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A B S T R A C T   

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the adult liver and morbidity are 
increasing in recent years, however, there is still no effective strategy to prevent and diagnose HCC. Therefore, it 
is urgent to research the effective biomarker to predict clinical outcomes of HCC tumorigenesis. In the current 
study, differentially expressed genes in HCC and normal tissues were investigated using the Gene Expression 
Omnibus (GEO) dataset GSE144269 and The Cancer Genome Atlas (TCGA). Gene differential expression analysis 
and weighted correlation network analysis (WGCNA) methods were used to identify nine and 16 key gene 
modules from the GEO dataset and TCGA dataset, respectively, in which the green module in the GEO dataset 
and magenta module in TCGA were significantly correlated with HCC occurrence. Third, the enrichment score of 
gene function annotation results showed that these two key modules focus on the positive regulation of in-
flammatory response and cell differentiation, etc. Besides, PPI network analysis, mutation analysis, and survival 
analysis found that SLITRK6 had high connectivity, and its mutation significantly impacted overall survival. In 
addition, SLITRK6 was found to be low expressed in tumor cells. To summarize, SLITRK6 mutation was found to 
significantly affect the occurrence and prognosis of HCC. SLITRK6 was confirmed as a new potential gene target 
for HCC, which may provide a new theoretical basis for personalized diagnosis and chemotherapy of HCC in the 
future.   

1. Introduction 

Hepatocellular carcinoma (HCC) is the most common primary ma-
lignancy in adults, accounting for approximately 90% of primary liver 
cancers, and is one of the most common malignancies worldwide [1]. Its 
high metastatic ability and high recurrence rate lead to a low survival 
rate and poor overall prognosis [2]. According to statistics, there are 
nearly one million additional cases of HCC, and the death toll exceeds 1 
million related to HCC in the world every year, of which China accounts 
for 50% of the total cases and deaths [3]. At present, the potentially 

curative treatments for HCC, such as liver transplantation, tumor 
resection, or ablation, are limited to tumors [4,5]. Prevention and early 
diagnosis of hepatocellular carcinoma remain an urgent problem, and 
there is no effective prevention strategy for hepatocellular carcinoma， 
it is urgent to research the effective biomarker to predict clinical out-
comes of HCC tumorigenesis and propose new strategies for 
gene-targeted therapy. 

In recent years, functional genomics based on bioinformatics has 
been developing continuously [6]. Numerous tumor biomarkers have 
been discovered and applied in the clinic, significantly improving tumor 
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prevention and early diagnosis and increasing overall patient survival 
[7]. In the present, two databases, Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA), have collected data from different 
chip platforms that have been used to investigate the molecular mech-
anisms underlying multiple tumorigeneses [8]. 

Previous studies have proven that HCC phenotypes are strongly 
associated with specific gene mutations [9]. The TERT promoter in-
creases the cancer incidence by being affected by copy number changes 
that can mutate before cancer development. In HCC, TP53 and CTNNB1 
are the next most commonly mutated genes, with 25%–30% of these 
patients having mutations in these genes [10–12]. In summary, we 
believe that it is feasible further to reveal the pathogenesis of HCC from 
gene mutations. 

In the current study, we integrated and analyzed HCC RNA-Seq 
datasets from GEO and TCGA data by combining multiple bioinfor-
matics methods and techniques. Weighted gene co-expression network 
analysis (WGCNA) was performed on the two groups of datasets 
respectively to screen out the key modules related to HCC pathogenesis. 
We combine gene function enrichment analysis, protein-protein inter-
action (PPI) analysis, and gene survival analysis to detect and analyze 
key module genes. Finally, SLITRK6 was proved as a potential tumor 
prediction biomarker for diagnosing and treating HCC in combination 
with immunohistochemical validation of the Human Protein Atlas 
database (HPA). It may provide a reliable basis for determining molec-
ular targets for personalized diagnosis and chemotherapy of HCC in the 
future. 

