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Gene coexpression analysis is widely used to infer gene modules associated with diseases and other clinical traits. However, a
systematic view and comparison of gene coexpression networks and modules across a cohort of tissues are more or less ignored.
In this study, we first construct gene coexpression networks and modules of 52 GTEx tissues and cell lines. The network
modules are enriched in many tissue-common functions like organelle membrane and tissue-specific functions. We then study
the correlation of tissues from the network point of view. As a result, the network modules of most tissues are significantly
correlated, indicating a general similar network pattern across tissues. However, the level of similarity among the tissues is
different. The tissues closing in a physical location seem to be more similar in their coexpression networks. For example, the two
adjacent tissues fallopian tube and bladder have the highest Fisher’s exact test p value 8.54E-291 among all tissue pairs. It is
known that immune-associated modules are frequently identified in coexperssion modules. In this study, we found immune
modules in many tissues like liver, kidney cortex, lung, uterus, adipose subcutaneous, and adipose visceral omentum. However,
not all tissues have immune-associated modules, for example, brain cerebellum. Finally, by the clique analysis, we identify the
largest clique of modules, in which the genes in each module are significantly overlapped with those in other modules. As a
result, we are able to find a clique of size 40 (out of 52 tissues), indicating a strong correlation of modules across tissues. It is not
surprising that the 40 modules are most commonly enriched in immune-related functions.

1. Introduction

With the development of next-generation sequencing tech-
nologies, there are more and more sequencing data available,
which provides a great opportunity to unravel the biological
mechanisms behind them using bioinformatics and machine
learning tools [1]. As one of the most efficient bioinformatics
methods, biological networks are frequently used to visualize
the interactions among molecules [2]. Gene coexpression
networks are one type of important biological networks, in
which each node denotes a gene and each edge denotes a gene

coexpession between two genes. A gene is coexpressed with
the other one if there are some correlations between the
expression profiles of the two genes across the sample set,
which might be caused by gene regulation and other biological
mechanisms. Similar to other networks, modularity is a very
important feature of the gene coexpression network. A gene
expression module is a set of genes, in which each pair of genes
are highly coexpressed. Previous studies have suggested that
genes in the same module tend to perform similar functions
corporately and thus, a gene module might indicate some
critical function [3]. The key driver genes in a module are
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usually highly associated with disease progression and
patients’ survival, which are usually used as diagnostic bio-
markers and drug targets [4].

There are a lot of studies on gene coexpression networks.
Zhang and Horvath developed weighted gene coexpression
network analysis (WGCNA) [5], an algorithm to construct
the gene coexpression network and modules from expression
of single genes. WGCNA first calculates the absolute value of
the Pearson correlation between expression vectors of two
genes, which is then powered to a certain value. The topolog-
ical overlap matrix (TOM) is then calculated to consider the
similarity of adjacent genes, and finally, a hierarchical
clustering algorithm is applied to obtain gene modules. The
algorithm was implemented in R [6] and widely used in
many studies. For example, Ghazalpour et al. applied the gene
coexpression network to characterize genes associated with
the mouse weight [7]. Zhao explored gene coexpression mod-
ules associated with lung adenocarcinoma by using WGCNA
[8]. Similarly, Lv et al. identified lung cancer-related modules
based on the coexpression network [9]. Li et al. identified key
pathways and genes in the dynamic progression of hepatocel-
lular cancer (HCC) through WGCNA and key driver analyses
[10]. In addition, Gargalovic et al. identified inflammatory
gene modules based on human endothelial cell responses
to oxidized lipids, which turn out to be a gold module in
many WGCNA analyses [11]. Miller et al. examined the
divergence of human and mouse brain transcriptome, by
which they identified pathways associated with Alzheimer’s
disease [12]. Finally, it worth’s mentioning that gene coex-
pression networks were also used to study protein interactions
[13], brain damage [14], or the effect of certain drugs on
damaged tissues [15].

