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CD8þ cytotoxic T-lymphocytes (CTLs) perform a critical role in the immune control of viral infections, including those
caused by human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). As a result, genetic variation at
CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion
due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated
selection, codon positions within epitopes may immediately ‘‘toggle’’ in response to each host, such that genetic
variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population.
However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts.
Here, we evaluate this quantity for a large number of HIV-1– (n � 3,000) and HCV-infected patients (n � 2,600) by
screening bulk RT-PCR sequences for sequencing ‘‘mixtures’’ (i.e., ambiguous nucleotides), which act as site-specific
markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly
associated with codon positions under host-specific CTL selection, which should deplete within-host variation by
driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory
outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by
selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently,
the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape
or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious
implications for vaccine design.
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in HIV-1 and hepatitis C virus. PLoS Pathog 3(3): e45. doi:10.1371/journal.ppat.0030045

Introduction

The cellular immune response mediated by CD8þ cytotoxic
T-lymphocytes (CTLs) performs a critical role in the immune
control of human viruses such as human immunodeficiency
virus (HIV-1) [1] and hepatitis C virus (HCV) [2]. Conse-
quently, the major histocompatibility (MHC) loci that encode
the human leukocyte antigen (HLA) class I molecules, which
recognize and bind CTL epitopes in viral proteins, are among
the most highly polymorphic genes in the human population
[3]. Nevertheless, the CTL response often fails to control the
infection completely because of mutations that occur within
HLA-restricted CTL epitopes, enabling the virus to escape
binding and recognition [4]. Because epitopes are often
located in functionally conserved regions of the viral genome,
escape mutations may become costly to maintain in the
absence of a selective HLA allele [5,6]. Thus, when an escape
variant is transmitted between HLA-mismatched individuals,
competitive growth frequently selects for reversion of the
mutation to wild-type, as demonstrated experimentally in
simian immunodeficiency virus–infected rhesus macaques [7]
and in a comparative study of HIV-1–infected human
patients [8].

Consequently, host-specific selection for escape or rever-
sion may play an important role in shaping genetic variation

in the circulating virus population [1,2,5,9,10]. For instance,
population-based analyses of HIV-1 [9] and HCV [11]
sequences have found several significant associations between
divergent sites within CTL epitopes and the selective HLA
alleles in the host population, suggesting that the frequency
of escape polymorphisms in the circulating virus population
are directly shaped by the immune diversity of the host
population. Furthermore, the viral load of HIV-1–infected
individuals has been found to be positively correlated with
the frequency of the corresponding HLA supertypes in the
host population, implying that the total virus population is
adapting to the most frequent HLA supertypes [12]. If escape
variants are readily transmitted between hosts, then a host
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with a common HLA supertype is more likely to encounter a
virus that has already escaped its immune response [13],
conferring a selective advantage to rare HLA supertypes.
However, the virus genotype that becomes transmitted to the
next host does not necessarily represent the ultimate
outcome of adaptation to the previous host. Escape variants
that have been transmitted into a host lacking a selective HLA
allele can persist over long periods of time before reversion,
or fail to revert at all over the duration of the study [8,14]. A
delay or absence of reversion may be attributable to weak
selection, when the fitness of the escape variant is either
intrinsically high, or it has acquired compensatory mutations.

To evaluate the role of CTL-mediated selection in shaping
the genetic variation of human viruses, we have carried out a
large-scale analysis of HIV-1 and HCV protein-coding
sequences isolated from human hosts. Previous analyses of
clonal HIV-1 subtype B envelope [5,15] and protease (PR) [16]
sequences have shown that across codon positions, genetic
variation within hosts is positively correlated with variation
among hosts. These correlations suggest that the genetic
variation at both levels of the virus population is being
shaped by a common set of biological constraints. However,
the use of clonal sequences to characterize within-host
variation restricted these analyses to small samples of hosts
(n � 12). In addition, quantifying the influence of selection
on genetic variation within and among hosts is potentially
confounded by variation in mutation rates among codon
positions. Because mutation is the ultimate source of all
genetic variation, site-specific variation at either level will be
roughly proportional to the local mutation rate, which can
yield a positive correlation in the absence of selection [17].
Indeed, this effect constitutes the basis for several tests of
non-neutral evolution in genetic sequences [18–20].

To address the problem of limited sample size, we exploit
‘‘sequencing mixtures’’ as a site-specific marker of genetic
variation within hosts. A sequencing mixture occurs when
multiple distinct peaks occur above the same position in a
sequencing electropherogram [21]; by convention, mixtures
are encoded in sequences by ambiguous nucleotide charac-

ters (International Union of Pure and Applied Chemistry
symbols ‘‘M’’, ‘‘R’’, ‘‘W’’, ‘‘S’’, ‘‘Y’’, and ‘‘K’’). Because mixtures
can indicate the presence of a nucleotide polymorphism in
the population, population-based (or ‘‘bulk’’) sequencing is
employed to detect minority variants that occur at frequen-
cies above 10%–25% [21–23]. Although population-based
sequencing may fail to detect mixtures below this threshold,
transient polymorphisms under selection are more likely to
be sampled at intermediate frequencies. This application of
mixtures is particularly relevant to viruses with extremely
high mutation rates such as HIV-1 and HCV, for which
population-based sequences are exceedingly abundant. In
this study, we use mixtures to quantify the effect of selection
on within-host variation in population-based sequences of
RT-PCR–amplified viral RNA from blood plasma isolated
from over 4,000 HIV-1– or HCV-infected patients.
To remove the confounding effect of variation in mutation