2. Materials and methods 

2.1. Acquisition of liver cancer numbers from TCGA database and GEO 
database 

The design of this study is shown as a flow chart in Fig. 1. We 
downloaded transcription profiles for GSE144269 and GSE105130 that 
were acquired from GEO (https://www.ncbi.nlm.nih.gov/gds), and the 
gene expression RNA-Seq of TCGA-LIHC from the UCSC Xena database 
(https://xena.ucsc.edu/) [13,14] Next, The principal component anal-
ysis (PCA) was used to reduce the dimensionality of the obtained data. 
The ggfortify (version: X64 4.0.3) and factoextra (version: X64 4.0.3) R 
packages were selected to reduce the dimensionality of the original data 
[15]. 

2.2. Gene differential expression analysis 

The DESeq2 package of R software (version: X64 4.0.3) was used to 
calculate the expression value of the sorted expression matrix of GEO 
dataset GSE144269 (GSE144269_VOOM_GENEEXPRESSION). The se-
lection criteria of differentially expressed genes (DEGs) were chosen by | 
Log2(FC)|≥1 and P-value<0.05 [16]. Similarly, the DESeq2 package of R 
software was used to identify DEGs in the TCGA-LIHC, and the screening 
criteria were |Log2(FC)|≥1 and P-value<0.01. Two sets of DEGs volcano 
maps were constructed by ggplot2 package (version: X64 4.0.3) of R 
software [17]. 

2.3. Weighted correlation network analysis 

DEGs from both gene sets were used in the WGCNA R language 

Fig. 1. Flow diagram of this research.  
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package to perform Weighted gene co-expression network analysis [18]. 
The power value was calculated by the pink soft-Threshold function of 
the WGCNA package. Next, we identify the gene modules by using hi-
erarchical clustering with a criterion of at least 30 genes per module 
(minModuleSize = 30) [19]. As in previous studies, the hclust criterion 
was used to perform hierarchical clustering. The branches of the hier-
archical clustering tree correspond to modules. The clinical data was 
applied to the WGCNA and used as the basis for the dynamic tree-cutting 
algorithm used to segment the network module [20]. As we know, the 
different module signature genes (MEs) are computationally correlated 
with clinical traits to some extent. The significance of each gene with the 
selected clinical trait is calculated and quantitatively associated by gene 
significance (GS), and the module affiliation (MM) of the association 
between each module’s signature genes and the liver cancer gene 
expression profiles is also calculated. GS within the module on behalf of 
the correlation coefficient between gene expression level and clinical 
characteristics, while MM represents the correlation coefficient between 
gene expression level and gene principal component expression level. 
We believe that when GS and MM are highly correlated, the most 
important elements of the module also have a strong association with 
the selected clinical trait. In this case, we selected the module and used it 
to construct co-expression networks and identify Hub genes [21]. 

2.4. Functional annotation of key gene modules based on WGCNA 

GO annotation consists of three main parts: biological process (BP), 
cellular component (CC), and molecular function (MF) [22]. The genes 
of the key modules were extracted, and the functions of the genes of the 
key modules of HCC were annotated using DAVID (https://david.abcc. 
ncifcrf.gov/). The P-value<0.05 was considered as significant enrich-
ment [23,24]. 

2.5. Construction of PPI and screening of Hub genes 

Protein-Protein interaction (PPI) network analysis can predict the 
function of interacting proteins and provide functional relationships of 
protein interactions [25]. The Search Tool for the Retrieval of Inter-
acting Genes (STRING) database (http://string-db.org) collects and ag-
gregates all publicly available protein-protein interaction information. 
The genes of key modules were extracted, and the protein and PPI 
network information data were retrieved using STRING [26]. In addi-
tion, to explore the relationship between hub genes, the STRING data-
base and the Cytoscape (http://cytoscape.org/;version 3.7.2) software 
were used to convert the results. Cytohubba, a plug-in in Cytoscape, was 
used to select the hub genes with high connectivity in the gene expres-
sion network for subsequent analysis based on the top20 score of the 
Maximum Clique Centrality (MCC) algorithm [27,28]. 