However, most of the studies only focus on one coexpres-
sion network or compare two gene coexpression networks
under two conditions (e.g., disease versus normal or human
versus mouse). A systematic comparison of coexpression
networks and modules across a cohort of human tissues is
more or less ignored. Comparing tissue-specific coexpression
networks is essential to evaluate tissue heterogeneity, which is
critical for tissue-specific disease studies and drug design.

In this study, we construct 52 tissue or cell line-specific
coexpression networks and their modules from the
genotype-tissue expression (GTEx) project. We then annotate
the modules in each coexpression network. By comparing the
pair-wise enrichment of modules among networks, we infer
tissue correlations from the network point of view. It is known
that immune-associated modules are gold modules for
WGCNA analyses. We thus study the enrichment of immune
function in modules for all 52 networks. Finally, we perform a
maximal clique analyses to retrieve modules conserved across
many tissues and also tissue-specific modules. This study
provides a network view of human tissues.

2. Materials and Methods

2.1. Data Source and Preprocessing. We downloaded the
gene expression data in fpkm format of 52 tissues and cell
lines from the GTEx Official website (https://gtexportal
.org), which include Adipose_Subcutaneous, Adipose_ Vis-
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ceral_(Omentum), Adrenal Gland, Artery_Aorta, Artery_
Coronary, Artery_Tibial, Brain_Amygdala, Brain_Ante-
rior_cingulate_cortex_(BA24), Brain_Caudate_(basal_gan-
glia), Brain_Cerebellar_Hemisphere, Brain_Cerebellum,
Brain_Cortex, Brain_Frontal Cortex (BA9), Brain_Hippo-
campus, Brain_Hypothalamus, Brain_Nucleus_accumbens_
(basal_ganglia), Brain_Putamen_(basal_ganglia), Brain_Spi-
nal_cord_(cervical_c-1), Breast Mammary_Tissue, Cells_
EBV-transformed_lymphocytes, Cells_Transformed_fibro-
blasts, Colon_Sigmoid, Colon_Transverse, Esophagus_Gas-
troesophageal Junction, Esophagus_Mucosa, Esophagus_
Muscularis, Heart_Atrial Appendage, Heart_Left_Ventricle,
Liver, Lung, Muscle_Skeletal, Nerve_Tibial, Ovary, Pancreas,
Pituitary, Prostate, Skin_Not_Sun_Exposed_(Suprapubic),
Skin_Sun_Exposed_(Lower_leg), Small_Intestine_Termi-
nal_Ileum, Spleen, Stomach, Testis, Thyroid, Uterus, Vagina,
Whole_Blood, and so on, and the number of samples for each
tissue varied from 71 to around 500. The readers are referred
to the GTEx website for the detailed information of tissues and
samples (https://gtexportal.org). The genes in each tissue or
celllines were overlapped, and the profiles for the overlapping
genes were kept for each tissue and cell line. As suggested by
the GTEx consortium, the expression profile for each sample
is then mapped to a standard normal distribution according
to the rank of gene expression across samples. As a result,
the gene expression profile for each gene satisfies a normal
distribution, and thus, the Pearson correlation is suitable for
calculating the correlation between genes. The normalized
gene expression data was then used to construct coexpression
networks and modules.

2.2. Construction of Gene Coexpression Network

2.2.1. Prerequisites for Network Construction. In the WGCNA
algorithm, the elements in the gene coexpression similarity
matrix are the absolute values of correlation between expres-
sions of two genes, raised up to a given power. The power is
a user-defined parameter determined usually by the scare-
free property of the resulted coexpression network. Let k be
a variable denoting the possible degrees of a node, varying
from 1 to the maximum node degree K, and p(k) be the prob-
ability of a node to be of degree k; that is, the number of nodes
with degree k divided by the number of all nodes. The Pearson
correlation between log (k) with k from 1 to K and log (p(k))
with k from 1 to K is used to evaluate the scare-free of a net-
work. A higher correlation indicates that the network is more
scare-free. Usually, we require the correlation to be greater
than 0.8, by which to select the WGCNA parameter power.

2.2.2. Major Steps for Network Construction

Step 1. Choose a similarity measure.

