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Abstract: Functional foods such as pomegranate, dates and honey were shown by various previous
studies to individually have a neuroprotective effect, especially in neurodegenerative disease such
as Alzheimer’s disease (AD). In this novel and original study, an 1H NMR spectroscopy tool was
used to identify the metabolic neuroprotective mechanism of commercially mixed functional foods
(MFF) consisting of pomegranate, dates and honey, in rats injected with amyloid-beta 1-42 (Aβ-42).
Forty-five male albino Wistar rats were randomly divided into five groups: NC (0.9% normal saline
treatment + phosphate buffer solution (PBS) solution injection), Abeta (0.9% normal saline treatment
+ 0.2 µg/µL Aβ-42 injection), MFF (4 mL/kg MFF treatment + PBS solution injection), Abeta–MFF
(4 mL/kg MFF treatment + 0.2 µg/µL Aβ-42 injection) and Abeta–NAC (150 mg/kg N-acetylcysteine +

0.2 µg/µL Aβ-42 injection). Based on the results, the MFF and NAC treatment improved the spatial
memory and learning using Y-maze. In the metabolic analysis, a total of 12 metabolites were identified,
for which levels changed significantly among the treatment groups. Systematic metabolic pathway
analysis found that the MFF and NAC treatments provided a neuroprotective effect in Aβ-42 injected
rats by improving the acid amino and energy metabolisms. Overall, this finding showed that MFF
might serve as a potential neuroprotective functional food for the prevention of AD.

Keywords: mixed functional foods; behaviour study; metabolomics; Alzheimer’s disease; 1H NMR

1. Introduction

Alzheimer’s disease (AD), a multifactorial and heterogeneous disease, is the most common
age-related neurodegenerative disease that can reduce memory and cognitive function [1,2].
Amyloid-beta (Aβ) deposition extracellularly in diffuse and neuritic plaques and hyperphosphorylated
tau (p-tau) intracellularly as neurofibrillary tangles are the main pathological hallmarks of AD [3].
Numerous factors are involved in the disease progression such as age, lifestyle, dietary intake and
genetics [1,4]. Even though the mechanisms that affect the brain to age pathologically are not well
known, oxidative stress is a common process for both brain aging and AD [5].
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There are other common processes in brain aging such as increased inflammation,
decreased mitochondrial function and impaired glucose metabolism [6–9]. AD has been considered
as a metabolic disease. This theory is supported by the increasing evidence of impaired glucose
usage and brain insulin responsiveness in AD [10]. In addition, current evidence has also shown
that mitochondrial dysfunction is a distinct and early feature of AD, together with decreasing energy
metabolism [8,11]. It is important to explore the significance of the effect of Aβ deposition in the brain
on the metabolism for better understanding of AD progression.

Metabolomics is the latest approach to study biological samples and can produce detailed data on
the metabolic changes that occur in an organism in specific pathophysiologic states [12]. It has been
highly utilized as a powerful tool for the identification of molecular biomarkers in various medical
areas, as well as for disease diagnosis or prognosis determination, analysing and identifying the
potential mechanisms of various diseases, and to determine the therapeutic responses of drugs [13].
Metabolomics has been utilized to study the molecular mechanisms of the initiation and progression of
AD in humans and animal models [14]. As metabolic pathways are mostly conserved between species,
it is informative and relevant to perform preclinical metabolomics studies using animal models of AD
and then utilize this knowledge to inform the design of bioefficacy studies in humans [15].

Since AD is a complex disease and its mechanisms are not fully understood [16], multi-targeted
approaches may be required for the treatment and prevention of AD effectively. In addition, there is
no treatment to cure or cease the AD progression. The current treatment available is using approved
pharmacotherapies mainly for symptomatic improvement [17]. Various phenolic compounds are
present in functional foods such as pomegranate, dates and honey [18–20]—for example, gallic acid
which can be found in pomegranate, dates and honey [19–22]. Few studies on the bioavailability of
gallic acid in human have shown that this compound is highly well absorbed compared with other
compounds [23]. Meanwhile, ellagic acid that can be found in pomegranate was shown to have low
bioavailability in the systemic circulation [24,25].

The effects of polyphenol on the brain are debatable due to the low bioavailability of polyphenol
in the brain [26]. However, the previous study revealed that flavonoids and their metabolites were
able to exert a pharmacological effect within signalling pathways in the brain at a concentration as low
as 10 nM [27]. There is a possibility that the combination of these foods may act on different pathways
in the prevention and treatment of AD. The mixture of these phytochemicals in these functional foods
may act via complementary mechanisms such as the scavenging of oxidative agents, modulating the
inflammatory cytokines and improving the glucose level [28–31].