rates, we normalized the nonsynonymous variation per codon
position by the synonymous variation, for either level of the
virus population. Thus, we calculated the site-specific differ-
ence between the frequencies of nonsynonymous (mN) and
synonymous mixtures (mS), and estimated the analogous
difference between the rates of nonsynonymous (dN) and
synonymous substitution (dS). Our estimates of mN and dN
were both scaled by the expected number of nonsynonymous
sites at each codon position; likewise, estimates mS and dS
were scaled by the expected number of synonymous sites in
the codon. The difference in substitution rates (dN � dS) is a
conventional summary statistic for diversifying selection
among hosts, i.e., host-specific selection causing nonsynon-
ymous variation to accumulate among individual virus
populations. We propose that the difference in mixture
frequencies (mN�mS) can be employed as a summary statistic
characterizing selection within each host. For instance, mN�
mS . 0 can represent transient nonsynonymous polymor-
phisms undergoing directional selection (which drives the
fixation of a specific variant within the host). Using these
quantities, we will show that the distribution of mixtures in
our samples of HIV-1 and HCV sequences cannot be
explained by variation in mutation rates alone, and that
host-specific selection is an important force shaping variation
at both levels of the total virus population.
Because existing models of virus evolution seldom account

for genetic variation both within and among hosts (but see
[24,25]), we formulate a novel yet simple model that invokes
both host-specific selection and rapid transmission between
hosts to explain the observed patterns of genetic variation
within and among hosts infected by HIV-1 or HCV. Bolstered
by stochastic simulations, our model specifies the conditions
that yield this outcome, and quantitatively predicts the joint
effect of selection and transmission on the genetic compo-
sition of the circulating virus population. We find that when
host-specific selection for escape and reversion is unbalanced
and the transmission rate is high, then the frequency of
escape variants becomes considerably skewed from expect-
ations derived from the immune diversity of the host
population. Failing to account for this effect may lead to
erroneous conclusions on the overall importance of CTL-
mediated selection in directing the evolution of the total
virus population, or the relative contribution of specific CTL
epitopes. Furthermore, the design of an effective vaccine to
human viruses such as HIV-1 or HCV is highly contingent
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Author Summary

The rapid accumulation of genetic variation in human viruses, such
as human immunodeficiency virus type 1 (HIV-1) and hepatitis C
virus (HCV), enables these pathogens to elude the immune system
and forestalls the development of effective vaccines. This variation
may be shaped by selection due to host-specific immune responses,
such that the total virus population mirrors the immune diversity of
the host population. However, the often-neglected viral genetic
variation within hosts may also play an important role in shaping
variation in the total virus population. We carry out an innovative
analysis of bulk HIV-1 and HCV sequences isolated from over 4,000
human patients, exploiting ‘‘mixtures’’ (i.e., ambiguous nucleotides)
as a site-specific marker of within-host genetic variation. We find
that nonsynonymous mixtures are disproportionately abundant at
codon positions under strong host-specific immune selection.
Because existing models of virus evolution provide no explanation
for this outcome, we have formulated a new model supplemented
with stochastic simulations to demonstrate that the rapid trans-
mission of viruses through diverse selective environments creates a
positive correlation between nonsynonymous variation within and
among hosts.



upon our ability to anticipate the response of an infection to
CTL-mediated selection.

Results

Sequencing Mixtures Reveal CTL Selection
We screened for sequencing mixtures in population-based

sequences of HIV-1 PR (n ¼ 3,458) and reverse transcriptase
(RT, n¼ 1,997) isolated from 3,004 and 1,989 treatment-naive
individuals, respectively, and HCV sequences of envelope
protein E1 (n¼ 2,691) and the hyper-variable region HVR1 of
envelope protein E2 (n¼ 346). Although many sequences had
at least one mixture (55% HIV-1, 63% HCV), there were
relatively few mixtures per sequence on average (0.015
mixtures per codon position in HIV-1, 0.011 in HCV),
suggesting that only a small number of codon positions had
mixtures at detectable (20%–80%) frequencies in a given host
(Figure S1). We found substantial variation among codon
positions in mixture frequencies (Figure S2), which was

greater for nonsynonymous (coefficient of variation ¼ 1.98
HIV-1, 1.28 HCV) than synonymous mixtures (0.95 HIV-1,
1.06 HCV). There was no significant correlation between
nonsynonymous and synonymous mixture frequencies per
codon position in either HIV-1 (RT, Pearson’s q ¼ 0.04, p-
value ¼ 0.52; PR, q ¼ 0.13, p-value ¼ 0.21) or HCV gene
sequences (E1, q¼ 0.01, p-value¼ 0.75; E2, q¼�0.13, p-value¼
0.18), indicating that the variation in mixture frequencies
among codon positions was not simply due to local mutation
rates.
The difference between nonsynonymous and synonymous

mixture frequencies (mN�mS) was highly correlated with the
difference between nonsynonymous and synonymous sub-
stitution rates (dN � dS) per codon position for both HIV-1
and HCV gene sequences (Figure 1A). This positive correla-
tion between dN � dS and mN � mS remained significant for
both E1 and E2 gene sequences even when different
genotypes of HCV were analyzed separately. Overall, the