There are many ways to measure similarity, such as the
Pearson correlation coefficient, which is one of the most
common and widely studied measures [16]. So we can choose
the Pearson correlation to calculate the similarity between
expression vectors of two genes. The similarity of gene coex-
pression network can be expressed by a similarity matrix.
The element of matrix is the correlation coefficient between
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each pair of genes. The gene network is an undirected graph,
so the calculation of a similarity value should be absolute.
The similarity formula is as follows:

Sn=|cor(m, n)|. (1)

Step 2. Define adjacency functions.

The process of defining adjacency function is to determine
threshold 3. There are two main ways to determine threshold,
hard threshold and soft threshold. Soft threshold is based on
network topology [17], and the network is weighted network,
which is more robust than unweighted network. The adja-
cency function used in the WGCNA method is the power
exponential adjacency function. So we can get adjacent matrix
Amn. The element of matrix, amn, is the connection strengths
between each pair of genes.

That is to say, for any pair of genes, in order to get the
connection strengths Amn, the weighting coefficient § is
subjected to a power exponential operation on the correla-
tion coefficient Smn. The formula is as follows:

Step 3. Computation of Dissimilarity.

The degree of difference between genes is the basis for
constructing gene modules. A simple method of calculating
the degree of difference is that the weighted correlation coef-
ficient in the adjacency matrix can be directly used as the
similarity, and then, the similarity is subtracted from 1 to
be the dissimilarity. However, it is proposed that when the
module is obtained from the clustering of gene expression
profiles, the dissimilarity based on TOM similarity is better.
The topological overlap matrix is used to calculate the simi-
larity of adjacent genes. The topological overlap of two nodes
w,,, reflects their relative interconnectedness.

w — lmn + amn
"™ min {k, +k,} +1-a,,

(3)

where a,,, is the element of adjacent matrix, /,,, is the
sum of the product of the adjacent coefficients of the
nodes connected to the genes m and n, 1, =)a,,,d,,-
And k,, and k, represent the sum of the adjacent coef-
ficients of the nodes to which the genes m or n are
individually connected.

Therefore, using 1 minus the TOM similarity will result
in a better module. Just like the software design concept,
the module which satisfies low cohesion and high coupling
is an ideal one. One of the TOM similarities is based on the
TOM similarity measure on the topological structure [18],
and the other is the proposed extended topology overlap
matrix [19].

Step 4. Cluster analysis to get the module.

After the identification of genes is determined, a hierar-
chical clustering tree is constructed. The construction of clus-
tering trees has two algorithms: static cut tree and dynamic cut
tree [20]. But the static cut tree algorithm is clustered by defin-

ing a fixed height, and the accuracy of the method to identify
the cluster is not high. The dynamic cut tree algorithm is based
on the branch shape of the tree diagram, which can be used to
mine more information in the gene modules that cannot be
detected by the static algorithm. More importantly, the gene
network identified by the dynamic algorithm is consistent
with the results of previous biological experiments [21]. So
in the WGCNA algorithm, the dynamic algorithm is used to
get the modules.

2.3. The Fisher’s Exact Test. The p value of the Fisher’s exact
test is used to judge the null hypothesis. The null hypothesis
is usually assumed to have no relationship between the two
objects, so if the p value is less than 0.05, the null hypothesis
can be overturned, and the opposite hypothesis is derived. In
the experiment, the p value of every module in one tissue is
calculated with each module in other tissues. When the result
p value is less than 0.05, the two modules are related.

2.4. The Clique Analysis. The maximum clique problem is
one of the most canonical problems in computer science
and graph theory. Given a network, it identifies the largest
complete graph; that is, the graph with each pair of nodes is
connected. Theoretically, this problem is NP-complete.
However, there are a few heuristic algorithms like Genetic
Algorithm, Simulated Annealing, and the Tabu Algorithm,
which were implemented in several R packages. In this study,
we used the maximum clique function in the R package
igraph to identify the maximum clique in a given network.