Even though various studies have proven that single purified phytochemicals provide health
benefits for AD treatment [32,33], dietary supplements containing purified phytochemicals may not
give comparable health benefits as whole foods, which are rich in their combinations of phytochemicals.
This is because purified phytochemicals may lose their bioactivity or may not react similarly to the
phytochemical combinations in whole foods [34]. The previous study has shown that the Mediterranean
diet reduced the risk of developing mild cognitive impairment (MCI) and AD, which is characterized
by a high intake of foods such as vegetables and fruits [35]. Thus, a combination of functional foods
may provide better health benefits, especially in AD. In the current study, 1H NMR spectroscopy was
performed to investigate the neuroprotective effect of mixed functional foods (MFF) in Aβ-42 induced
rats. The MFF product used in this study are fruit-based functional foods, a combination consisting
of pomegranate, date and honey as its main ingredients, which are purchased from the local market.
Serum samples were collected and metabolomics analysis using NMR methods was done to investigate
the affected metabolic pathways and identify plausible mechanisms of action of MFF treatments.
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2. Materials and Methods

2.1. Animals

A total of 45 adult male albino Wistar rats of three–four months of age were obtained
from the animal house Faculty of Medicine, Universiti Kebangsaan Malaysia. This study was
approved by the animal ethical committee of Universiti Kebangsaan Malaysia (UKMAEC) with
the ethic number: FSK/2016/FADILAH/28-SEPT./782-OCT.-2016-OCT.-2020. Animals were kept in a
temperature-controlled room at 23 ± 2 ◦C under 12 h of light and 12 h of the dark cycle with free access
to food and water ad libitum during the experiment. All rats were allowed to undergo acclimatization
for a week before the experiment.

Rats were randomly divided into the following five groups: group 1—normal rats injected with
phosphate-buffered saline (PBS) and treated with normal saline (NC, n = 9); group 2—normal rats
injected with Aβ-42 (40 µg/200 µL) and treated with normal saline (Abeta, n = 9), group 3—normal
rats injected with PBS and treated with 4 mL/kg MFF (MFF, n = 9); group 4—normal rats injected with
Aβ-42 (40 µg/200 µL) and treated with 4 mL/kg MFF (Abeta–MFF, n = 9); and group 5—normal rats
injected with Aβ-42 (40 µg/200 µL) and treated with 150 mg/kg N-acetylcysteine (NAC) (Abeta–NAC,
n = 9). The dosage of NAC was performed according to the previous study [36]. Treatments with
normal saline and MFF (4 mL/kg) were given for 30 days. For PBS and Aβ-42 (40 µg/200 µL) injection,
both were given for 14 days. Figure 1 shows the experiment timeline.
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2.2. Preparation of Aβ-42 and Surgery

Synthetic stock Aβ-42 solution was prepared by dissolving synthetic Aβ-42 powder into PBS at
0.5 mg/mL. Then, the stock Aβ-42 solution was diluted to 40 µg/200 µL and incubated at 37 ◦C for 3 days
to form the Aβ-42 aggregation [37]. Both PBS and Aβ-42 solution were given via intracerebroventricular
(ICV) administration. Surgery was performed according to previous studies [38,39]. Briefly, the animals
were anaesthetized with a combination of ketamine, tiletamine and xylazine (KTX) via intraperitoneal
administration. The skull was opened and drilled with one hole using a stereotaxic frame (0.9 mm
posterior to bregma, 1.4 mm from the midline, 3.5 mm ventral to dura). A mini osmotic pump (Alzet
2002, Canada) containing either PBS or Aβ-42 solution (40 µg/200 µL) was implanted subcutaneously
in the mid-scapular region and was attached via polyvinylchloride tubing to a cannula. The cannula
was inserted into the hole made using a stereotaxic frame. The cannula was affixed to the skull using
cyanoacrylate Loctite. PBS or Aβ-42 solution was infused to the brain by osmotic pump for 14 days at
the same rate (0.5 µL/h). The wound clip was used to close the wound. Post-operative care included
Betadine antiseptic cream given topically to prevent infection to the wound.