2.6. Modular gene mutation analysis 

Gene mutation is one of the causes of the occurrence and develop-
ment of cancer, and it is worth exploring the types, mutation sites, and 
survival effects of a gene mutation for revealing the pathogenesis of 
hepatocellular carcinoma [29]. We extract the top 20 genes, using a 
database of 442 cases of hepatocellular carcinoma (TCGA, Firehose 
Legacy) data in the cBioportal (http://www.cbioportal.org/), to deter-
mine the type and frequency of hepatocellular carcinoma (HCC) gene 
mutations, with mutation rate>1% is the screening criterion [30]. The 
Cbioportal database online analysis tool was combined to visualize the 
mutation sites, mutation types, and survival effects of genes with high 
mutation rates [31]. 

2.7. Differentiating performance of the prognostic signature 

We used the R package of pROC to perform the ROC curve analysis of 
the hub gene [32].To construct receiver operating characteristic (ROC) 

and liver cancer risk scores for normal tissue, compare normal tissue and 
liver cancer risk scores, and explore the differential diagnostic ability of 
key genes. The ROC diagnostic curve is used to investigate each feature’s 
prognostic or predictive accuracy under the area under the curve (AUC). 
AUC>0.5 indicates that the difference has diagnostic significance [33, 
34]. 

2.8. Immunohistochemical verification 

The Human protein atlas database (HPA) (https://www.proteinatlas. 
org), contained a large amount of a particular organization tran-
scriptome and proteomics data. It is composed of an organization and 
pathology atlas [35]. Immunohistochemistry (IHC) in HPA was used to 
determine the protein expression level of genes related to survival be-
tween HCC and normal tissues, and Immunohistochemical essays are 
one of the most commonly used methods to detect the location and 
abundance of protein expression [36,37]. 

3. Results 

3.1. Samples screening and differentially expressed gene identification 

The general process of screening for differential genes is shown in 
Fig. 2A. Principal component analysis (PCA) was used to cluster samples 
and remove outliers from the first and second components (Fig. 2C and 
D). There are 51 tumor samples, and 56 normal samples were screened 
from GSE144269 (Fig. 2B).Next, We used |Log2(FC)|≥1, P-value<0.05 
as the cutoff criteria.Overall, 8292 DEGs were extracted from 
GSE144269, including 5322 upregulated genes and 2970 down-
regulated genes (Fig. 2E). Similarly, 325 cancer samples and 46 para- 
cancer samples were selected from the TCGA-LIHC dataset (Fig. 2B). 
The cutoff value was |Log2(FC)|≥1, P-value<0.01. A total of 8717 DEGs 
were extracted from TCGA-LIHC, including 6673 upregulated genes and 
2044 downregulated genes (Fig. 2F). 

3.2. Construction of gene co-expression module 

The initial soft threshold method was used to implement our WGCNA 
method. We first evaluated the reliability of the network, but no outlier 
samples were detected that needed to be removed. We analyze the 
network topology of the threshold power from 1 to 30 and determine the 
scale independence and average connectivity of the relative balance of 
the WGCNA (Fig. S1). The lowest power fitting index of the scale-free 
topology is 0.85. Next, power is determined to be 3. Check scale-free 
topology scale of TCGA-LIHC (R^2 = 0.86, slope = − 1.36) and check 
scale-free topology scale of GSE144269 (R^2 = 0.9, slope = − 1.55) 
(Fig. S2). The distribution approximates the linear scale-free topology, 
and the fitting degree is high, which proves that the power selection is 
appropriate. We respectively constructed 8292 DEGs hierarchical clus-
tering trees of the GSE144269 dataset and 8717 DEGs hierarchical 
clustering trees of the TCGA-LIHC dataset. Then we set mergeCutheight 
(the threshold for merge modules) to 0.15 to merge similar modules. 
TCGA-LIHC generates 16 modules, and GSE144269 generates nine 
modules (Fig. 3A and B). Compared with other modules, the green 
module in GSE14469 and the magenta module in TCGA-LIHC have a 
higher correlation with normal state and tumor state (Fig. 3C and D), 
suggesting that the green module and magenta module may play an 
important role in the occurrence and development of liver cancer and 
need to be further analyzed. In order to understand the interaction be-
tween the genes contained in the module, we obtained the genes of two 
key modules. 