Figure 1. Genetic Variation within Hosts Is Shaped by Host-Specific Selection for CTL Escape

(A) The difference in nonsynonymous and synonymous mixture frequencies within hosts (mN�mS) is positively correlated with diversifying selection
among hosts (dN� dS) per codon position. Each point corresponds to a unique codon position in the respective gene sequence. Dashed lines indicate
the mean value for each quantity, which is consistently negative in dN� dS, implying purifying selection overall. Solid lines indicate a linear fit to the
data. HCV genotypes are plotted separately as shown in the figure legends. A single outlier caused by a rare substitution lies outside the plot region for
HIV-1 RT, but does not influence the significance of this correlation (Pearson’s q¼ 0.619, p-value , 3 3 10�16).
(B) Selection for CTL escape elevates the frequency of nonsynonymous mixtures (solid circles) relative to synonymous mixtures (open triangles) at
anchor residues within known A2-supertype–restricted epitopes in HIV-1 PR and RT and HCV E1 (predicted). Asterisks indicate anchor residues
associated with disproportionately high frequencies of nonsynonymous mixtures.
doi:10.1371/journal.ppat.0030045.g001
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quantity dN � dS assumed a negative value when averaged
across the gene sequence, implying that nonsynonymous
variation at the majority of codon positions was largely
neutral or deleterious throughout the host population.
Nevertheless, we detected significant diversifying selection
(dN� dS . 0) at nine codon positions in HIV-1 PR (12, 13, 19,
35, 37, 63, 64, 77, and 93) and eight positions in RT (35, 39,
102, 122, 135, 200, 211, and 245) after correcting for the false-
discovery rate [26] (a¼ 0.05); likewise, significant diversifying
selection was attributed to several codon positions in HCV E1
and E2 (HVR1) sequences, which varied by genotype.

For specific CTL epitopes in HIV-1 PR, RT, and HCV E1
sequences, we observed disproportionately higher frequen-
cies of nonsynonymous mixtures at the anchor residues
(Figure 1B) critical for MHC binding. In contrast, the profile
of synonymous mixture frequencies within these epitopes
lacked any distinct peaks in association with anchor residues.
Overall, the median difference between the frequencies of
nonsynonymous and synonymous mixtures was significantly
greater at known HLA-B–restricted epitopes (median mN �
mS ¼ �0.2% mixtures per sequence per site) than in the
remainder of the HIV-1 RT sequence (�0.5%; Wilcoxon rank-
sum test, p-value ¼ 0.007). We also found that mN � mS was
greater at the anchor residues of HLA-B–restricted epitopes
(median ¼�0.2%) than in an equivalent random sample of
codon positions from HIV-1 RT on average (median ¼
�0.4%), but this difference was only marginally significant
(p-value¼ 0.11). In contrast, the median was not significantly
greater at the known HLA-A–restricted epitopes within RT

(Wilcoxon rank-sum test, p-value ¼ 0.22), consistent with
previous studies suggesting that HLA-B alleles assume a
dominant role in the CTL control of HIV-1 [9,27]. In HIV-1
PR, the median excess in nonsynonymous mixtures was
considerably greater within the single known HLA-B–
restricted epitope (median ¼ 0.7%) than in the rest of the
gene sequence (median¼�0.4%), but this difference was only
marginally significant due to the small sample of codon
positions (Wilcoxon rank-sum test, p-value¼0.1). Again, there
was no significant difference in median values between HLA-
A–restricted epitopes and the remainder of the PR sequence
(Wilcoxon rank-sum test, p-value ¼ 0.55).
Similarly, in the HCV E1 sequences, we found that the

median excess of nonsynonymous mixtures was significantly
greater within the two known HLA-B–restricted epitopes
(median ¼ 0.9%) than in an equivalent random sample of
codon positions (median¼�0.2%; Wilcoxon rank-sum test, p-
value¼0.023). However, the median value for known HLA-A–
restricted epitopes in HCV E1 was significantly less (median¼
�0.5%) than that in the remaining codon positions (median¼
�0.1%; Wilcoxon rank-sum test, p-value¼ 0.003). There were
only two known CTL epitopes in the HCV E2 HVR1
sequence, both classified as HLA-A–restricted. We found no
significant association between the quantity mN � mS and
codon positions located within these epitopes (Wilcoxon
rank-sum test, p-value ¼ 0.87). In sum, nonsynonymous
mixtures tend to accumulate disproportionately at codon
positions under CTL selection, preferentially within HLA-B–
restricted epitopes.

