of short reads to the

genome is performed using Bowtie2 in local mode. Similar to the previous step, InFusion can

potentially be used with other aligners that support local mapping. The most crucial parameter

of the local alignment is the minimal score to consider a valid mapping. InFusion is designed

to accept mappings with a score greater than
Scoremax

3
, where Scoremax denotes the maximum

alignment score within a given scoring scheme. The following scoring scheme is used by

default: 2 for match, -2 for mismatch, -6 for gap open, -3 for gap extension.

Analysis of Local Alignments

Each local alignment of a read is analyzed to detect if it is possible to form a SPLIT candidate

from it. We define the following conditions. Let us assume that there are n local alignments of

a read:

fA1;A2; . . . ;Ang

Each alignment Ai is represented by reference sequence (chromosome) ci, starting position in

the reference sequence coordinates pi, starting position in the read coordinates qi and length li:

Ai : fci; pi; qi; lig

We consider that 2 local alignments Ai and Aj form a SPLIT read if two conditions apply:

1. Either ci 6¼ cj or pi + li − pj > lmax

The alignments are coming from different chromosomes or the distance between align-

ments is larger than maximum intron size. Maximum intron size Imax depends on the genome

studied. The default value refers to the human genome with a maximum intron size of 20,000.

2. qi < qj and (−1) × Touter < qj − (qj + li)< Tinner

The alignments are concordant in the read coordinates based on given thresholds: maxi-

mum intersection size Tinner and maximum distance between alignments Touter in the coordi-

nates of the read. By default we set these thresholds to 10 and 2 bp, respectively.

To increase the sensitivity of discovery we allow multiple local alignments of a single read.

The multimappings are resolved in later steps of the pipeline. InFusion accounts only for

SPLIT reads which are formed by two local mappings and by default allows up to 20 possible

SPLIT configurations to be formed from the same read.

Analysis of End-to-end Alignments

Paired-end sequencing experiments make it possible to search for BRIDGE reads. To perform

this task, we analyze the not-correctly aligned read pairs from Step 1. To detect not-correctly

aligned read pairs firstly, the transcriptomic alignments are converted into genomic coordi-

nates. Two mate alignments M1 and M2 form a correct pair if they are aligned on the same

chromosome within a distance of the defined maximum intron size Imax, otherwise they form

a possible BRIDGE read pair. We record all discovered BRIDGE read pairs for further analysis.

In addition, we compute the insert size distribution from concordant alignments and estimate

the expression level for each gene.

Clustering and Forming Putative Fusions

A chimeric transcript can be described by a pair of genomic coordinates, which represent the

fusion breakpoint. For example, the fusion gene shown in Fig 1 has a breakpoint formed by

Fusion Detection from RNA-Seq Data
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the last base pair of exon 2 of gene A and the first base pair of exon 3 of gene B. We refer to the

SPLIT reads and BRIDGE reads detected in previous steps as breakpoint candidates (BPCs). It

should be noted that a SPLIT read implies an exact breakpoint, while a BRIDGE pair implies

an approximate breakpoint within the corresponding insert size distance. Thus, each BPC is

described by two alignments, which are the local alignments of the read if the BPC is formed

by a SPLIT read, and the end-to-end alignments of a pair of reads if the BPC is formed by a

BRIGDE pair.

A clustering procedure groups the alignments forming the BPCs into clusters based on

their genomic coordinates. Thus, alignments of each BPC are iteratively analyzed: i) if there is

no intersection with other existing clusters the alignment constitutes a new cluster; ii) if the

alignment intersects with one existing cluster, it is added to this cluster; iii) if the alignment

belongs to two or more clusters simultaneously, the clusters are first merged into one single

cluster and the alignment is then added to it.

As a result of the initial clustering procedure (Fig 3A), clusters can contain multiple possible

breakpoints represented by different groups of alignments. Therefore, we further separate the

clusters based on their directionality: the alignment strand and the order of the alignment in

the BPC, defined by location in the read coordinates in case of a SPLIT read or mate identifier

in case of a BRIDGE read, predict the direction to the breakpoint position, situated either

upstream (5’-to-3’) or downstream (3’-to-5’) of it (Fig 3B).

We next analyze if the coordinates of the breakpoint positions implied by local alignments

in a cluster are compatible within a configurable tolerance (10 bp by default). If this is not the

case, the cluster is separated into 2 new clusters. (Fig 3C) The process continues until there are

no more clusters with significant difference in the coordinates of the breakpoint position left.

We further refine the clusters by assigning to them the compatible unused local alignments of

reads from Step 2 of the pipeline that have an alignment score greater than 50% of the maxi-

mum score and an edit distance less than 2 (both options are configurable). Using an interval

tree data structure, we intersect the read alignments with the existing clusters. For each inter-

secting cluster (which we call host cluster) found, we make sure that the alignment is concor-

dant with the putative breakpoint position as it is dictated by the directionality and alignments

from SPLIT reads in the cluster. We then select the remaining unmapped part of the read

sequence and try to realign it to each potential fusion partner cluster of the host cluster, again

in concordance with cluster directionality and the fusion breakpoint.

Clusters formed solely from BRIDGE pairs constitute a special case in the rescue procedure

described above. For this type of cluster the exact breakpoint position cannot be computed,

therefore we allow additional tolerance (computed from insert size distribution) in the geno-

mic region upstream to the breakpoint position as dictated by the pair configuration. The res-

cued reads found in this case undergo an additional clean-up procedure, which selects the

most probable breakpoint based on the amount of evidence for a particular position.