3.3. Functional enrichment analysis of key-related modules 

The green and magenta modules are most associated with tumor 
status. There was a high correlation between the number of module 
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Fig. 2. Screening sample and Identification of DEGs. (A) Flowchart genetic difference analysis. (B) Bar chart of sample size. red: Normal, blue: Tumor. (C, D) 
Principal component analysis of GSE144269 samples and TCGA-LIHC samples. (E, F) The volcano plots of DGEs for dataset GSE144269 and TCGA-LIHC red: Up; blue: 
Down; gray: No. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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members in the magenta module and gene significance (cor = 0.93, p =
2.8e-113). There was a high correlation between module member 
number and gene significance in the green module (cor = 0.93, p = 1e- 
200), which indicated that these modules were suitable for identifying 
HUB genes related to normal and tumor status (Fig. 4A and B). To 
further understand the function of the key modules, we upload all the 
genes in the green module and magenta module to the David database 
for GO analysis. The GO analysis results of the green module and 
magenta module are shown in Fig. 4C and D. The green module is mainly 
related to the negative regulation of growth, cell differentiation, and 

cellular response to erythropoietin (Fig. 4C). The magenta module is 
mainly related to positive regulation of inflammatory response, recog-
nition of apoptotic cells, and retinoic acid metabolic process (Fig. 4D). 

3.4. PPI analysis and mutation analysis of genes 

The 48 overlapping genes were introduced into the STRING data-
base, and Cytoscape and its plugin (cytoHubba) were applied to remove 
the isolated genes that did not interact with each other. PPI results 
showed that the protein interaction network constructed by 48 genes 

Fig. 3. Identification of modules associated with the tumorigenesis of HCC. (A, B) The cluster dendrogram of genes in TCGA-LIHC and GSE144269. (C, D) 
Module-trait relationships of TCGA-LIHC and GSE144269. 

X. Liu et al.                                                                                                                                                                                                                                      



Biochemistry and Biophysics Reports 28 (2021) 101157

6

had 37 nodes and 71 edges. The top 20 genes were screened out by the 
MCC algorithm for further analysis (Fig. 5A). Combined with the GEPIA 
database (http://gepia.cancer-pku.cn/detail.php), compared with the 
normal samples, the expression of these 20 genes were all down- 
regulated in HCC tissues, among which IGF1, IGF2, IGFB3, INS-IGF2, 
NPY1R, and SYT9 showed the most significant differences (P-val-
ue<0.05) (Fig. S3). We extracted the top 20 genes and evaluated their 
mutation frequency using cBioPortal.A total of 12 mutant genes were 
screened using mutation rate >1% as screening standard. Including 
SLITRK6(5%), DSCAM(4%), GPM6A(3%), ID2(2.7%), MASP1(2.7%), 
SLC17A8(2.5%), ADAM22(2.5%), CHRM2(2.5%), SYT10(1.6%), IGBP3 
(1.4%), NPY1R(1.4%) and LGI1(1.4%). The main types of mutations 
include inframe mutation, missense mutation, truncating mutation, 
amplification, and deep deletion(Fig. 5B). We also detected the heat map 
of their mRNA expression relative to the z-scores of diploid samples and 
the mutation spectrum of each sample. The mRNA expression heatmap 
of each sample is shown in Fig. 5C and the mutation spectrum in Fig. 5B. 
Except for ID2 and MASP1, the mRNA expression levels of the other ten 
genes were significantly decreased in most samples. 