2.3. Morris Water Maze (MWM) Test

The Morris water maze (MWM) test was performed to evaluate the effect of Aβ-42 on spatial
memory in the rats [40]. The experimental device for the test was a circular black tank (100 cm diameter,
60 cm height) filled with water at room temperature. The escape platform (23 cm diameter, 25 cm
height) was placed 1 cm below the water level and in the middle of one quadrant. The acquisition
training session was done prior to the test session. During the acquisition training session, the animals
were placed in the tank and allowed to swim freely to the escape platform. The animals were gently
guided to the escape platform if they did not find the platform within 60 s. After escaping to the
platform, the animals were allowed to be on the platform for 15 s. This procedure was repeated 10 times
and the escape latency time was recorded and calculated. After 24 h of the training session, the test
session was done. In the test session, the platform was removed and rats were allowed to swim for 60
s. The time spent in the correct quadrant was recorded (where the platform was placed during the
training session) and the percentage of the total time was determined [41].

2.4. Open Field Test (OFT)

Locomotor activities of the animals were measured using the open-field arena after the last MWM
test. The arena was square-shaped (40 × 40 × 40 cm3) and made from transparent Plexiglass. The floor
of the arena was divided by black lines into nine squares. Prior to the test, the rats were acclimatized
in the test room for 10 min. After that, OFT was conducted for five minutes. During the test, each rat
was placed in the centre of the open field arena and the numbers of squares crossed and rearing were
recorded [41]. Rearing is a behaviour which rat stands temporarily on its hind leg to explore the
environment [42].

2.5. Y-Maze Test

Spatial working memory which is also a short-term memory was assessed by recording
spontaneous alternation behaviour using Y-Maze. The apparatus was made from black Plexiglass and
consisted of three arms (50 cm long, 30 cm height, 10 cm wide). The arms converged in an equilateral
triangular central area. Each arm was labelled as A, B and C. Each rat was placed at the end of one arm
and allowed to move freely through the maze for eight minutes. The series of arm entries by the rats
were recorded. Entry was regarded as complete when the base of the animal’s tail was fully within
the arm. Alternation was interpreted as successive entries into the three arms on overlapping triplet
sets [43]. The percentage of spontaneous alternation was calculated using the following formula:

Spontaneous alternation percentage (%) =
Actual alternation

Total number of arms entered− 2
× 100 (1)
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2.6. Statistical Analysis for Behavioural Study

The Shapiro–Wilk normality test, mixed-ANOVA and Independent-T test were performed by
using SPSS software version 20 (International Business Machines Corporation (IBM), Armonk, NY,
USA). The Bonferroni test was chosen as a post hoc analysis method in mixed-ANOVA. A p-value of
less than 0.05 was considered to be statistically significant. Data are expressed as the mean ± SEM.

2.7. H NMR Spectroscopy

Blood samples were collected and centrifuged at 3000 rpm for 10 min and stored at −80 ◦C until
NMR analysis. Frozen serum samples were thawed and 200 µL of thawed serum was mixed with
400 µL of PBS (0.308 g potassium dihydrogen phosphate, 0.05 g trimethylsilylpropanoic acid (TSP),
25 mL deuterium oxide, pH 7.4) in a 5 mm NMR tube. The NMR spectra were recorded using a
500 MHz spectrometer (Varian Inova 500, Illinois, USA) at 25 ◦C with the parameters of pulse width
(PW) 8.6 µs (90◦). Deuterium oxide was used as an internal lock and TSP as a calibration standard,
which the chemical shift (δ) was referred at 0.0 ppm.

The pre-saturation sequence was done first to restrain the residual water signal with low power
selective irradiation [13]. Then, the T2 measurement Carr–Purcell–Meiboom–Gill (CPMG) experiment
was done using the following parameters: σ of 0.0002 and big σ of 0.4, relaxation delay (RD) 0.05 s
with 128 transients. CPMG experiment is effective to reduce the broad signals of macromolecules and
decrease the intensity to obtain a better spectral baseline [13,44]. It is also suitable for high-throughput
analysis as it does not need sample preparation [45].

2.8. Statistical Analysis of 1H NMR Spectra

The 1H NMR spectra were manually phased, baseline corrected and calibrated to TSP at δ 0.00
ppm using Chenomx NMR (Chenomx NMR Suite 5.1 Professional, Edmonton, Alberta, Canada).
The residual water peak (δ 4.70–5.00 ppm) was excluded from the analyses. The chemical shift (δ)
from region 0 to 10 was decreased to integrated bins of 0.04 ppm width. The remaining spectra were
normalized to decrease variations in the sample concentration. NMR data were then imported to
the SIMCA software 14.0 (Umetrics, UMEA◦, Sweden) for multivariate analyses including principal
component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and orthogonal partial
least square-discriminant analysis (OPLS-DA) to determine the significantly altered metabolites.
Prior to analysis, the data were mean-centred and Pareto scaled. Data were visualized with the
two principal components score plot (PC1 and PC2), whereby each point represented an individual
spectrum of a sample. The validity and significance of the PLS-DA and OPLS-DA model were
determined using CV-ANOVA.