Finally we go through the list of BPCs to form putative fusions. For every BPC we check to

which cluster each of its alignments belongs. Then we assign the BPC to a putative fusion

event described by two unique cluster identifiers. During the creation of putative fusions we

also take into account the strand-specificity of the sequencing library to reconstruct the correct

5’-3’ order of the fusion transcript. If the sequencing protocol is non-strand-specific, the infor-

mation from the annotation is applied to reveal the possible order of genes forming the fusion.

Refining and Filtering Fusions

In our investigations we observed that the majority of validated fusion genes discovered from

paired-end RNA sequencing data are supported by SPLIT reads with a correct mate pair

Fusion Detection from RNA-Seq Data
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connection. Because of this, we make use of the paired-end information by discarding SPLIT

reads from putative fusions which do not have their mate-pair located within the maximum

intron size. Additionally, clusters which consist uniquely of BRIDGE reads are merged with

compatible clusters that are located within maximum intron size in order to avoid reporting

two fusions associated with the same event.

We resolve multimapped reads by iteratively assigning each read with several mappings to

one putative fusion with the largest score among other fusions, similar to the deFuse algorithm.

The fusion score is a function of the number of supporting reads calculated by taking into

account their alignment type, multi-mapping status and the presence of a mate pair for BPCs

originating from SPLIT reads. The types of supporting read filters are described in S1 Text.

Fig 3. Clustering of breakpoint candidates. The arrows of the SPLIT alignments and the dot lines of BRIDGE alignments demonstrate

the direction to the breakpoint position. (A) Initial clusters are created from intersecting SPLIT and BRIDGE alignments. (B) Cluster 4 is

separated from cluster 1 based on the directionality, which is inferred from the alignment strand and order. (C) Cluster 5 is separated from

cluster 2 based on the putative breakpoint position. Alignments belonging to the same breakpoint candidate have the same color.

BRIDGE reads are marked with b, SPLIT reads are marked with s. A SPLIT read assumes an exact breakpoint, while a BRIDGE read

assumes an approximate breakpoint within allowed insert size distance.

doi:10.1371/journal.pone.0167417.g003
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After resolving multimapped reads, we further calculate features associated with each fusion

that are used to filter and analyze the fusion:

Metacluster homogeneity. By analyzing the genomic intervals forming the putative

fusion, we noticed that clusters of false positive fusions arising from local homology (sequence

similarity) are usually found intersecting or close to each other in a small region. By contrast,

cluster blocks forming the true fusions usually dominate over other clusters in the selected

region i.e. the majority of breakpoint candidates in a region belong to the same cluster block.

We defined intersecting cluster blocks belonging to different fusions as a metacluster. Avoid-

ing false positive fusions reported due to homology is possible by filtering SPLIT-read and

BRIDGE-read alignments from repeat regions. However, if the repeat regions are not provided

for the genome or not detailed enough, then it is important to perform metacluster homogene-

ity analysis. We apply this observation by calculating the number of supporting alignments for

each fusion cluster divided by the total number of supporting alignments in the metacluster

and filtering out those fusions that have low weight.

Read coverage. We reconstruct the sequence formed from detected fusion regions and

calculate the coverage of the supporting SPLIT reads. For each fusion we compute the propor-

tion of unique alignments based on their genomic coordinates and estimate if the mean break-

point position in the read coordinates follows a uniform distribution. The predicted fusion is

filtered if the proportion of unique SPLIT read alignments is close to zero or the mean break-

point position inside the reads deviates significantly from the middle of the read. Additionally,

if the fusion is supported only with SPLIT reads, we require at least one SPLIT read that does

not have any multimappings in order to accept the predicted event. Moreover, correctly

aligned reads coverage close to breakpoint is analyzed to detect if the transcripts forming the

fusion are also expressed.

Homology. We construct the fusion sequence bounded by the read evidence and align it

to the genome and transcriptome. By examining the alignment score, we can filter out false

positive predictions arising from highly homologous genes.

Insert size. The reconstructed fusion is used to calculate the insert size for each of the sup-

porting BRIDGE reads. The insert size is considered valid if it lies within a 3σ interval as

defined by the insert size distribution, computed in Step 4a. The ratio of valid insert sizes is cal-

culated and used as filtering parameter.

Strand specificity. Strand-specific protocols are preferable for fusion discovery since they

make it possible to detect antisense transcription in fusions and infer the direction of tran-

scription in fusions involving unannotated and intergenic regions. If the strand specificity is

enabled, we calculate the proportion of supporting reads which are aligned according to the

protocol and annotated strand of the gene. The computed metrics allow analysis of antisense

transcription in the fusion.

Biotypes control. The selection of types of fusions to report, e.g. formed from intergenic

regions or non-coding RNA, can be controlled through the settings. Additionally, by default

fusions formed from pseudogenes and processed transcripts are discarded.

Final filtering. The final filtering of fusions is performed by applying configurable thresh-

olds to the computed features. Default thresholds aim to provide a compromise between recall

and precision, based on our experience with analyzing human RNA-seq datasets. Additionally,

InFusion allows repeated filtering of fusions with adjusted thresholds without running the

whole pipeline again. Decreasing most of the default filtering limits such as minimum number

of supporting reads or homogeneity weight will increase the recall, while the reverse strategy

will increase the precision.

Fusion Detection from RNA-Seq Data
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Reporting Fusions

For each predicted fusion event, InFusion reports the corresponding genomic regions, the

coordinates of the breakpoint, as well as the number of supporting SPLIT and BRIDGE reads

together with the features computed during putative fusion analysis and used in the filtering

process. Additionally, the genomic regions involved are characterized by annotating impli-

cated transcripts/exons, determining the possible type of fusion event, e.g. inter-chromosomal

[2] or read-through [9]. Optionally, InFusion reports the fusion junction sequence, which can

be useful for PCR primer design, as well as the original alignments of reads supporting the pre-

dicted events in BAM format.