Simulation Results
A surplus of nonsynonymous mixtures within CTL epitopes

represents transient polymorphisms that are eventually
driven to fixation in the host by selection for escape or
reversion [28]. This implies that the probability of sampling
nonsynonymous sequencing mixture should decline with the
intensity of host-specific selection at that codon position. As a
result, host-specific selection would produce negative corre-
lation between mN�mS and dN� dS across codon positions in
the range dN� dS . 0, contrary to what we have observed in
HIV-1 and HCV gene sequences. This paradox can be
reconciled by incorporating the early transmission of unfav-
orable variants into a model of virus evolution (Figure 2).
When selection and transmission act on similar time scales,
the composition of the circulating virus population (i.e., the
source of new infections) will not necessarily match the
diversity of HLA genotypes in the host population. Suppose
that an escape variant is transmitted from a host with a rare
HLA genotype to a new host with a common HLA genotype. If
the escape variant cannot outcompete the wild-type virus in
the absence of a CTL response, then selection will favor
reversion [7,8]. But the selective advantage of the wild-type
virus may be so narrow that a substantial probability remains
of transmitting the original escape variant [8,14]. Under such
conditions, the severe bottleneck upon transmission could fix
either the wild-type or escape variant in the new individual
population (Figure 2). Because the next host will likely have
the common HLA genotype, this transmission event can
recreate the selective conditions requiring a transient non-
synonymous polymorphism to occur.
To investigate this hypothesis, we implemented a simu-

lation of allele frequency evolution within individual virus

Figure 2. Effect of Transmission Rate on the Frequency of Mixtures

This schematic depicts the transmission chain of a virus population,
where each host is represented by an enclosed graph that represents the
evolving frequency of a CTL escape variant over time. The hosts either
possess an HLA allele which favors the escape variant (HLAþ, orange-
shaded boxes) or the wild-type virus (HLA�, white-shaded boxes). A
severe transmission bottleneck causes the population in the next host to
be initially fixed for either the wild-type or escape variant (filled circle). If
selection for escape or reversion is sufficiently strong (upper schematic in
blue), then the favored virus genotype will tend to become fixed within
the host before transmission occurs (open circle). Under such conditions,
transient polymorphisms will only occur whenever the virus is trans-
mitted between hosts of opposite type. On the other hand, if
transmission and selection occur on similar time scales (lower schematic
in red), then the host type does not necessarily predict which virus
genotype becomes transmitted, causing transient polymorphisms to
become more abundant (starred boxes).
doi:10.1371/journal.ppat.0030045.g002
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populations with ongoing transmission through a succession
of hosts. Each individual virus population was represented by
a single locus containing either an escape variant (at
frequency p) or the wild-type allele. We assumed that
transmission of the virus to a new host involved a severe

bottleneck, such that the next population was initially fixed
for either the escape variant (with probability p) or wild-type
allele. Viral fitness in a given host was determined by a single
MHC locus, at which an allele restricting the wild-type virus
(HLAþ) was present at a frequency q in the host population.
We observed that the mean frequency of within-host poly-
morphisms fpoly:0.2 � p � 0.8 converged over time to an
equilibrium value, which declined with stronger host-specific
selection if the transmission rate was low (Figure 3A). On the
other hand, if the transmission rate was high, then fpoly
increased with stronger selection and thereby became
positively correlated with genetic variation among hosts.
By sustaining high levels of polymorphism within hosts, a

joint increase in selection and transmission rate may also
cause the frequency of the escape mutation in the circulating
virus population (p ¼ E(p)) to depart substantially from the
expected value at equilibrium in the absence of polymor-
phism (p̂ ¼ q, i.e., individual virus populations fix alleles
matching host HLA genotypes). In our simulations, if
selection favoring escape in HLAþ hosts was sufficiently
stronger than selection for reversion in HLA� hosts, then p̂
became substantially greater than q at equilibrium (Figure
3B). On the other hand, if selection favoring reversion in
HLA� hosts was greater, then the equilibrium value of p̂ was
deflected in the opposite direction, below q (not shown). This
departure of p̂ from q became more pronounced with
increasing transmission rates. Unequal mutation rates be-
tween the virus alleles could also contribute to this effect
(Figure S3). An escape allele may therefore predominate the
circulating virus population even when the selective HLA
allele in the host population is rare. In other words, an
individual possessing a rare HLA allele may nevertheless
stand a high chance of becoming infected by a matched
escape variant if selection for reversion is weak and the
transmission rate is high.