To determine the variables that contributed to the distribution of the spectra between the control
and treated groups, the variable importance of projections (VIP) values of all peaks from the OPLS-DA
models were analysed. Variables with VIP > 0.7 were recognized as relevant for group discrimination.
An independent T-test (p < 0.05) to the chemical shift (δ) was also applied to determine the significance
of each metabolite. Both VIP > 0.7 for multivariate and p < 0.05 for the univariate statistical significance
were acknowledged as distinguishing metabolites.

2.9. Pathway Analysis of 1H NMR Spectra

To determine the possible pathway that may be affected in this study, MetaboAnalyst 4.0
(https://www.metaboanalyst.ca/) was used for pathway analysis [13].

https://www.metaboanalyst.ca/
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3. Results

3.1. Morris Water Maze (MWM) Test

The percentage of the time spent in the right quadrant was measured by using MWM to assess
the long-term spatial memory. The relative percentage of the time spent in the right quadrant was
measured to observe the changes of relative percentage in the right quadrant on day 7 and day 14
compared to day 0 (baseline) (Figure 2). Based on the results, there were no significant differences
(p > 0.05) for the relative percentage of the time spent in the correct quadrant on day 0 until day 14.
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Figure 2. Comparison of the relative percentage of the time spent in the right quadrant on day 0, day 7
and day 14. Every bar represents the mean ± SEM (n = 5). NC: normal control; Abeta: amyloid-beta;
MFF: mixed functional foods; NAC: N-acetylcysteine.

3.2. Open Field Test (OFT)

Locomotor activities were measured in the animals on day 0, day 7 and day 14 by using OFT.
The relative percentage of the total number of lines crossed was measured to observe the changes of
the relative percentage of the total number of lines crossed on day 7 and day 14 compared to day 0
(baseline) (Figure 3). In this study, there were significant differences (p < 0.05) for the relative percentage
of the total number of the lines crossed in Abeta–MFF group on day 7 compared to the NC and Abeta
groups on day 7. Moreover, there were significant differences (p < 0.05) for the relative percentage of
the total number of the line crossed in the Abeta–MFF group on day 0, day 7 and day 14.

For the relative percentage of total rearings, there were significant differences (p < 0.05) in the
Abeta–MFF group on day 7 and day 14 compared to day h (Figure 4). In addition, there were
significant differences (p < 0.05) in the Abeta group on day 7 compared to Abeta–MFF on day 7.
On day 14, there were significant differences (p < 0.05) in the NC and Abeta groups compared to the
Abeta–MFF group.
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Figure 3. Comparison of the relative percentage of the total numbers of lines crossed between the
groups on day 0, day 7 and day 14. Every bar represents the mean ± SEM (n = 5). a p < 0.05 compared
to Abeta–MFF on day 7. b p < 0.05 compared to Abeta–MFF day 14.
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Figure 4. Comparison of the total rearings between the groups on day 0, day 7 and day 14. Every bar
represents the mean ± SEM (n = 5). a p < 0.05 compared to Abeta–MFF on day 0. b p < 0.05 compared
to Abeta–MFF on day 7. c p < 0.05 compared to Abeta–MFF on day 14.

3.3. Y-Maze Test

To determine the spatial working memory, the percentage of spontaneous alternations were
measured using Y-maze (Figure 5). The relative percentage of spontaneous alternation was measured
to observe changes of the relative percentage of spontaneous alternation on day 7 and day 14 compared
to day 0 (baseline) (Figure 5). The result showed that there were significant differences (p < 0.05) in the
Abeta group compared to NC and Abeta–NAC on day 14.