Simulation Pipeline

We developed a fusion gene simulation pipeline that enables construction of fusion gene anno-

tations with given properties. We defined 5 classes of different fusion events:

1. With both fusion partners having a breakpoint at the exon boundary;

2. With one or both fusion partner(s) having a breakpoint inside an exon;

3. With one or both fusion partner(s) having a breakpoint inside an intron;

4. With one fusion partner originating from an intergenic region;

5. With several alternatively spliced isoforms having breakpoints at the exon boundary.

The pipeline uses gene annotations and genome sequence as input. It is designed to make

every run reproducible and is available as part of the InFusion source code package. Using this

pipeline, it is possible to create a required number of random fusion gene pairs of a selected

class.

For our simulation experiments we generated 50 sets of fusion annotations, each consisting

of 100 fusion events (20 of every predefined class). Next, for each set of the generated annota-

tions describing the fusions we recreated transcript sequences and randomly assigned coverage

ranging from 1X to 60X. Using the Mason software package [41], we simulated paired-end

sequencing reads from these transcripts based on the assigned coverage in a non-strand-spe-

cific manner. For read simulation we used the Illumina error model, which includes mis-

matches, insertions and deletions. The length of the read was chosen as 75 bp with a mean

fragment length of 300 bp and a standard deviation of 80 bp. Overall we generated 50 RNA-

seq datasets containing evidence for 5,000 fusion genes. Additionally, using read counts from a

real RNA-seq experiment [42] and the same Mason settings as for the fusion transcripts, we

generated approximately 30M background reads. These background reads were added to each

simulated dataset.

The simulation pipeline is available as a block of the InFusion toolkit. It allows configura-

tion of options such as read size, insert size and strand-specificity. More information about the

simulation pipeline is provided in S1 Text.

Public Datasets

Three public RNA-seq datasets from cancer studies were used to test the performance of the

InFusion pipeline: Edgren et al. [42] describe the transcriptome of cells originating from breast

cancer, Berger et al. [43] from melanoma and Wu et al. [44] from prostate cancer. Each study

provides evidence for fusion genes that were first detected from RNA-seq data and then exper-

imentally validated using RT-PCR or Sanger sequencing.

Fusion Detection from RNA-Seq Data
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Cell Cultures and RNA Extraction

For experimental validation we used the prostate cancer cell line VCaP and the normal pros-

tate cell line RWPE-1, which were obtained from the American Type Culture Collection

(ATCC). VCaP was cultured in Dulbecco’s modified Eagle’s medium (Life Technologies,

Darmstadt, Germany) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 10%

fetal calf serum (FCS, Biochrom, Berlin, Germany), and RWPE-1 in Keratinocyte serum-free

medium supplemented with 5 ng/mL EGF and 50 μg/mL bovine pituitary extract (Life Tech-

nologies). An additional prostate cancer cell line, LNCaP, was provided by Prof. Klaus Jung

(Department of Urology, Charité University Hospital, Berlin, Germany) and cultured in

RPMI1640 (Life Technologies) supplemented with 10% FCS. PrEC (Lonza, Basel, Switzerland)

was cultured in PrEGM bullet kit (Lonza), according to the supplier’s protocol. For each cell

line 700,000 cells were centrifuged and frozen in RNAlater (Life Technologies, Darmstadt,

Germany). RNA was extracted using the SPLIT RNA extraction kit (Lexogen GmbH, Vienna,

Austria). Analysis of the large RNA fractions (> 150 nt) indicated very high RNA quality

(RIN> 9.8 on an Agilent Technologies Bioanalyzer).

mRNA-seq Library Preparation and Sequencing

Strand-specific NGS libraries were prepared from 500 ng RNA using the SENSE mRNA-Seq

library preparation kit V1 (Lexogen GmbH, Vienna, Austria). For both cell lines, two different

sized libraries were prepared. After the SENSE protocol size cut-offs, one library had an aver-

age size of 340 bp and the other one of 530 bp (assessed on an Agilent Technologies Bioanaly-

zer). The libraries were further limited in their size range by automated gel elution on a

PippinPrep (Sage Science, Beverly, MA, USA). The shorter library was eluted with an average

size of 299 bp (10% coefficient of variation, CV), the longer one with a size of 580 bp (8.6%

CV). Subtracting the adapter sequence length, this translates into average insert sizes of 176 bp

and 457 bp. A lane mix was prepared dedicating 40% of the final molar concentration to each

of the two shorter libraries and 10% to each of the longer ones. Sequencing was performed on

an Illumina HiSeq in paired-end 100 bp mode, and 285M PE reads were obtained. The read

share analysis revealed that the longer libraries were represented at a lower degree than aimed

for (see Experimental Validation below), possibly because of a more efficient cluster formation

of the shorter libraries. Sequencing reads and the analysis results are available in NCBI Gene

Expression Omnibus database (id:GSE56512).

Experimental Validation Using qRT-PCR

Quantitative reverse transcription PCR was performed with 50 ng RNA using the Power

SYBR1 Green RNA-to-CT™1-Step Kit (Life Technologies), according to the manufacturer’s

protocol. All oligonucleotide primers except glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) were newly designed in this study and synthesized by Eurofins MWG Operon

(Ebersberg, Germany). PCR efficiencies of the primers were validated using a standard

method, and relative expression levels normalized to GAPDH was calculated by the compara-

tive cycle threshold method. All reactions were performed in triplicate and results were plotted

as average fold-change relative to GAPDH. Primer sequences can be found in the S1 Table.