3.5. SLITRK6 mutation survival analysis and expression analysis 

The main mutation types of SLITRK6 include missense and trun-
cating, and the mutation sites are shown in Fig. 6A. Its mutation is 
concentrated in the LRR_8 (Leucine-rich repeat) region. The prognostic 
value of 12 gene mutations in HCC was analyzed by a KM curve. The 
results showed that SLITRK6 (P = 6.202e-3) had a significant effect on 
the overall survival of HCC. The total survival rate of the altered group 
was lower than that of the unaltered group (Fig. 6B). The expression 
level of SLITRK6 in the GSE105130 database is shown in Fig. 6C. The 
results showed that the expression of SLITRK6 in tumor tissues was 
significantly different from that in normal tissues (p < 2.9e-09), and the 
expression in tumor tissues was significantly down-regulated (Fig. 6C). 
ROC analysis of normal and tumor diagnosis prediction of SLITRK6 on 
TCGA-LIHC and GSE144269 data sets showed that the AUC value of the 
GSE144269 database was 0.874, and that of the TCGA-LIHC database 
was 0.941 (Fig. 6D and E). The diagnostic effect is good. 

Fig. 4. Enrichment analysis for module eigengenes. (A) The scatter plot between the magenta module membership and GS for tumor. (B) The scatter plot between 
the green module membership and GS for tumor. (C) GO analysis for the green module. (D) GO analysis for the magenta module. (E) Venn diagrams of the green and 
magenta module genes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.6. Immunohistochemical analysis 

Immunohistochemical staining obtained from the human protein 
map database also confirmed the expression level of SLITRK6 in HCC. 
Notably, the protein level of SLITRK6 was highly expressed in tumor 
tissues (Fig. 7). 

4. Discussion 

Hepatocellular carcinoma (HCC) is one of the most important ma-
lignant tumors of the liver. Although new and advanced treatments have 
emerged in recent years, the survival rate of liver cancer is still very low, 
and the prognosis is very poor [38]. Therefore, better biomarkers are 
needed to determine the specific prognosis and progression of HCC. 
Gene mutation is one of the causes of the occurrence and development of 
cancer [29]. In the present study, the type and site of gene mutation and 

Fig. 5. PPI analysis and mutation analysis of 48 DEGs. (A) The 20 genes with the highest MCC score in the PPI network. (B)The Oncopprint schematic shows the 
mutation types and mutation rates of SLITRK6, DSCAM, GPM6A, ID2, MASP1, SLC17A8, ADAM22, CHRM2, SYT10, IGFBP3, NPY1R, and LGI1 in 366 samples of 
mutation and CNA data. (C)mRNA expression z-scores are relative to diploid samples. Including SLITRK6, DSCAM, GPM6A, ID2, MASP1, SLC17A8, ADAM22, 
CHRM2, IGFBP3, and NPY1R; SYT10 temporarily has no data. 

X. Liu et al.                                                                                                                                                                                                                                      



Biochemistry and Biophysics Reports 28 (2021) 101157

8

Fig. 6. Overall survival analysis and gene expression of SLITRK6. (A) Mutation sites and types of SLITRK6; LRR_8:Leucine rich repeat. (B) Mutation survival 
analysis of SLITRK6; P-value = 6.202e-3. (C) Expression boxplot of SLITRK6 in GSE105130 dataset; P-value < 0.05. (D) The ROC analysis of the GSE144269 dataset 
for normal and tumor diagnosis prediction by SLITRK6; AUC = 0.874. (E) The ROC analysis of TCGA-LIHC dataset for normal and tumor diagnosis prediction by 
SLITRK6; AUC = 0.941. 
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its effect on survival were discussed, and it was further confirmed that 
gene mutation plays an important role in the diagnosis and prognosis of 
liver cancer. 

Firstly, We used PCA to conduct dimensionality reduction analysis 
on the original data, removing outliers in all samples. Next, 46 normal 
and 325 cancer samples were screened out in the TCA-LIHC data set, and 
56 normal samples and 51 cancer samples were screened out of the 
GSE144269 samples. The differentially expressed genes were verified by 
R packet DESeq2. 