Deterministic Model of Viral Evolution
This process sustaining high levels of nonsynonymous

polymorphism at codon positions under host-specific selec-
tion is related to the maintenance of genetic variation in a
subdivided population by local adaptation [29,30] and can be
illustrated with a simple deterministic model. We use the
following differential equation [31]:

dp
dt
¼ spð1� pÞ þ lð1� pÞ � vp ð1Þ

to describe the mean rate of change in p within a given host,
where s is the selection coefficient, and l and m are the
forward and back mutation rates, respectively. Initial con-
ditions for Equation 1 were defined to reflect the severe
bottleneck imposed by transmission of the virus (i.e., p(0)¼ 0
or p(0) ¼ 1). Assuming that transmission occurs after a
constant time interval (s), the expected value of p after n
transmissions is obtained from the recurrence equation:

pn ¼ qðpn�1 þ ð1� pn�1ÞpHLAþðsÞÞ þ ð1� qÞðpn�1pHLA�ðsÞÞ
ð2Þ

where pHLAþ and pHLA� are approximate solutions of
Equation 1 for evolution of p in HLAþ and HLA� hosts,
respectively (Protocol S1). Equation 2 has an equilibrium
solution:

Figure 3. Factors Influencing Within-Host Polymorphisms and the Global

Frequency of Escape Variants

(A) A contour plot depicting the mean effect of selection and
transmission rate on displacing the frequency of detectable poly-
morphisms from the neutral expectation (Dfpoly, refer to the color key), as
estimated from simulations. (The expectation E[fpoly] is jointly determined
by the forward and back mutation rates, l and m, and population size, N.)
The x-axis corresponds to the log-transformed transmission rate, log10k.
The y-axis represents the mean log-transformed selection coefficient,
E(log10s) ¼ qlog10(sesc) þ (1 � q)log10(srev).
(B) A 10-fold disparity in selection intensities sesc ¼ 0.02, srev ¼ 0.002)
causes p̂ to substantially exceed q with increasing transmission rate, k.
Each set of points represents mean estimates of p̂ from simulations (with
virus population size N¼ 5,000 and l¼ m¼ 10�4). Dashed lines indicate
predicted values from the deterministic model, which performs poorly
when k is too high (i.e., when transmissions occur rapidly, allele
frequencies are almost always near zero or one where stochastic
variation is greatest [31]). The typical range of q is indicated by the
shaded plot region.
doi:10.1371/journal.ppat.0030045.g003
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p̂ ¼ qpHLAþðsÞ
1� ð1� qÞpHLA�ðsÞ � qð1� pHLAþðsÞÞ

ð3Þ

which reduces to p̂ ¼ q when l ¼ m and selection for escape
and reversion is symmetric between host types (sesc¼ srev). As s
approaches ‘, p̂ also converges towards q because the
evolution of the escape allele within hosts is resolved before
transmission (i.e., pHLAþ �!

s!‘
1 and pHLA� �!

s!‘
0). Conversely,

as s approaches zero, p̂ converges towards a quantity
determined by the ratio of m and l (Protocol S2). The
behavior of p̂ at these limits implies the existence of an
intermediate waiting time to transmission (smax), which
maximizes the departure of p̂ from q. An approximation of
smax indicates that it is on the order of max(sesc,srev)

�1 when
selection is stronger than mutation (Protocol S3). Thus, our
model confirms that the greatest departure of p̂ from the
expectation q occurs when the mean transmission rate
corresponds to the overall intensity of selection.

We found a strong correspondence between this model and
simulations (Pearson’s q ¼ 0.92, p-value , 10�15; Figure S4)
with all incongruous cases being caused by stochastic effects
due to effective population sizes within hosts of N ¼ 102 or
below. The effective population size for HIV-1 is estimated to
be on the order of 103 and greater, while the total census
population size is typically several orders of magnitude larger
[32–34], and the census size for HCV is approximately 10-fold
greater still. Hence, this model is a reasonably accurate
representation of evolution within realistic HIV-1 and HCV
populations.

Discussion

In this study, we have described a novel pattern in the
genetic variation of two human viruses, and formulated a
simple population genetic model, supplemented with sto-
chastic simulations, to explain it. However, because of the
limited availability of population-based sequences that have
not been stripped of sequencing mixtures, we were required
to restrict our analysis to the RT and PR coding region of
HIV-1, in which mixtures provide useful information on the
evolution of resistance [21]. Although we focused our
investigation on subtype B sequences isolated from treat-
ment-naive individuals, we had no direct control over the
sequencing and base-calling conditions of this data set. On
the other hand, we obtained unprocessed sequencing electro-
pherogram data of the HCV E1 envelope coding region, such
that we could uniformly apply our own methods across all
sequences. We were also unable to control for the circum-
stances under which sequences were isolated from either
HIV-1– or HCV-infected patients, e.g., days since infection or
seroconversion, regionality of patient populations. Even so,
these sampling issues would not bias inferences based on site-
by-site comparisons of sequence variation (e.g., relative
mixture frequencies). We were able to recover an exception-
ally clear and consistent signal of a link between within-host
and among-host genetic variation among codon positions in
HIV-1 and HCV sequences. This pattern represents strong
evidence for CTL-mediated selection in both viruses, specif-
ically targeting with HLA-B–restricted epitopes.