Results

Simulated Datasets

Using our simulation pipeline and Ensembl 68 gene annotations, we created 50 RNA-seq data-

sets as described in the Materials and Methods. We ran InFusion along with five widely used
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tools for fusion detection—TopHat-Fusion, deFuse, ChimeraScan, SOAPfuse and fusion-

Catcher—on the generated RNA-seq datasets. We selected the first three tools for the assess-

ment since they were reported to have high sensitivity and specificity in comparison to other

tools [30] while the last two are quite novel and demonstrated the highest accuracy in a recent

comparison study [45].

For each program we measured the number of true positive (TP) and false positive (FP) pre-

dictions among all discovered events, as well as recall TP
ðTPþFNÞ

� �
and precision TP

ðTPþFPÞ

� �
. We

considered a prediction as true positive if for each fusion partner the breakpoint position was

reported within 20 bp upstream or downstream of the exact junction point defined by the sim-

ulation design. The number of false negative predictions was computed by analyzing how

many simulated fusions were not detected in the dataset. In order to enable the discovery of a

larger spectrum of fusion events and apply equal thresholds for fusion filtering, we configured

the parameters of each tool accordingly (S1 Text). The results of the analysis are summarized

in Table 1. InFusion demonstrated the best recall among the tested algorithms as well as a high

level of precision. This precision level was similar to SOAPfuse and ChimeraScan, however

InFusion was not losing the recall.

In order to investigate the effect of read coverage, we further analyzed recall and precision

based on the number of reads supporting the fusion (Fig 4). InFusion demonstrated superior

recall and high precision independent of the number of reads supporting the fusion event.

Since the simulated transcripts consisted of five distinct classes, we also investigated the pre-

diction accuracy for each fusion class independently (S1 Fig). For every class InFusion also

achieved high recall and precision. It significantly outperformed other tools in detection of

fusions that involve intronic and intergenic regions.

Additionally we performed special simulation experiments to validate the strand-specificity

detection by InFusion. For this purpose certain reads simulating fusions were generated in 3

modes: forward strand-specific, reverse-strand specific and non-strand specific. As a result

InFusion provided correct strand-specificity estimations for detected fusions. The detailed

report can be found in S1 Text.

Public Datasets

The performance of the InFusion pipeline was further tested by analyzing three public RNA-

seq datasets from cancer studies: Edgren et al. [42] describe the transcriptome of cells originat-

ing from breast cancer, Berger et al. [43] from melanoma and Wu et al. [44] from prostate can-

cer. Each study provides evidence for fusion genes that were first detected from RNA-seq data

Table 1. Comparison of fusion detection tools on simulated data.

Tool TP FP TOTAL RECALL PRECISION

InFusion 70 ± 4 5 ± 1 76 ± 4 0.70 ± 0.05 0.92 ± 0.02

ChimeraScan 38 ± 2 3 ± 1 42 ± 3 0.38 ± 0.03 0.92 ± 0.04

TopHat-Fusion 50 ± 4 20 ± 1 70 ± 5 0.50 ± 0.05 0.71 ± 0.02

deFuse 61 ± 6 30 ± 4 92 ± 7 0.63 ± 0.06 0.67 ± 0.04

SOAPFuse 55 ± 3 4 ± 2 60 ± 4 0.55 ± 0.04 0.92 ± 0.05

FusionCatcher 51 ± 4 17 ± 4 68 ± 6 0.51 ± 0.05 0.75 ± 0.05

Based on in silico data from 50 simulated RNA-seq datasets with 100 fusion genes each (5,000 fusions, ~10 million read pairs in total). N = total number of

predictions reported by each tool, TP = true positives, FP = false positives. Each dataset was analyzed independently, and then mean value and standard

deviation were computed for comparison.

doi:10.1371/journal.pone.0167417.t001

Fusion Detection from RNA-Seq Data

PLOS ONE | DOI:10.1371/journal.pone.0167417 December 1, 2016 12 / 24



and then experimentally validated using RT-PCR or Sanger sequencing. Reanalysis of the Edg-

ren et al dataset performed by Kangapeska et al [34] enabled detection and validation of an

additional 13 fusion events, which we also included in our test. We assessed the performance

of the analyzed tools by comparing the number of rediscovered known fusions and the total

number of fusions reported by each algorithm. For this comparison we used gene annotations

from Ensembl version 68 and specific settings for each evaluated tool (S1 Text). In most cases

no exact genomic locations for fusions were reported in these studies, therefore we considered

a fusion event as rediscovered if both fusion partner genes were reported correctly. Results are

summarized in Table 2.

Overall, InFusion rediscovered the largest number of fusions reporting 71 events out of 80

previously described. In the dataset by Edgren et al 40 fusions were reported and InFusion

achieved the highest detection rate, missing three known fusion events. One of them was not

detected by any other tool, while two other fusions, reported by ChimeraScan, SOAPfuse and

fusionCatcher, did not have sufficient number of reads to pass the filtering limits applied by

InFusion. In the Berger et al dataset InFusion missed one known fusion event out of 14

reported. ChimeraScan demonstrated the highest detection rate, detecting the known fusion

that was not discovered by either InFusion or any other of the tested algorithms. In this case

the fusion was filtered out by InFusion due to its lack of reads spanning the corresponding

Fig 4. Comparison of recall and precision on simulated data. Recall and precision are plotted based on the number of supporting

reads. For each given threshold we selected fusions that by simulation design have a number of supporting reads less or equal to the

threshold. The number of true positive events was computed for every tool using only the selected fusions.

doi:10.1371/journal.pone.0167417.g004

Table 2. Fusion events detected in public RNA-seq datasets.