Next, WGCNA analysis identified two important modules in the 
TCGA-LIHC and GSE144269 dataset, associated with HCC pathoge-
nicity. Compared to other methods, WGCNA has several significant 
advantages. Because the WGCNA analysis made the transition from 
single-gene studies to multi-gene studies and explored the relationship 
between clinical characteristics and co-expression modules, its results 
were more reliable and had greater biological significance [39]. 

To study the interaction between various genes and their mecha-
nisms, we extract DEGs in two groups of data, respectively constructed 
two gene co-expression networks, and combining with clinical data; 
building blocks the correlation between genetic and clinical character-
istics of heat maps. Among them, the magenta module of TCGA-LIHC 

and the green module of GSE144269 are closely related to the clinical 
characteristics of the tumor. The module with the highest correlation 
with clinical characteristics was considered to be the key module to 
explore the main causes of disease progression [40]. 

Functional enrichment analysis showed that the magenta module 
was significantly related to apoptosis and inflammatory response. In 
GSE144269, the green module was mainly related to the negative 
regulation of growth and cell differentiation. These results suggested 
that abnormal cell differentiation and growth inhibition may be the 
potential mechanism of HCC. 

By extracting 48 intersecting genes from two highly correlated 
modules, we analyzed and summarized the two sets of data. In addition. 
the protein interaction network of 48 genes was constructed by 
combining the STRING database, and we found that they had high 
interaction relationship. By introducing Cytoscape software and its 
cytoHubba plugin, the top 20 Hub genes with the highest MCC scores 
were screened by MCC algorithm, which may play a vital role in regu-
lating the protein network. We can study these genes in more detail. 

Combined with the GEPIA database, we found that compared with 
normal samples, the expression levels of these 20 genes were down- 
regulated in cancer samples, among which IGF1, IGF2, IGFBP3, INS- 

Figure 7. Immunohistochemistry of SLITRK6 in HCC and para-cancer tissues from the HPA database. (A) Normal antibody :HPA014491. (B) Para-cancer 
antibody :HPA014491. 
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IGF2, NPY1R, and SYT9 were down-regulated most significantly (P- 
value<0.05). To study whether the mutations of these Hub genes are 
associated with the pathogenesis of cancer, we screened 12 highly 
mutated genes using sample data from the cBioportal database, 
including SLIRK6, DSCAM, GPM6A, ID2, MASP1, SLC17A8, ADAM22, 
CHRM2, SYT10, IGFBP3, NPY1R, and LGI1. A gene with a mutation rate 
greater than 1% is defined as a highly mutated gene. The main types of 
mutations include inframe mutation, missense mutation, truncation 
mutation, amplification, and deep deletion. 

Using survival analysis, we further examined the effect of SLITRK6 
hypermutation on overall survival. The results showed that the SLITRK6 
mutation had a significant effect on the overall survival of patients (P- 
value = 6.202e-3). The mutation sites of SLITRK6 were mainly concen-
trated in the leucine repeat enrichment region, and the mutation types 
were mainly missense and truncating. 

More interestingly, we verified the expression level of SLITRK6 in 
combination with another set of data GSE105130, and found that the 
expression level was significantly down-regulated in tumor samples (P- 
value<0.05). To verify the diagnostic accuracy of SLITRK6, ROC analysis 
results showed that the AUC of TCGA-LIHC is 0.941 and that of 
GSE144269 is 0.874, indicating that the AUC>0.5 of SLITRK6 in 
GSE144269 and TCGA-LIHC had good diagnostic significance. 

Finally, we performed an immunohistochemical analysis of SLITRK6 
in the HPA database, and SLITRK6 was found to be highly expressed in 
tumor tissue. 