3.4. H NMR Metabolomic Analysis

The overall 1H NMR spectra of rat serum samples obtained from NC, Abeta, MFF, Abeta–MFF and
Abeta–NAC are shown in Figure 6, labelled with the identified metabolites. A total of 29 metabolites,
namely pantothenate, leucine, valine, isoleucine, isobutyrate, 3-hydroxybutyrate, lactate, alanine,
acetate, o-acetylcholine, methionine, acetone, acetoacetate, pyruvate, succinate, glutamine, citrate,
n,n-dimethylglycine, creatine, malonate, choline, betaine, methanol, glucose, glycine, allantoin, tyrosine,
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histidine and phenylalanine were identified. A broad water peak in the chemical shift range of δ
4.7–5 ppm was excluded and not used as this broad peak is likely to dominate the spectrum area and
suppress the nearby peaks.
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Figure 5. Comparison of the relative percentage of the spontaneous alternation between the groups on
day 0, day 7 and day 14. Every bar represents the mean ± SEM (n = 5). a p < 0.05 compared to Abeta on
day 14.
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Figure 6. Overall 1H NMR spectra of the rat serum samples obtained from all groups: (1) pantothenate,
(2) leucine, (3) valine, (4) isoleucine, (5) isobutyrate, (6) 3-hydroxybutyrate, (7) lactate, (8) alanine,
(9) acetate, (10) o-acetylcholine, (11) methionine, (12) acetone, (13) acetoacetate, (14) pyruvate,
(15) succinate, (16) glutamine, (17) citrate, (18) n,n-dimethylglycine, (19) creatine, (20) malonate,
(21) choline, (22) betaine, (23) methanol, (24) glucose, (25) glycine, (26) allantoin, (27) tyrosine,
(28) histidine, (29) phenylalanine. Purple–NC, blue–Abeta, dark green–MFF, light green–Abeta–MFF
and red–Abeta–NAC.

To determine the differences between all five groups, the PCA model was used to analyse the 1H
NMR data after normalization. The PCA model is an unsupervised multivariate method [46]. The PCA
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score plot of the 1H NMR data of all groups was shown in Figure 7. No clear separation between all
five groups were observed on the score plot of PCA. The predictive variations of PC1 (t[1]) correspond
to 66.8% of all variations in the data, with R2X = 0.873 and R2Y = 0.748.
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The PLS-DA model is the supervised regression method to determine the possible metabolite
markers in the control and treated groups [46]. From the PLS-DA model, the NC group was
clearly separated from the other four groups (Abeta, MFF, Abeta–MFF and Abeta–NAC) (Figure 8).
The predictive variation of PC1 (t[1]) corresponds to 66.1% of all variation in the data, with R2X = 0.8,
R2Y = 0.438 and Q2 = 0.33. The generated PLS-DA model was subjected to validation using CV-ANOVA,
wherein a p value of 0.000075 confirmed the validity of the model.Nutrients 2020, 12, x FOR PEER REVIEW 10 of 20 
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To further disclose the metabolite perturbations in all groups, the OPLS-DA model was used as the
PCA and PLS-DA models failed to separate all rat groups clearly. As shown in Figure 9, the OPLS-DA
score plot showed a clear separation along the PC1 (t[1]) between the control groups (NC and MFF)
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and treated groups (Abeta, Abeta–MFF and Abeta–NAC). The NC group was distinguished clearly
from the Abeta group in the score plot, which showed that the amyloidogenesis condition in the rats
was successfully induced. However, the clustering of Abeta–NAC groups was away from the Abeta
and Abeta–MFF groups, but closer to the NC group. This might indicate that the NAC treatment might
have a better ameliorating effect on the amyloidogenesis condition compared to the MFF treatment.
The generated OPLS-DA model was subjected to validation using CV-ANOVA, wherein a p value of
5.817 × 10−9 confirmed the validity of the model.
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3.5. Identification of Affected Metabolites

The VIP values were used to determine the most significantly altered metabolites that were
extracted from the OPLS-DA model. These values signify the influence that a specific metabolite exerts
on classification, with a higher value meaning a higher influence compared to the lower value. From a
total of 29 metabolites identified in the serum samples, 12 metabolites with a VIP > 0.7 and p < 0.05
from an independent T-test were identified as distinguished from the other groups. The results were
summarized in Table 1.

Based on Table 1, metabolites such as succinate, pantothenate and glucose in the Abeta group
were significantly higher (p < 0.05) compared to the NC group except for pyruvate. For the MFF group,
metabolites such as succinate, pantothenate, alanine, leucine, choline, lactate and o-acetylcholine were
decreased significantly (p < 0.05) compared to the Abeta group. In addition, the Abeta–MFF group had
significantly increased levels (p < 0.05) of pyruvate, glutamine, citrate and 3-hydroxybutyrate compared
to the Abeta group. The Abeta–NAC group also had a significantly increased level of 3-hydroxybutyrate
(p < 0.05), but lower levels of choline and o-acetylcholine compared to the Abeta group.
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Table 1. Metabolite markers for the control and treated rats extracted from the OPLS-DA model. Those
metabolites which had a variable importance of projections (VIP) > 0.7 and p < 0.05 are considered.
(* p < 0.05, ** p < 0.01, *** p < 0.001).