Dataset Num. reads Validated InFusion Chim.Scan TopHat-Fusion deFuse SOAPFuse FusionCatcher

Edgren et al 54.8 M 40 37|117 36|644 33|81 25|97 35|86 33|52

Berger et al 114.6 M 14 13|333 14|3733 6|17 11|277 13|159 2|6

Wu et al 253.4 M 26 21|373 14|2573 11|39 15|483 13|252 9|94

“Validated” refers to the number of fusions qRT-PCR-validated in the dataset as reported in the manuscript. For each fusion tool two values are provided.

The first value is the number of previously validated fusions from the dataset also detected by a given tool, while the second value refers to the total number

of fusions reported by the tool. Numbers in bold indicate the tool with the highest value of detected fusions for the corresponding dataset.

doi:10.1371/journal.pone.0167417.t002
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junction. In the Wu et al dataset InFusion rediscovered the largest number of fusions (21 out

26 reported). Here InFusion filtered out five events because no unique reads covering the

fusion junction were detected. These five fusions were also not detected by any other tool. The

detailed list of fusion genes present in the datasets and their detection status can be found in

S2–S4 Tables.

Higher numbers of reported fusions may be indicative of lower precision, although addi-

tional experiments are needed to estimate the actual proportion of spurious events. In our

comparison, the number of non-validated fusions reported was lowest for Tophat-Fusion and

FusionCatcher. InFusion reported a higher number of non-validated fusions, in the same

range as SOAPFuse and deFuse, while ChimeraScan detects the highest number of non-vali-

dated events (Table 2).

It is also noteworthy that in the Edgren et al dataset InFusion along with fusionCatcher and

TopHat-Fusion, reported isoforms of several known fusions that have been experimentally val-

idated and described in detail [34]. Likewise in the Berger et al dataset InFusion detected the

two distinct isoforms of fusion AXL–REC, reported by the authors [42]. Both isoforms were

also discovered by deFuse and fusionCatcher.

Experimental Validation

To further investigate the power of the InFusion pipeline to detect chimeric transcripts from

deep sequencing data, we sequenced the mRNA of two well-established prostate cancer cell

lines, VCaP and LNCaP. Both cell lines are known to harbour genomic translocations and

well-studied fusion genes [18]. Using the strand-specific SENSE mRNA library preparation kit

(Lexogen GmbH, Vienna, Austria), we constructed two libraries for each cell line with average

insert sizes of 176 bp (referred to as VCap200 and LNCaP200) and 457 bp (referred to as

VCap500 and LNCaP500). Sample allocation and detailed sequencing statistics are shown in

Table 3.

We ran the InFusion pipeline on the datasets VCaP200 and LNCaP200 and detected 336

and 338 putative fusion events, respectively. The number of detected fusions stratified by

fusion type can be found in S5 Table. For the experimental validation, aiming to cover the

whole spectrum of fusion events, 21 candidates from VCaP and 19 from LNCaP were selected

and subjected to qRT-PCR (Table 4). Ten out of these 40 were known fusions [18] that we

used as controls, while the others were novel and to the best of our knowledge have not been

reported previously. Four events were selected as indicating anti-sense transcription and nine

events as fusions of a coding with an intergenic or intronic region. Four selected events were

isoforms of known fusions. The remaining 13 novel events were chosen randomly for

validation.

The qRT-PCR confirmed 36 out of the 40 selected chimeric transcripts, including all ten

control fusions (Table 4). Five out of 26 novel events were validated in both cell lines, while the

Table 3. RNA-Seq sample details.

Cell line Sample Mean insert size (bp) Total read pairs

VCaP VCaP200 176 71,229,410

VCaP VCaP500 457 7,653,307

LNCaP LNCaP200 176 74,575,800

LNCaP LNCaP500 457 4,521,899

List of samples with associated number of reads obtained from the deep sequencing of VCaP and LNCaP

cell lines

doi:10.1371/journal.pone.0167417.t003
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Table 4. Fusions selected for qRT-PCR validation from RNA-seq of VCaP and LNCaP cell lines.