2.5. The Gene Ontology Analysis. Gene ontology is an ontology
library that contains three group classes: cellular components,
molecular function, and biological process. Gene ontology
analysis is aimed at identifying the GO terms enriched for a
given gene set, which was usually done by the hypergeometry
test. In the experiment, GO analysis was carried out from two
aspects: one is the tissue GO analysis and the other one is the
analysis of modules generated from the tissue.

2.6. Threshold Selection for WGCNA. Figure 1 below shows
the threshold selection graph for one of the tissues adipose
visceral omentum. The abscissas of the left and right graphs
in Figure 1 both mean different threshold selections. The
ordinate on the left graph indicates the square of the correla-
tion coefficient between log (k) and log (p(k)) in the corre-
sponding generated network. The ordinate on the right
graph shows the average connectivity of the nodes in the
network. Ideally, if the correlation coeflicient on the left graph
reaches 0.8, the value on the right graph will be high, and vice
versa. For this tissue, the threshold is 18 to ensure that the
correlation coefficient is greater than or equal to 0.8. However,
from the right graph, it seems that the curve is flat after a
threshold value of 6. In practice, the WGCNA website usually
suggests 6 as the threshold, which usually achieves reasonably
good results [20]. To make a fair comparison across all tissues,
we selected the threshold to be 6 for all tissues and cell lines.
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FI1GURE 1: Threshold selection for an example tissue. (a) Description of the different power and the R2. (b) Description of the different power

and the mean connectivity.

3. Results

3.1. Gene Coexpression Modules Are Significantly Enriched in
Gene Ontology Terms. Take the spleen tissue as an example.
A network graph was created by WGCNA for the spleen tis-
sue, with a total of 18,648 genes and 20 modules. Analysis of
GO in spleen tissue shows that spleen’s more prominent
function is mainly the basic components of cells, such as
GO0:0005829~cytosol, GO:0005783~endoplasmic reticulum,
and GO:0031090~organelle membrane, and cell life cycle, such
as GO:0022402~cell cycle process, as well as cellular metabolic
activities, such as GO:0010557~positive regulation of the macro-
molecule biosynthetic process and GO: 0009891 ~positive regu-
lation of the biosynthetic process. Besides that, there are some
functions related to gene expression, such as GO:0032553~ribo-
nucleotide  binding, GO:0032555~purine ribonucleotide
binding, and GO:0006357~regulation of transcription from
RNA polymerase II promoter. Table 1 is the example of some
functions.

Take the dark red module and dark turquoise module of
spleen tissue as an example to analyze their functions.

Figure 2 is the network of the dark red module and the
dark turquoise module of spleen tissue. Both of the two graphs
are composed of a number of nodes, which has a large degree.

From the GO analysis of the dark red module, it can be
seen that the module mainly reflects the correlation
between the spleen and other human tissues and systems,
such as GO:0001501~skeletal system development, GO:
0001568~blood vessel development, GO:0001944~vascula-
ture development, GO:0007423~sensory organ develop-
ment, and GO:0007517~muscle organ development. It can
be seen that the spleen is a special organ that is closely
related to many distant organs and plays a role with them.
The importance of the spleen may be manifested in the
connection with these organs [22].

From the GO analysis of the dark turquoise module, it
can be seen that the module mainly reflects the function of
spleen immunity, such as GO:0006955~immune response,
GO:0006952~defense response, GO:0006954~inflammatory
response, and GO:0045087~innate immune response. All in
all, the spleen is also mainly related to immune activity.
Because the spleen is the largest immune organ of human
body, accounting for 25% of the total lymphoid tissue in
the whole body and contains a large number of lymphocytes
and macrophages, which is the center of cellular immunity
and human immunity.

Figure 3 shows the enriched GO analysis of the two
modules.
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F1GURE 2: The two graphs are the module networks. (a) The network of darkred module of spleen. (b) The network of darkturquoise module

of spleen.