Metabolites
Fold Change

NC vs. Abeta MFF vs. Abeta Abeta–MFF vs. Abeta Abeta–NAC vs. Abeta

Succinate −0.83 * −0.70 ** +1.08 −0.89
Glutamine −0.87 −0.89 +1.18 * +1.03

Pantothenate −0.48 *** −0.47 *** +1.04 −0.85
Pyruvate +1.29 * −0.98 +1.31 * +1.07
Citrate +2.22 +1.03 +1.23 * +1.03

3-hydroxybutyrate +1.03 +1.18 +1.25 * +1.2 *
Leucine −0.64 −0.55 * −0.72 −0.62
Alanine 1.00 −0.72 *** +1.08 −0.90
Choline −0.95 −0.60 ** +1.03 −0.46 ***
Lactate −0.91 −0.70 ** +1.07 −0.9
Glucose −0.72 ** −0.83 +1.07 −0.98

O-acetylcholine −0.91 −0.72 ** +1.11 −0.8 *

* p < 0.05, ** p < 0.01, *** p < 0.001.

3.6. Metabolic Pathway Analysis

In order to determine the mechanisms of action of Aβ-42 induction, and MFF and NAC treatments
on the rats, biochemical pathways were investigated using MetaboAnalyst 4.0. Pathway analysis
showed that valine, leucine and isoleucine biosynthesis, alanine, aspartate and glutamate metabolism,
citrate cycle (TCA cycle) and pyruvate metabolism had the highest impact >0.1 and provided significant
results p < 0.05 (Table 2). This result suggests that changes in that pathways may have the potential to
be the targeted pathways for the treatment to prevent metabolic perturbations due to Aβ-42 induction.
Figure 10 showed the possible relationship between altered metabolism pathways that were identified
via 1H NMR serum analysis.
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Table 2. Pathway analysis with MetaboAnalyst.

Pathways P (Raw P) −Log (p) * FDR Impact

Valine, leucine and isoleucine biosynthesis 0.00354 5.64 0.0717 0.33
Alanine, aspartate and glutamate metabolism 0.0000299 10.4 0.00242 0.15

Citrate cycle (TCA cycle) 0.000504 7.59 0.0136 0.15
Pyruvate metabolism 0.0141 4.26 0.225 0.19

* FDR: False discovery rate.

4. Discussion

Metabolomics is a comprehensive technique that plays an important role in the research of
multifactorial diseases such as AD, whereby various heterogeneous processes are affected. It has
been proven to be a relevant tool for the study of the effect of genetic and environmental factors on
complex phenotypes [47]. It also serves as a valid biochemical profile of an organism in health and
disease which can lead to a better understanding of the alterations in complex biological networks
related to AD, as AD is a complex disease with no definite biomarkers for clinical diagnosis [48,49].
Moreover, metabolomics may provide new perspectives involving the mechanisms of natural products
toward AD prevention or treatment. Aβ-42 overproduction and aggregation are the main factors for
AD progression and pathogenesis [50]. Metabolomics application also could contribute as a strong
tool to transcribe preliminary studies in animal models to humans [15]. In the cerebrospinal fluid
(CSF), the use of biomarkers such as the Aβ level as well as magnetic resonance imaging increases
the diagnostic accuracy and can be used to distinguish between different types of dementia [15].
However, in primary care and clinical studies, blood biomarkers are greatly appreciated because they
are less invasive and more available compared to the other sample such as cerebrospinal fluid which
is time-consuming, invasive and expensive [51,52]. On the other hand, the use of blood parameters
has its drawback as blood parameters (Aβ and p-tau) are not the most reliable, sensitive and specific
biomarkers for AD compared to CSF [53]. In this study, metabolomics analysis was performed to
investigate the metabolic changes in Aβ-42 induced rats and the effect of MFF and NAC treatments in
improving the alterations on the pathway mechanism due to Aβ-42.