Name Chr1 Pos1 Break1 Chr2 Pos2 Break2 Split reads Bridge reads Cell line qPCR

SREBF2—XRCC6 22 42271728 Exon edge 22 42032115 Exon edge 587 0 LNCaP +

VWA2 –PRKCH 10 116008524 Exon edge 14 61909827 Exon edge 109 0 VCaP +

INSL6—JAK2 9 51641179 Exon edge 9 49992434 Inside intron 87 3 VCaP +

ZDHHC7—H3F3B 16 85029526 Exon edge 17 73775267 Exon edge 45 36 VCaP +

ZDHHC7—UNK I1 16 85029528 Exon edge 17 73782537 Inside intron 53 27 VCaP +

HJURP—EIF4E2 2 234749255 Exon edge 2 233421124 Exon edge 59 12 VCaP +

FAM117B - BMPR2 2 203500510 Exon edge 2 203329530 Exon edge 56 0 LNCap +

GPS2—MPP2 17 7218278 Exon edge 17 419757748 Exon edge 51 5 LNCaP +

Intergenic—NBEA 13 35692611 Intergenic 15 20851765 Exon edge 44 0 Both +

SLC45A3—ELK4 I1 1 205630992 Exon edge 1 205593020 Exon edge 41 0 LNCaP +

PPIP5K2—CTC-340A15.2 5 102465407 Exon edge 5 164598384 Exon edge 11 26 VCaP +

RC3H2—RGS3 I1 9 125622199 Exon edge 9 116299073 Exon edge 32 2 VCaP +

AAK1—AC114772.1 2 69732701 Exon edge 2 69693684 Inside exon 33 0 Both +

ZDHHC7—UNK I2 16 85027706 Inside intron 17 73782537 Inside intron 26 0 VCaP +

ZNF577—ZNF841 19 52380532 Exon edge 19 52570866 Exon edge 24 1 VCaP +

CTA-221G9.11—KIAA1671 22 25508430 Inside exon 22 25566787 Exon edge 22 0 Both +

TMPRSS2—ERG I1 21 42879876 Exon edge 21 39817547 Exon edge 20 0 VCaP +

RP11-534G20.3 –SVIL 10 29704341 Exon edge 10 29746577 Inside exon 20 0 LNCaP +

SPOCK1 –Intergenic 5 136602698 Exon edge 5 180144798 Intergenic 15 3 VCaP +

POLR1D - LNX2 13 28195176 Inside exon 13 28155942 Exon edge 18 0 Both +

HSF1 –RERE 8 145515556 Exon edge 1 8716501 Exon edge 16 0 VCaP +

MIPOL1 –DGKB 14 37969347 Inside exon 7 14188860 Exon edge 16 0 LNCaP +

Intergenic—SH3D19 4 152246392 Intergenic 4 152147395 Exon edge 15 0 VCaP +

TIA1—DIRC2 3 122552164 Exon edge 2 70475537 Exon edge 12 0 VCaP +

TMPRSS2—ERG I2 21 42879876 Exon edge 21 39846047 Exon edge 11 0 VCaP +

CNNM4—PARD3B 2 97474487 Inside exon 2 205829873 Exon edge 11 0 VCaP +

SLC45A3—ELK4 I2 1 205628618 Inside exon 1 205593020 Exon edge 10 1 LNCaP +

RC3H2—RGS3 I2 9 125621318 Inside exon 9 116299074 Exon edge 8 1 VCaP +

AC024940.1—FAM60A 12 31477418 Inside exon 12 31451159 Exon edge 9 0 VCaP +

RERE—PIK3CD 1 8482786 Exon edge 1 9770482 Exon edge 9 0 LNCaP +

RP11-180P8.1—TANC2 17 61044108 Inside exon 17 61086895 Inside exon 9 0 Both +

TMED2 –INTERGENIC 12 124082643 Inside exon 6 79645813 Intergenic 8 0 LNCap -

SEC22B - AKT1 14 105237110 Inside exon 1 145116734 Inside exon 7 0 LNCap -

Intergenic—AMZ2 17 66202379 Intergenic 17 66246327 Exon edge 6 0 LNCap +

RAD9A - UBQLN2 11 67163530 Inside exon X 5690882 Inside exon 2 4 LNCap -

TMPRSS2—ERG I3 21 42880007 Exon edge 21 39817547 Exon edge 5 0 VCaP +

DIRC2 –Intergenic 3 122545912 Exon edge 2 64697744 Intergenic 3 2 VCaP +

CASZ1 –KAZN 1 10820755 Exon edge 1 15070470 Inside exon 5 0 LNCap +

ST7—DSG2 7 29128146 Inside exon 18 116869869 Inside exon 5 0 LNCap -

LMAN2—AP3S1 5 176778447 Inside exon 5 115202365 Exon edge 2 1 VCaP +

Fusions in bold have been previously reported and were used as controls. In column “Cell line” “Both” indicates that the fusion was confirmed both in VCaP

and LNCaP.

doi:10.1371/journal.pone.0167417.t004

Fusion Detection from RNA-Seq Data

PLOS ONE | DOI:10.1371/journal.pone.0167417 December 1, 2016 15 / 24



remaining 21 were specific for one cell line only. Interestingly, all the events verified in both

cell lines appear to be intra-chromosomal with the exception of a single chimeric transcript

that involves gene NBEA on chromosome 15 and an intergenic region on chromosome 13. A

further four (validated) predictions with an intergenic region as a second fusion partner were

detected only in one cell line. Fusions INSL6–JAK2 and two isoforms of ZDHHC7–UNK pres-

ent in the VCaP cell line have a breakpoint inside the intron of the 5’ fusion gene partner.

Notably, four confirmed events (POLR1D–LNX2, CTA-221G9.11–KIAA1671, CTC-

340A15.2–PPIP5K2, RP11-534G20.3–SVIL) indicate antisense transcription, emphasizing the

value of a strand-specific library preparation (for more details see S1 Text).

To investigate the effect of the NGS library insert size on fusion detection, we analyzed data-

sets VCaP500 and LNCap500. These samples received only 9% and 5% of the reads of their

VCaP200 and LNCap200 counterparts, respectively. Strikingly, InFusion revealed 151 putative

fusions in the VCaP500 sample and 87 in the LNCaP500 sample and moreover, we observed

that only 15 and 9 fusions, respectively, were shared between the libraries with short and long

inserts. The majority of fusion predictions are exclusive to either small or large insert size

libraries (S2 Fig). Fourteen PCR-validated fusions were also found in datasets with larger insert

size and lower coverage (S3 Fig), and by qRT-PCR we additionally confirmed one novel iso-

form of fusion SLC45A3–ELK4, which was found only in the sample LNCaP500.

Interestingly, we detected and verified several novel splice variants of the known fusions

TMPRSS2–ERG, RC3H2–RGS3 and SLC45A3–ELK4. Three isoforms of TMPRSS2–ERG

were also tested by qRT-PCR in the non-cancerous prostate cell lines RWPE-1 and PrEC, but

there was no evidence of these transcripts in cell lines other than VCaP (Fig 5A and 5B). Over-

all, both in qRT-PCR and expression analysis isoform 1 has the highest expression compared

to isoforms 2 and 3, however in qRT-PCR it dominates significantly over other isoforms (Fig

5C and 5D). Surprisingly, isoform 3, which is the best described isoform, has the lowest expres-

sion level, as measured by qRT-PCR, and the least support from the sequencing data compared

to other isoforms.