3.2. The Relationship of all Tissues. Fisher’s exact test was
performed on all tissues to measure correlations and found
that all tissues were related in pairs. This shows that although
the structure and function of different human body tissues
are different, they are not isolated when they carry out
various life activities. They closely cooperate with each other.
For example, when we exercise vigorously, not only the
activity of the skeletal muscles of the whole body is
strengthened but also the breathing is deepened and quick-
ened. So more oxygen can be inhaled, and more carbon diox-
ide can be exhaled. At the same time, the heartbeat is also
accelerated, which promotes faster circulation of blood,
delivers more nutrients and oxygen to skeletal muscles, and
carries more waste. Therefore, the various human tissue

systems are coordinated activities and fully demonstrate that
the human body is a unified whole.

Figure 4 shows the relationship among tissues. The
two bold lines show the closed tissues and the most
different tissues.

3.3. Two Closed Tissue Analysis. The two closest tissues were
found to be the fallopian tube and bladder. The p value of
both of them reached 8.54E-291. This is mainly because the
two tissues have close location and similar structure.

The Fallopian tube is a female-specific reproductive
organ located on the upper edge of the broad ligament of
the uterus. For women, the bladder and uterus are in close
proximity. Therefore, the position of the Fallopian tube and



BioMed Research International

Plasma membrane
Plasma membrane part
Extracellular region
Cell surface receptor linked signal transduction

Extracellural regior part

Cell adhesion
Biological adhesion
Proteinaceous extracellular matrix
Extracellular matrix
Cell junction
Skeletal system development
Cell motion
Neuron differentiation
Enzyme linked receptor protein sigaling pathway
Extracellular matrix part
Cell morphogenesis
Vasculature development
Blood vessel development
Embryonic morphogenesis
Basement membrane
Sensory organ development
Extacellular structure organization
Blood vessel morphogenesis
Action cytoskeleton organization
Muscle organ development

Extracellular matrix structural constituent

Adherens junction

Growth factor binding .

Extracellular matrix organization

Wnt receptor signaling pathway .

Cell-substrate adhesion

Collagen

Cell-matrix adhesion

Platelet-derived growth factor binding —I
I
0

1 1 1
50 100 150 200
Genecount

(a)

FiGure 3: Continued.

—log,o(p.value)
20

15
10
5



BioMed Research International

Intrinsic to membrane

Integral to membrane
Plasma membrane
Plasma membrane part
Immune response
Defense response
Calcium ion binding
Vesicle
Response to wounding
Cytoplasmic vesicle
Vacuole

Membrane-bounded vesicle
—log,(p.value)

Cytoplasmic membrane-bounded vesicle
. 20
Lytic vacuole
15
Lysosome 10
5

Inflammatory response
Lipid binding
Carbohydrate binding
Membrane organization
Sugar binding
Membrane invagination
Endocytosis

Innate immune response

Regulation of cytokine production

Cysteine-type endopeptidase activity I

Immunoglobulin binding

——

Pattern recognition receptor activity I
LgG binding
1 1 1
100 200 300
Genecount

© - mm—

(b)
F1GURE 3: The two graphs are the GO results of module networks of spleen. (a) The GO result of dark red module. (b) The GO result of dark

turquoise module.



BioMed Research International

Brain Hk’{campus

Brain Nucleus accu?)en sbasal gmélia S

/ \
Brain/Putarnefib
Brain Spinal (0rd ¢

Breast Maniii:
Cells EBV transfofifiie(
Cells Transfor
Cervix B
Colon
Colon T{@
Esophagus Gastroes
Esophag
Esophagus
Fallopi@i

Skin Not Sun E)& ed Suprapubic

Brai;&r;ex
~ Brain\ Cerebell@ Hemisphere

rtexBA9 ‘ \

(@eﬂ\um Y
2 sal ganglia

I%te %ortex BA24
gdala

der
ibial
ronary
Aorta
Gland

&1 Omentum

N

taneous
” ntia nigra
I8 Blood

n
ed Lowerleg

/
/

ry ol
Small Intestin\eVMrminal Tleum

FIGURE 4: Tissue relationship diagram.

bladder is generally very close. And the Fallopian tube and
bladder both belong to the hollow organ type, and the
structure is very similar. From the GO of the two tissues,
the functions are also very similar. Enriched functional
coincidence items reached 83, mainly concentrated in the
basic components of cells, organelles, and cell membrane;
mitotic cycle, cell death, apoptosis, and other cell life cycle;
and macromolecular synthesis process regulation and
metabolic process regulation.