In the present study, the Aβ-42 injection was administered for 14 days, which induced an
acute condition in the rats. The Aβ-42 induced rat was the most suitable AD rat model to study
the pathology of AD at an early stage before the deposition of Aβ-42 which is irreversible. It was
found that the Aβ-42 injection impaired the spatial memory and learning especially in the short-term
spatial memory in the animals on day 14 using Y-maze. The hippocampus is one of the vulnerable
regions in AD patients and lesions on the hippocampus generally can lead to changes in the rat’s
activities [54]. Decreased spontaneous alternation showed dysfunction of the hippocampus that was
related to abnormality observed in AD [55]. Even though Aβ-42 injection caused dysfunction in the
hippocampus with decreased spontaneous alternation as seen in the Aβ-42 injected rats, it did not
have any effect on the long-term spatial memory as seen in the MWM test. Both the Y-maze and
MWM are dependent on the hippocampus function. This showed that both tests may involve different
mechanisms in the hippocampus. Moreover, different forms of synaptic plasticity may exist in the
hippocampus that contribute differentially to hippocampus information processing [56].

For locomotor activities, the hyperactivity was observed in the Abeta–MFF group on day 7
compared to day 0 but the hyperactivity decreased on day 14. Even though the hyperactivity decreased
on day 14, there were no significant differences with the other groups on the same day. Decreased
activity usually occurs due to impaired locomotor activities [57], but this was not the case. In this study,
it clearly showed that rats did not have impaired locomotor abilities, especially at the end of the study
on day 14. This showed that the surgery on the rat’s brain did not have any effect on the motor function
and exploration activity in all rats [58]. For the relative percentage of rearings, they were increased in
the Abeta–MFF group especially on day 7 and day 14. Various factors could lead to an increase in the
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total rearings such as fear and anxiety [59]. Moreover, total rearings could also give measurement on
the general physical motor ability and the level of rat interest in the new environment [60].

In the metabolic analysis, specific metabolites were chosen as biomarkers based on the OPLS-DA
model, which these metabolites had VIP > 0.7 in multivariate analysis and p < 0.05 in the univariate
analysis. Pathway analysis was performed using MetaboAnalyst 4.0 to systematically determine
the most significant pathway based on the specific metabolites. The results of the MetaboAnalyst
4.0 showed that the altered metabolic pathways in Aβ-42 induced rats belonged to amino acid and
energy metabolisms. This is in parallel with the previous study which showed the main changes in
AD pathogenesis involved with pathways such as amino acid and energy metabolisms, as well as
dysfunction in mitochondrial activities [46].

The pathways involved in acid amino metabolism were valine, leucine and isoleucine biosynthesis,
and alanine, aspartate and glutamate metabolism. Leucine is one of the branched-chain amino acids
(BCAAs) [61]. In this study, the leucine level in Abeta group was highest compared to the other
groups and significantly higher than the MFF group. Excessive consumption of BCAAs may lead
to the formation of neurotoxic conditions and give negative effects on brain functions. Moreover,
increased BCAAs levels could alter the functional activities of other types of brain cells such as
microglia. If it is not regulated perfectly, it can cause microglia activation and lead to neurotoxicity [62].
The previous study showed that the supplementation of periodic protein restriction diet improved
cognitive performance in the Alzheimer’s disease mouse model [63].

Alanine is a non-essential amino acid that can be found abundantly in the muscles. It can
generate pyruvate via reversible transamination and produce acetyl-CoA into the TCA cycle [64].
Decreased alanine level in the MFF group may be due to decreased level of leucine as BCAA is the
main nitrogen source for alanine production in the muscles [65]. Morevoer, Abeta–MFF group had
higher glutamine level significantly compared to Abeta group. Glutamine has been reported to have a
neuroprotective effect and may be beneficial for AD treatment as it had anti-inflammatory activities.
Glutamine prevented inflammation activation by LPS (lipopolysaccharide) [66]. The Aβ-42 injection
has been proven to induce neuroinflammation that may contribute to memory dysfunction [41].
The effectiveness of MFF treatment in improving spatial memory and learning may be contributed
by glutamine.

Pyruvate metabolism and TCA cycle are pathways involved in energy metabolisms. Increases in
serum glucose levels as seen in the Abeta group compared to the other groups, especially NC, showed
that cerebral hypometabolism occurred in the brain regions related to AD [67]. It is an indicator of
metabolic dysfunction which is related to reduce the memory functioning in the elderly with normal
cognitive abilities and may be a risk factor for cognitive deterioration or susceptibility to AD [67].
This is supported by a previous study that showed decreased glucose metabolism was strongly related
to cognitive impairment [68]. Glucose hypometabolism has been described to occur in AD brains and
it can accurately differentiate AD from normal aging [69]. Glucose hypometabolism may be one of the
contributing factors to spatial memory and learning impairment observed in the Abeta group.