Another intriguing observation concerns fusions that involve intergenic regions, which are

typically ignored by other fusion detection tools. We discovered that they constitute a large

proportion of the predictions. For example 94 out of 336 predictions in VCaP200 sample and

95 out of 338 predictions in LNCaP200 sample have an intergenic region as one part of a

fusion. Similar proportions of fusions involving intergenic regions were also found in public

datasets (S6 Table). A curious example of such an event is a validated inter-chromosomal

fusion in the VCaP cell line that connects the DIRC2 gene and an intergenic region of chromo-

some 2, a fusion that is supported by a large clustering of reads downstream of the predicted

breakpoint (S4 Fig).

Additionally, we analyzed the cohort of experimentally validated fusions with TopHat-

Fusion, deFuse, ChimeraScan SOAPfuse and fusionCatcher, as we did in previous compari-

sons (S7 Table). While a number of novel fusion events was also detected by other tools, 14

novel fusions including several isoforms and events involving intronic and intergenic regions

were detected only by InFusion. Certain isoforms of TMPRSS2-ERG and RC3H2-RGS3 were

also detected by fusionCatcher and SOAPfuse, and two intronic fusions ZDHHC7—UNK by

TopHat-Fusion and deFuse. However, InFusion outperformed these tools in the total detec-

tion of these classes.

Discussion

We have designed and implemented a novel method for chimeric transcript discovery from

RNA-seq data. Our method combines and improves ideas proposed by other researchers, such
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Fig 5. TMPRSS2-ERG fusion isoforms. (A) Genomic structure of the TMPRSS2–ERG fusion transcripts discovered from deep sequencing data by

InFusion. Isoform 3 is a known transcript, while isoforms 1 and 2 are novel. Transcript names are taken from the Ensembl v.68 database. (B) RT-PCR

validation of isoforms in VCaP, LNCaP, RWPE-1 and PrEC cell lines; NTC = no template control. The PCR primer design was based on the output from the

InFusion pipeline. In order to detect only one product, one PCR primer specific for Isoform 3 was designed to cover the fusion junction site. A 50 bp DNA

ladder was co-run as size marker; bright bands indicate 250 bp and 500 bp. (C) Relative expression levels of the fusion isoforms as measured by qRT-PCR.
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as assignment of reads that map to multiple loci and advanced fusion filtering. Additionally, it

introduces several novel algorithmic aspects of chimeric RNA discovery, including intergenic

region analysis, fusion cluster homogeneity estimation and consideration of protocol strand

specificity. Our comparative analysis demonstrates that InFusion outperforms existing

approaches for chimeric transcript discovery in recall and has adjustable detection accuracy.

Using simulation data, we show that InFusion is able to discover a wide spectrum of fusion

events that can occur in the transcriptome. Importantly, from our experimental data we dis-

covered in-silico and verified in-vitro alternatively spliced fusion isoforms and chimeric RNAs

involving non-exonic regions. In concordance with recent studies [46] we observed that in

most cases of fusion genes one transcript isoform is dominant and highly expressed, while the

other isoforms are transcribed at significantly lower levels. However, this expression pattern

may be completely different at a different time point or in another cell type, and isoforms

might encode for RNAs or proteins of different functionality, which makes isoform detection

important for differential gene expression analysis.

Remarkably, in our predictions from cancer data we observed a large number of fusions

that involve intergenic regions, and four tested fusions of this kind were confirmed in vitro. To

our knowledge, discovery of such events has not been addressed previously, despite their

potential to encode functional proteins or regulate gene transcription.

An important factor influencing the detection of fusions from RNA-seq data is the depth of

coverage of the sequencing experiment. Similar to novel transcript discovery and alternative

splicing studies, fusion gene discovery benefits from higher coverage depth and longer reads

[47]. Our analysis shows that highly expressed fusions can be revealed even with relatively low

coverage (S5 Fig), however, a gain in sequencing throughput greatly increases the sensitivity of

discovery. Additionally, it is advantageous to use sequencing libraries with various insert sizes,

since the fragment length affects the range of detectable fusion events in paired-end sequenc-

ing. A notable example of this effect is the additional validated isoform of fusion SLC45A3–

ELK4, which we detected only in the low-covered sample LNCaP500. Furthermore, strand-

specific protocols are preferable for fusion discovery since they allow analysis of antisense tran-

scription [48]. InFusion uses information from the strand specificity of the library to report

antisense transcription in chimeric RNAs and also infers the transcription strand in case of a

non-annotated region. The computational efficiency of InFusion allows it to process large

RNA-seq datasets comparatively quickly, e.g. it took approximately 10 h to analyze 74 million

100 bp paired reads on a machine with eight 2.4 GHz CPUs and the memory requirements did

not exceed 30 GB.