3.4. Analysis of Tissue Functions. GO analysis of tissues with
the DAVID online tool (https://david-d.ncifcrf.gov) revealed
that there were 19 GO items in each tissue, which mainly
focused on the basic components of the cell, such as
G0:0031090~organelle membrane and GO:0005829~cyto-
sol. In addition, there are base synthesis activities, such as
GO0:0030554~adenyl nucleotide binding, GO:0017076~pur-
ine nucleotide binding, GO: 0030554~adenyl nucleotide
binding, and the metabolism of phosphorus, GO:
0006793 ~phosphorus metabolic process, because phospho-
rus is an important component of genetic material nucleic
acids. And it is also an important component of adenosine
triphosphate.

Immunity or inflammation-related functions are basi-
cally enriched in each tissue. This is mainly because lym-
phocytes exists everywhere in the body, and lymphocyte is
an important part of the immune system, and lymphocyte
travels throughout the body through blood and lymph,
from one lymphoid organ or lymphoid tissue to another
lymphoid organ or lymphoid tissue. So that the scattered

lymphoid organs and lymphoid tissue can be linked into
a functional whole.

However, not every tissue is highly enriched in with
immune-related functions. Immune cell function will behave
differently because of the different organs or tissues located
in. The experiment shows that some of the modules of the
tissue of liver, kidney cortex, lung, uterus, adipose subcutane-
ous, and adipose visceral omentum are highly enriched with
immune-related functions. Studies have shown that there are
local immune responses in these tissues because of the pres-
ence of specialized tissue-resident immune-related cells
[23]. The liver has superior innate immunity because it has
natural killer cells, which are important lymphocytes of the
innate immune system [24]. The kidney has a large number
of immune cells, dendritic cells, and macrophages, which
are not only related to immune response but also the renal
tissue injury and subsequent reparative reactions [25].
Macrophages in adipose play an important role in the
immune regulation of metabolism and are the necessary
effector cells to coordinate metabolic inflammation [26]
and metabolic process regulation.

3.5. Largest Clique Analysis. Correlation analysis is also
performed for all modules, and then, the largest complete
sub graph of 40 modules is screened out in the all modules
diagram with p value less than 0.05. The study of tissue
correlation shows that the tissues are related to each other,
so 40 modules belong to different tissues, but they are also
related to each other. At the same time, the 40 modules have
similar biological functions. Most of them focused on
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FiGure 5: The network of largest clique.

immune inflammation-related regulation and metabolic
processes and cell components. The graph below shows the
network of the largest clique.

Figure 5 shows the relationship among tissues. The two
bold lines show the closed tissues and the most different
tissues.

Using DAVID to perform GO analysis on the modules in
the largest clique, it was found that the immune function is
highly enriched in the lavenderblush3 module of Uterus,
the green module of small intestine terminal ileum, and the
yellow green module of Stomach, and the green yellow
module of Lung.

An important immune cell in the uterus is MC (mast
cell), located in the uterine wall. MC can produce 5-HT. 5-
HT is not only an important neurotransmitter but also an
important immunoregulatory factor. It has both immuno-
suppressive and immunopromoting effects. 5-HT has a
regulatory effect on delayed type hypersensitivity, natural
killing activity of NK cells, lymphocyte activity, and macro-
phage function. It is an important component of the
neuroendocrine immune network. 5-HT directly acts on T
lymphocyte, B lymphocyte, or other immune cells through
various types of receptors on the different surfaces of
immune cells [27]. Table 2 shows the enriched immunity
for uterus.