Hypometabolism also causes reduced neuronal energy production due to a lower rate of
carbohydrate catabolism [70]. The reduced glucose metabolism leads to reduce pyruvate production,
which eventually results in diminished mitochondrial energy metabolism and ATP levels [61].
Meanwhile, an increased lactate level indicated that anaerobic glycolysis has occurred and is not
related to the main energy source pathway under normal conditions [12,14]. Moreover, the lactate level
increased with an increased level of ketogenic amino acid such as leucine that acts as a gluconeogenic
precursor [13,71]. Lactate metabolism plays an important role in maintaining the ATP level in the
neuronal cell when glucose metabolism is limited [70]. This can be observed in the Abeta group
that had a decreased level of pyruvate, and an increased level of lactate and leucine. It showed that
anaerobic glycolysis might occur to balance the metabolism dysfunction due to glucose hypometabolism.
An increased level of succinate seen in Abeta group, together with lactate level might also due to
anaerobic glycolysis [12].
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The TCA cycle takes place in mitochondria and it is a phase in cellular respiration that produces
ATP from the electron transport chain (ETC), consisting of both anabolic and catabolic biochemical
pathways [13,72]. Pyruvate, a glucose metabolism product via glycolysis, is converted into acetyl-CoA
and entered TCA cycle [71]. It plays an important role in glucose aerobic oxidation and energy
production [61]. Glucose metabolism impairment can lead to impaired mitochondrial function [61,70].
Citrate and succinate are essential intermediates in the TCA cycle and decreased levels of both showed
mitochondrial dysfunction and that the energy metabolism was interrupted [73]. This condition can be
observed in this study, whereby the succinate level was significantly decreased in the Abeta group
compared to the NC and Abeta–MFF groups. However, the MFF treatment may improve mitochondrial
dysfunction by increasing the succinate level. This may suggest that MFF regulated the TCA cycle by
increasing aerobic glycolysis.

Moreover, MFF treatment may also regulate the TCA cycle by increasing ketone body synthesis,
and 3-hydroxybutyrate which is also observed in NAC-treated rats. A previous study showed that
pomegranate and a mixture of functional foods such as pomegranate, grape and red cabbage juice
could increase the ketone bodies [74]. Ketone bodies can be converted into acetyl-CoA and enter TCA
cycle. The generated energy will be distributed to the cells [46,64,73,75]. High 3-hydroxybutyrate level
can also increase neuron survival in hypoxia, anoxia and ischemia conditions [76]. A previous study
reported that the ketogenic diet could protect the hippocampus against Aβ-42 toxicity [77]. Even though
the exact neuroprotective mechanism of 3-hydroxybutyrate remains unknown, the neuroprotective
effect of 3-hydroxybutyrate may be probably due to high neuron energy storage, whereby this condition
can improve the neuron ability against the metabolic challenge and also via other actions including
antioxidant and anti-inflammatory effects [78]. The neuroprotective effect can be seen in this study
with increasing spatial memory and the learning of the treated rats compared to non-treated rats (Abeta
groups) (Figure 11).
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Figure 11. The possible neuroprotective mechanisms of MFF in Aβ-42-induced rats.

As mentioned before, even though the CSF sample is time-consuming, invasive and expensive [52],
this biofluid is the best to determine the Aβ-42 and p-tau protein, which a combination of has a
sensitivity from 90 to 95% and specificity around 85%. However, these markers are still overlapping
with other types of dementia. Thus, the metabolomics approach using the CSF sample may differentiate
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particular diseases based on the metabolite profile in biofluids [79]. The CSF sample is also favourable
since numerous metabolites are already known. The specific metabolites for AD patients in CSF
are cortisol and cysteine which are increased, and uridine which is reduced compared to normal
people [79]. As this study showed the advantages of MFF through blood parameters, the future study
can be done to determine the benefits of an MFF product through the metabolite profile of CSF to
further understand its mechanisms as a whole.

5. Conclusions

Based on the study results, MFF could be suggested as an effective supplement for the prevention
of AD. MFF treatment improved spatial memory and learning by improving the energy and amino
acid metabolism pathways, involving metabolites such as leucine, glutamine, pyruvate, lactate,
succinate and 3-hydroxybutyrate. This is the first study performed to assess the neuroprotective effect
of MFF in Aβ-42-induced rats based on the 1H NMR analysis of the serum metabolites related to
behavioural results. This study provides further understanding of the underlying mechanism and
indicated 1H NMR-based metabolomics as a useful tool for the assessment of health benefits in mixed
foods research.
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