SLITRK6, one of six members of the SlitRK family of transmembrane 
proteins, has been found to be closely involved in cell adhesion, cell 
differentiation, stem cell characterization, cancer cell migration, and 
invasion [41,42]. Studies have shown that SLITRK6 is moderately 
negatively correlated with tumor malignancy. Extensive immunohisto-
chemical studies have shown that SLITRK6 is expressed in a variety of 
epithelial tumors, including bladder cancer, lung cancer, breast cancer 
and glioblastoma [43]. SLITRK6 is a complete membrane protein, low 
expression in most tissues, but the high expression in bladder cancer 
[44]. Although SLITRK6 is considered to be a promoter of tumorigenesis, 
studies have shown that the expression of SLITRK6 is significantly 
down-regulated in smokers and chronic obstructive pulmonary (COPD) 
patients disease compared with healthy non-smokers [45]. In the study 
of apigenin regulating the pro-inflammatory activation of TNFα in 
MD-MB-468 cells of Triple-Negative Breast Cancer (TNBC). Several 
TNFα deferentially upregulated transcripts were reduced by apigenin, 
including CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R, ROS1, CFB, 
IKBKe, SLITRK6 (a checkpoint target), and MMP13 [46]. The SLITRK1, 
SLITRK2, SLITRK3, SLITRK4, SLITRK5, and SLITRK6 genes have been 
detected in the human brain, and the expression profile of each SLITRK 
is unique. The results showed that all SLITRK genes are differentially 
expressed in brain tumors, including astrocytoma, oligodendroglioma, 
glioblastoma, medulloblastoma, and supratentorial primitive neuro-
ectodermal tumor (PNET). Interestingly, SLITRK6 expression is highly 
selective in several different types of tumor tissues [47]. SLITRK family 
proteins control neurite outgrowth and regulate synaptic development 
[48]. SLITRK6 is located in the region of chromosome 13q31.1. Research 
shows that chromosome 13q31.1 will produce microdeletion. These 
types of deletions may cause different genetic effects on genotypes 
and/or phenotypes [49]. While studying an autosomal recessive syn-
drome characterized by high myopia and sensorineural deafness found 
that three mutant SLITRK6 proteins all showed defects in cell surface 
localization. Histological studies of retinal development after birth in 
mice with SLITRK6 deficiency showed delayed synapses in SLITRK6--
deficient mice [50]. 

In recent years, many studies have confirmed the effect of gene 
mutation on tumor progression and prognosis. MUC16 encodes cancer 
antigen 125 (CA-125), which is often mutated in gastric cancer (GC). 
Studies have shown that MUC16 mutation may be related to higher 
tumor mutation load, better survival outcome, immune response, and 
cell cycle pathway [51]. It has been reported that tumor mutation load 

(TMB) and immune infiltration can predict the response to immuno-
therapy in several types of tumors. In cutaneous melanoma, TMB is 
positively correlated with prognosis [52]. FMS-like tyrosine kinase 3 
(FLT3) mutations are commonly present in acute myeloid leukemia 
(AML) and are associated with poor prognosis [53]. Combined with the 
results of our study, it is further demonstrated that the mutation of 
SLITRK6 has an impact on the occurrence and development of HCC, 
which may be a new potential biomarker for HCC. 

Certainly, there are many deficiencies in our study; we conducted 
comprehensive bioinformatics analysis based mainly on data from on-
line databases, lacking complete in vivo and in vitro functional valida-
tion. At the same time, different doses of anti-cancer drugs also have 
various effects on the oxidative stress, inflammation, apoptosis, and 
viability of tumor cells [54–58]. The diagnostic treatment of tumors is 
challenging but still has a bright future. 

5. Conclusions 

Here, we combined multiple bioinformatics research methods to 
screen out the SLITRK6 mutation that had a greater influence on the 
survival of HCC. The results of this study systematically confirmed the 
influence of SLITRK6 mutation on HCC, which theoretically has a good 
diagnostic effect. It provides a new idea for the diagnosis, prognosis, and 
targeted therapy of HCC. 
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