In the terminal ileum of the small intestine, there are two
kinds of immunoreactive cells called CD3 and CD8. CD3 is a
common marker of all T cells. As a T cell antigen receptor
and a signal transduction subunit, CD3 can transduce the
antigen stimulation signal received by TCR into cells, activate
T cells, and play an essential role in T cell immunity. The
CD8-positive reaction cell is the immune cell closest to the

intestinal cavity antigen in the entire intestinal mucosal
immune system, and has an immune surveillance effect on
bacterial and viral infections, and can specifically kill target
cells directly [28]. Table 3 shows the enriched immunity for
the small intestine terminal ileum.

The stomach tissue plays a significant role in local
immune response and maintaining the stability of the
internal environment [29]. And almost one-fourth of the
gastrointestinal mucosa is a kind of lymphoid tissue, and its
function is the same as that of the surrounding lymphoid
tissue and the spleen. It has an important effect on the
immune system. Table 4 shows the enriched immunity for
the stomach.

The phagocytosis, immunity, and secretion of lung
macrophages are very active and have important defense
functions. And the alveolar epithelium participates in gas
exchange and constitutes a barrier to maintain lung function
and also interacts with immune cells through its surface
receptors and secretory products to maintain lung tissue
homeostasis [30]. Table 5 shows the enriched immunity for
the lung.

4. Discussion

Gene coexpression networks have been extensively studied
recently due to its ability in finding key regulatory mecha-
nisms and critical modules involved in a function. In this
study, we constructed and compared gene coexpression
networks and modules for 52 tissues and cell lines. There
are a few interesting findings: (1) There are several modules
existing in almost all coexpression networks, such as
immune-related modules. (2) There are also some tissue-
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TaBLE 4: The immune GO result of the green module of the stomach.

Category Term pvalue  Fold enrichment  Bonferroni Benjamini FDR
GOTERM_BP_FAT GO:0006955~immune response 3.99E-22 8.513043478 2.94E-19 2.94E-19 6.06E-19
GOTERM_BP_FAT  GO:0045087~innate immune response  1.10E-05 10.31884058 0.008077475  0.002699774  0.016689
TaBLE 5: The immune GO result of the green yellow module of the lung.
Category Term p value Fold enrichment Bonferroni Benjamini FDR
GOTERM_pp_FAT ~ CO:0002684~positive regulation (7, 50 3.085902662 2.22E-04 123E-05  1.38E-04
of immune system process
GOTERM_BP_FAT GO:0006955~immune response 3.49E-07 2.025817914 0.001009227 4.81E-05 6.26E-04

specific modules, for example, renal functions in the kidney.
The results in this study might be important to explain tissue-
common and tissue-specific diseases, since a few functions
are highly associated with diseases.

We only conducted a simple module-based comparison
on tissue networks. In the future, we will employ more
network features by combining the graph theory with
networks of tissue or modules, such as the distribution of
network degree. Also, we can map disease genes to different
tissues network to study the relationship between diseases
and tissues based on disease-related information.

There are also some limitations of this study. For the
selection of the power threshold, we selected 6 for all tissues
and cell lines for a fair comparison, which will cause some
coexpression networks not scare-free. It might be better to
use different powers for different tissues. Besides, it takes
a long time to construct the network because of the huge
amounts of data. The efficiency of WGCNA method needs
to be improved, especially in calculating the TOM similar-
ity matrix. There are many methods to construct the gene
coexpression network. However, a comprehensive compar-
ison on these methods is not available. We will perform a
comparison on a few popular methods and check if the
results are consistent.

5. Conclusions

We constructed coexpression network and gene coexpression
modules of 52 GTEx tissues and cell lines. We then compared
the functions of modules and found that there are tissue com-
mon functions like immune-related functions and tissue-
specific functions. A further analysis on the association of this
function with diseases might be able to shed some light on the
tissue specificity of diseases. We then studied the similarity
among tissues in the perspective of gene coexpression
networks and found that proximity tissues like different brain
regions tend to have similar gene coexpression networks.
Finally, the largest clique analysis was performed in the mod-
ule network and 40 modules of the largest clique were found,
which were related to immune functions. The result further
demonstrated the generality of immune function in all tissues.

Data Availability

The data used in this study was downloaded from the GETx
Official website (https://gtexportal.org).
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