The rapid accumulation of genetic variation in HIV-1 and
HCV enables these viruses to elude the immune system and
forestalls the development of effective vaccines. Identifying

the factors that shape genetic diversity in these human viruses
remains a formidable challenge. Because these viruses possess
exceptionally high mutation rates, extensive genetic variation
accumulates within hosts that may be shaped by ongoing
host-specific adaptation. However, the development of
models of virus evolution within hosts has been largely
independent of ‘‘dynamical’’ models of the transmission and
spread of viruses across host cells and individuals [25]. As a
result, few models of virus evolution integrate the evolution
within hosts with viral dynamics at the level of the host
population, which could otherwise reveal emergent proper-
ties of evolution within hosts. For example, there is an
extensive literature characterizing selection in HIV-1 [10,35–
47] by comparing inferred rates of nonsynonymous and
synonymous substitutions, but these studies employ methods
that do not explicitly distinguish between within- and among-
host variation (but see [19,48]).
However, empirical evidence indicates that aspects of the

host population can influence patterns of evolution within
hosts, and vice versa. For instance, Ross and Rodrigo [10]
found evidence that the magnitude and persistence of site-
specific diversifying selection within patients was correlated
with the rate of progression to acquired immune deficiency
syndrome (AIDS), which may influence long-term epidemio-
logical dynamics in the host population. Moore et al. [9]
found significant associations between divergent codon
positions within CTL epitopes in HIV-1 RT and HLA allelic
variation in the host population, which implied that CTL-
mediated selection within hosts was influencing the evolution
of the total virus population. More recently, Kosakovsky Pond
et al. [48] developed a customized phylogenetic analysis to
detect significant turnover in codon positions under diversi-
fying selection in HIV-1 PR and RT sequences among human
populations with distinct HLA frequencies. They also found
that many nonsynonymous substitutions that were mapped to
terminal branches of the tree (i.e., occurring within hosts)
were absent from internal branches, suggesting that adapta-
tions within individual virus populations were not always
maintained at the level of the total virus population [48].
These observations motivate the theoretical development

of models of viral evolution that capture the interaction
between the within-host and among-host levels of genetic
variation. Recently, Grenfell et al. [24] sought to unify the
characteristic shape of phylogenetic trees for different virus
pathogens with the evolutionary processes within hosts. For
instance, phylogenetic trees derived from HIV-1 or HCV
sequences sampled from the host population tend to be more
‘‘balanced’’, reflecting the epidemiological spread of the virus
[24]. In contrast, trees derived from influenza A virus
hemagglutinin sequences are less balanced, containing a
persistent ‘‘backbone’’ that continually spawns short-lived
lineages [49]. They proposed that this variation in tree shape,
which indirectly manifests the genetic variation among hosts,
was driven by the rate at which variants with a selective
advantage in the previous host were being transmitted to the
subsequent host. Our model complements this previous work
by directly evaluating the influence of within-host evolution
on the accumulation of nonsynonymous substitutions that
differentiate individual virus populations, and the reciprocal
effect of this divergence among hosts on variation within
hosts. As a result, we can obtain quantitative predictions on
how selection within hosts and the transmission rate will
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influence the frequency of escape variants in the total virus
population. The model also predicts that variation in the
mean surplus of nonsynonymous mixtures (quantified by the
summary statistic mN � mS) per gene indicates divergent
intensities of host-specific selection. Similarly, the character-
istic transmission rates and overall intensity of selection of
different viruses (e.g., HIV-1, HCV, influenza A virus) may
revealed by a divergence in the mean surplus of non-
synonymous mixtures per virus. We did not attempt to infer
differences between genes or viruses from the absolute
frequencies of mixtures in the current data set due to the
potential variation in sequencing protocols (as discussed
above). Nevertheless, our model should motivate investigators
in viral evolution to provide access to raw sequencing data,
including annotation of variables that could influence the
detection of polymorphisms (e.g., lab sequencing protocol,
automated sequencer type and manufacturer).

Based on the distribution of relative mixture frequencies
(i.e., site-by-site comparisons within genes), our model
indicates that the genetic variation of HIV-1 and HCV is
being shaped by the ongoing transmission of unfavorable
variants, skewing the frequency of an escape variant in the
total virus population towards the direction that host-specific
selection is strongest. This unexplored imprint of within-host
evolution, manifested as a site-specific surplus of nonsynon-
ymous mixtures within CTL epitopes, can strongly influence
the overall composition of the circulating virus population, in
addition to founder effects. Because we observed this
phenomenon in both HIV-1 and HCV, it may be a common
feature of viruses that exhibit both prolific genetic variation
within hosts and substantial rates of transmission.

Materials and Methods

HIV-1 and HCV sequence data. We obtained treatment-naive HIV-
1 subtype B sequences from the HIV Drug Resistance Database at
Stanford University (Stanford HIVDB) [50]. At the time of analysis,
there were 3,458 PR and 1,997 RT sequences meeting our criteria,
representing 3,004 and 1,989 patients, respectively. By restricting the
data set to treatment-naive individuals, we sought to minimize the
confounding effects of selection for drug-resistant variants. Further
screening for antiviral resistance was carried out by aligning each
sequence to its closest subtype reference sequence (obtained from the
Los Alamos National Laboratory [LANL] HIV sequence database;
[51]) and scoring for resistance according to the Stanford HIVDB
mutation scores using customized scripts in HyPhy [52]. Assuming
worst-case resolution of ambiguous nucleotides (i.e., maximized
scores), 149 RT and 58 PR sequences with at least low-level resistance
(score � 15) were discarded from the data sets. All 297 nucleotide
sites from PR sequences were included in our analyses. RT sequences
were truncated to nucleotide sites 1 to 741 to exclude poorly sampled
tail regions from the analyses.