There are several directions for future work. Firstly, how exactly read size benefits fusion

detection remains to be determined. We performed additional simulation experiments to

check the influence of read size (S6 Fig). We found that in comparison to existing tools InFu-

sion maintains high precision, however, recall decreases with increase of read size in all tools

due to a growing number of break breakpoints in SPLIT reads. We plan to improve the recall

for larger read size in future versions of the program. Second, estimating fusion gene expres-

sion remains an open problem. InFusion partly solves this issue by allowing output of possible

fusion transcript sequences, which can be added to the transcriptome library so that expression

can be quantified by applying methods such as RSEM [49]. However, we believe more robust

solutions might be possible. Third, the discovery of the fusion origin cannot be addressed

using RNA-seq short reads alone. In order to determine if the chimeric transcript originates

All measurements were performed in triplicate, mean expression values were computed relative to GAPDH. Plotted values are normalized to the computed

expression of isoform 3. (D) Expression levels of isoforms estimated in RPKM under the assumption of uniform coverage.

doi:10.1371/journal.pone.0167417.g005

Fusion Detection from RNA-Seq Data

PLOS ONE | DOI:10.1371/journal.pone.0167417 December 1, 2016 18 / 24



from a genomic translocation, from trans-splicing or from an experimental artefact, transcrip-

tome sequencing should be combined with other experimental technologies. There are meth-

ods that combine long and short RNA-seq reads [50] or whole genome sequencing and

transcriptome sequencing data to detect gene fusions [51], but more work is required in this

area. Correlating fusions with cancer will continue to provide new insights into this disease

and inform personalized therapy [28]. Chimeric transcripts, on the other hand, have also been

shown to occur in non-cancerous cells due to trans- or cis-splicing [29, 52], but the underlying

mechanisms have yet to be studied in depth [28]. InFusion may prove to be a useful tool with

high software quality in furthering our understanding in this area by detecting the whole scope

of possible events.

Supporting Information

S1 Text. Supplementary materials including a description of the simulation pipeline,

parameters applied for the fusion discovery tools in computational experiments and detec-

tion of sense-antisense chimeric transcripts from RNA-seq data.

(DOCX)

S1 Fig. Comparison of recall and precision on simulation data per fusion class. Simulated

fusions and corresponding datasets were analyzed per fusion class: (A) with both fusion part-

ner(s) having a breakpoint at the exon boundary; (B) with one or both fusion partner(s) having

a breakpoint inside an exon; (C) with one or both fusion partner having a breakpoint inside an

intron (D) with several alternatively spliced isoforms (E) with one fusion partner originating

from an intergenic region.

(EPS)

S2 Fig. Effect of insert size on fusion discovery. The figure shows comparison of fusion pre-

dictions for samples with different insert sizes in the same cell line. The lower number of

fusions discovered reflects the lower sequencing depth in VCaP500 (9.2% of VCap200) and

LNCaP500 (5.2% of LNCaP200).

(EPS)

S3 Fig. PCR-validated fusions detected in the sequenced samples. (A) VCaP cell line (B)

LNCap cell line. Previously described fusions are shown in bold. Fusions detected in both cell

lines are shown in italics.

(EPS)

S4 Fig. Screenshots from IGV demonstrating alignment of reads for a confirmed fusion

“DIRC2 –intergenic” (A) 5’ part of the fusion, the breakpoint is on the exon boundary of

gene DIRC2 (B) 3’ part of the fusion, the breakpoint is in the intergenic region on chromo-

some 2. The alignments shown in light red are supporting the fusion junction. The red vertical

line denotes fusion breakpoint, while the arrow shows direction of transcription.

(EPS)

S5 Fig. Fusion detection performed from subsamples. The subsamples are generated from

(A) VCaP200 and (B) LNCaP200 RNA-seq datasets. Each subsample is created randomly from

the dataset based on the required size. The sample size changes from 5 M reads to 70 M with a

step of 5 M.

(EPS)

S6 Fig. Read size influence on recall and precision in fusion detection. Fusion simulation

was performed for read size from 75bp to 200 bp (10 samples for each experiment). Then
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fusion detection was applied by InFusion along with SOAPfuse and fusionCatcher. Recall (A)

and precision (B) in fusion detection were computed for the tool results.

(EPS)

S1 Table. qRT-PCR primer pairs. Primer pairs used for qRT-PCR validation of the 40

selected fusion genes discovered from the deep sequencing data of VCaP and LNCap cell lines.

4 fusions (in bold) were not validated. This issue might be due to the generation of false artifi-

cial chimeras during the reverse transcriptase step in RNA-sequencing or a qRT-PCR-related

problem. Notably, 6 additional qRT-PCR experiments were initially performed for fusion

events that were reported from an earlier InFusion version which were not verified. Subse-

quent improved versions of InFusion do not report those events.

(XLSX)

S2 Table. Fusion genes in the Edgren et. al dataset. Showing whether validated fusions were

detected by selected tools. Additionally the table includes fusions detected and validated by

Kangapeska et al. [34] (in italics).

(XLSX)

S3 Table. Fusion genes in the Berger et. al dataset. Showing whether validated fusions were

detected by selected tools.

(XLSX)

S4 Table. Fusion genes in the Wu et. al dataset. Showing whether validated fusions were

detected by selected tools.

(XLSX)

S5 Table. Fusion types detected in VCap and LNCaP cell lines. Total is the total number of

fusions detected. Exon boundary break is the number of fusions where both 5’ and 3’ fusion

breaks are on the exon boundary. With isoforms is the number of fusions of the same type

that have several isoforms. Break inside exon is the number of fusions where one or both

breaks are inside an exon. Break inside intron is the number of fusions where one or both

breaks are inside an intron. Within intergenic is the number of fusions where one of the

breaks is inside an intergenic region.

(XLSX)

S6 Table. Analysis of public datasets with support of fusions within intergenic region. Pub-

lic datsets Edgren et al [42], Berger et al [43] and Wu et al [44] were reanalysed by InFusion

with the option to report fusions with one break inside an intergenic region activated. The

table provides novel results for each sample of the datasets.

(XLSX)

S7 Table. Fusions from VCaP and LNCaP cell lines. The table indicates if a particular event

detected by InFusion and validated using qRT-PCR was also reported by tools deFuse,

TopHat-Fusion, ChimeraScan, SOAPfuse and fusionCatcher. Fusions in bold are detected and

reported only by InFusion.

(XLSX)
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