In addition, we obtained 2,691 chromatogram traces generated
from ABI 310 and Beckman CEQ 8000 automated sequencers,
covering the core E1 region of HCV. For the majority of traces, each
corresponded to a unique isolate from a patient for the initial
diagnosis and genotyping of an HCV infection. All trace files were
converted to standard chromatogram format and processed with the
base-calling program Phred [53]. Potential sequencing mixtures were
identified by screening the uncalled peak output using a custom
Python script. An uncalled peak was classified as representing a
minority variant if: (1) it was located within 61 trace points of a
called peak; and the area under the uncalled peak was (2) at least 20%
of the called peak area; (3) at least 10% the mean area of the last ten
called peaks; and (4) at least two times greater than the mean area of
the last five uncalled peaks. All sequences were truncated to the E1
coding region spanning the nucleotide sites 1 to 399. We also
obtained 346 published population-based RT-PCR sequences from
Genbank (see Accession Numbers) spanning the hyper-variable
region HVR1 of HCV envelope protein E2 [54–57].

Site-specific estimation of substitution rates. Sequences were
aligned using ClustalW [58] and manually adjusted with Se-Al version

2.0 [59] (alignments available upon request). We used neighbor-joining
[60] with Tamura-Nei [61] distance to reconstruct the phylogeny from
each sequence alignment. Pairwise distances from each phylogeny
indicated that the sequences were highly divergent (Figure S5). To
estimate the number of nonsynonymous and synonymous substitu-
tions with branch corrections at each codon position, we employed
the single-likelihood ancestor counting method [62] as implemented
in HyPhy [52,63] using the default settings. Ambiguious nucleotides
were resolved to the consensus codon at that position in order to
remove any possible influence of mixture frequencies on estimates of
substitution rates. We tested for significant positive selection (dN . dS)
by applying a continuous extension of the binomial distribution to
model the probability that a given proportion of substitutions are
nonsynonymous, given the proportion of sites that are nonsynon-
ymous at the codon position [63].

Association with CTL epitopes. For analyzing associations between
nonsynonymous mixture frequencies and epitopes within HIV-1 PR
and RT, we applied the CTL epitope definitions from the LANL HIV
immunology database [64]. Similarly, we applied the CTL epitope
definitions from the LANL HCV immunology database for analyzing
associations within HCV E1 and E2 (HVR1) [65].

Simulations of virus evolution. We implemented a simulation of
virus evolution in a host population using an iterative Moran process
[66]. Both virus and host populations were each modeled by a single
two-allele locus, representing the immune escape and HLA geno-
types, respectively. Instantaneous rates for the unit increase and
decrease of escape allele frequency within a host were:

jþ ¼ ðk1ð1� lÞj þ k2mðN � jÞÞ 1� j
N

� �
;

j� ¼ ðk2ð1� mÞðN � jÞ þ k1ljÞ
j
N

� � ð3Þ

where j is the number of wild-type alleles in an ideal population of
constant size N, and k1 and k2 are the wild-type and escape virus
growth rates. If the host was HLA�, we set k1¼ 1 and k2 such that the
selection coefficient for reversion srev¼ (k1�k2)k

�1
2 . Otherwise, we set

k1 , k2 so that sesc ¼ (k2 � k1)k
�1
1 . 0. After an exponentially

distributed waiting time (s) with rate k, a randomly selected individual
from K ¼ 103 hosts was replaced. This new host was HLAþ with
probability q (and HLA� otherwise), and infected by wild-type virus
with probability js/N, where js is obtained from the iterative
application of jþ and j�, and the total number of events occurring
in the time interval s was determined by random draws from an
exponential distribution with the rate ( jþ þ j�). Otherwise, it was
infected by the escape mutant virus. This new infection was therefore
initially fixed for either the wild-type or escape virus genotype,
assuming a severe bottleneck upon transmission between hosts.

Simulations were run for 200 3 K transmissions, which was
sufficient for p to converge to an equilibrium for all parameter values
evaluated. We recorded the frequency of the escape allele in the
individual virus population (p¼1� j/N), from which we calculated the
mean frequency among hosts (p ¼ E(p)). Given the empirical
detection threshold of minority variants from population-based
sequencing, an individual virus population was considered to be
detectably polymorphic if 0.2 , p ,0.8. Unique parameter values
were assigned to 100 replicate simulations by Latin hypercube
sampling from their respective ranges: q ¼ (0, 0.5); l,m ¼ (10�5, 10�3);
sesc,srev¼ (0.002, 0.2); N¼ (102, 105); and k¼ (0.00137, 0.0137), such that
transmissions occur after approximately 0.2 to 2 years (where s is in
units of days).

To compare the simulation results to our deterministic model, we
used the numerical integration function in Mathematica 5.1 (Wolfram
Research, http://www.wolfram.com) to calculate the expectation of
Equation 3 assuming that the waiting time s was exponentially
distributed with rate parameter k.

Supporting Information

Figure S1. Histograms for the Frequency of Nonsynonymous and
Synonymous Mixtures per Sequence

The range of frequencies for HCV E2 (HVR1) has been truncated at
ten mixtures per sequence for clarity, although a small number of
sequences contain as many as 18 mixtures. In HIV-1 PR and RT and
HCV E2 (HVR1), there is an excess of mixture-free sequences,
possibly due to an under-reporting bias of mixtures which are often
interpreted as sequencing errors. HCV E1 sequences were obtained
directly from unprocessed trace files and were not subject to this bias.
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The level of dispersion in the observed frequency distributions was
evaluated by fitting Poisson and negative binomial models using a
generalized linear models procedure. Goodness-of-fit, quantified by
Akaike’s information criterion, was improved by the negative
binomial model in all cases, and estimates of the dispersion
parameter confirmed overdispersion of mixture frequencies in
HIV-1 PR and RT and HCV E2 (HVR1).

Found at doi:10.1371/journal.ppat.0030045.sg001 (13 KB PDF).

Figure S2. Mixture Frequency Distributions

The histograms depict frequency distributions for nonsynonymous
(above) and synonymous (below) mixtures per codon position. Note
that the histograms for HCV E1 and E2 (HVR1) are on different scales.
There is conspicuously greater variation among codon positions in
nonsynonymous mixture frequencies, more notably in HIV-1 sequen-
ces. Codon positions associated with peaks in the frequency of
nonsynonymousmixtures are indicated above each distribution by the
alignment consensus amino acid and residue number.

Found at doi:10.1371/journal.ppat.0030045.sg002 (169 KB PDF).

Figure S3. Effect of Mutation Rate Asymmetry on the Frequency of
Escape Mutations

A contour plot depicting the difference p̂ � q as a function of the
disparity in selection coefficients and mutation rates between HLAþ

and HLA� hosts (r ¼ log10(sesc) � log10(srev) þ log10l � log10m) and the
transmission rate (log10k). When the net effect of mutation and
selection is equivalent between HLAþ and HLA� hosts (r¼ 0), then p̂
converges to q and is independent of variation in transmission rate.
In contrast, when there is a net imbalance in mutation and selection
(r 6¼ 0), there is a departure of p̂ from q; this departure becomes
greater with increasing transmission rates. Viral population size has
no apparent effect on the difference p̂ � q. Each open circle
corresponds to a replicate simulation with unique parameter values
set by Latin hypercube sampling.

Found at doi:10.1371/journal.ppat.0030045.sg003 (30 KB PDF).

Figure S4. Comparison of Stochastic Simulation and Model Pre-
dictions

Scatterplot illustrating correspondence between predicted value of p
from the deterministic model (x-axis) and values obtained from
simulations at equilibrium (p̂, y-axis). A solid line is drawn at x¼ y to
indicate an exact match between model and simulation frequencies.
Dashed lines above and below the x ¼ y axis enclose variation in
frequencies within a 610% interval. Disparity between the model
and simulations is caused by a lack of stochastic factors in the model.
Replacing the unidirectional mutation approximations of the model
(pHLAþ and pHLA� ) by the exact formula has no visible effect on the
correspondence between the model and simulations.

Found at doi:10.1371/journal.ppat.0030045.sg004 (9 KB PDF).

Figure S5. Frequency Distributions of Pair-Wise Distances of HIV-1
and HCV Sequences

There is a substantial amount of divergence among the vast majority

of HIV-1 sequences in the reconstructed phylogenetic trees, with only
,0.1% of pairwise distances below 0.01. This is consistent with the
low number of HIV-1 PR and RT sequences that were re-sampled
from the same patient. HCV E1 and E2 (HVR1) sequences were highly
divergent on average. A small proportion of pairwise distances
between HCV E1 sequences (1.1%), particularly in subtype 4d, were
below 0.05. Similarly, about 3% of pairwise distances between HCV
E2 (HVR1) sequences were below a threshold of 0.25. Hence, a
minority of HCV sequences may have represented multiple isolates
from patients, but were too few overall to influence the outcome of
our analyses.

Found at doi:10.1371/journal.ppat.0030045.sg005 (14 KB PDF).

Protocol S1. Approximation of Allele Frequency Evolution

Found at doi:10.1371/journal.ppat.0030045.sd001 (73 KB PDF).

Protocol S2. Limit Behavior of Deterministic Model

Found at doi:10.1371/journal.ppat.0030045.sd002 (41 KB PDF).

Protocol S3. Approximation of Optimal Waiting Time to Trans-
mission

Found at doi:10.1371/journal.ppat.0030045.sd003 (60 KB PDF).

Accession Numbers

GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html) acces-
sion numbers for the HCV E1 envelope protein-coding sequences
used in our study are AY766700–AY768365. GenBank accession
numbers for the E2 envelope protein (HVR1) sequences used in our
study are the following: AY390002, AY390005, AY390008, AY390010,
AY390013, AY390016, AY390019, AY390022, AY390024, AY390027,
AY390030, AY390032, AY742960–AY743049, AY309923–AY309954,
AY314963–AY314969, AY390002–AY390035, AY564735–AY564784,
and AY935999–AY936132.
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