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Synopsis
14-3-3 proteins are highly conserved and have been found in all eukaryotic organisms investigated. They are involved
in many varied cellular processes, and interact with hundreds of other proteins. Among many other roles in cells,
yeast 14-3-3 proteins have been implicated in rapamycin-mediated cell signalling. We determined the transcription
profiles of bmh1 and bmh2 yeast after treatment with rapamycin. We found that, under these conditions, BMH1 and
BMH2 are required for rapamycin-induced regulation of distinct, but overlapping sets of genes. Both Bmh1 and Bmh2
associate with the promoters of at least some of these genes. BMH2, but not BMH1, attenuates the repression of
genes involved in some functions required for ribosome biogenesis. BMH2 also attenuates the activation of genes
sensitive to nitrogen catabolite repression.
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INTRODUCTION

14-3-3 proteins are highly conserved and have been found in
all eukaryotes investigated. They are involved in many varied
cellular processes, and interact with hundreds of other proteins
(reviewed in [1]). In yeast, there are two 14-3-3 proteins, Bmh1
and Bmh2, which share 93 % amino acid identity [2–4]. In all
genetic backgrounds tested, with the exception of �1248, dele-
tion of both BMH1 and BMH2 is lethal; however, deleting only
one of these proteins has little effect on cell growth or viability
[4,5]. They most commonly form homodimers or heterodimers,
but they have also been reported to act without forming dimers
[6]. They function primarily by binding to phosphorylated pro-
teins [7], although other modes of binding have been reported
[8–11].

Rapamycin is a small molecule that forms a complex with
Fpr1 and the Tor (target of rapamycin) proteins, and thus blocks
the TOR signalling pathway [12]. Treating yeast with rapamy-
cin leads to a rapid and robust starvation response including
changes in the expression of many yeast genes [13]. Among



Abbreviations: ChIP, chromatin immunoprecipitation; GO, gene ontology; NCR, nitrogen catabolite repression; qPCR, quantitative PCR; TOR, target of rapamycin; WCE, whole-cell
extract; WT, wild-type.
1 To whom any correspondence should be addressed (email edixon@stlawu.edu).

many other roles in cells, yeast 14-3-3 proteins have been implic-
ated in rapamycin-mediated cell signalling. Bertram et al. found
that deleting the yeast 14-3-3 proteins makes cells more sensit-
ive to rapamycin, wherease overexpression of BMH1 and BMH2
suppresses the inhibitory effects of rapamycin [14]. In addition,
BMH2 has been shown to be involved in rapamycin-mediated
signalling by binding to the transcription factors Msn2/Msn4 and
Rtg3 and sequestering them in the cytoplasm. Upon treatment
with rapamycin, the transcription factors are released and enter
the nucleus [15,16].

The BMH proteins have been shown to localize to chromatin
in yeast through several mechanisms including binding to his-
tone H3 that is phosphorylated on serine 10 and acetylated on
lysine 14 [17], binding to cruciform DNA [18], and associating
with histone acetyltransferases and deacetylases [19]. 14-3-3 pro-
teins have also been found to associate with G-box DNA-binding
complexes in several plant species [20–22] and to regulate tran-
scription in both mice and humans [10,23]. The apparent condi-
tional association of 14-3-3 proteins with DNA positions the yeast
14-3-3 proteins as good candidates to regulate gene transcription
under multiple growth conditions.
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Previous studies have examined the transcription profile of
yeast missing both of the BMH proteins under standard growth
conditions [24,25]. These studies found that the BMH proteins
are mainly required for the transcriptional regulation of genes
involved in carbohydrate, lipid, and amino acid metabolism, the
stress response, and protein synthesis and folding. They also regu-
late transporters of amino acids and Rtg3-regulated genes [24,25].

We determined the transcription profiles of bmh1 and bmh2
yeast after treatment with rapamycin. We found that, under
these conditions, BMH1 and BMH2 are required for rapamycin-
induced regulation of distinct, but overlapping sets of genes in-
cluding those involved in ribosome biogenesis and nitrogen cata-
bolite repression (NCR). We show that both Bmh1 and Bmh2
associate with the promoters of at least some of these genes

MATERIALS AND METHODS

Yeast strains
The mutant strains bmh1 (MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0 bmh1::KanMX) and bmh2 (MATa his3Δ1 leu2Δ0
met15Δ0 ura3Δ0 bmh2::KanMX) and the otherwise isogenic
WT (wild-type) strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0) were obtained from Research Genetics. Bmh1-3xHA
(MATa BMH1-HA3::URA3::bmh1) and Bmh2–3xHA (MATa
BMH2-HA3::URA3::bmh2) were a generous gift from M. P.
Longhese (Università di Milano-Bicocca, Milano, Italy).

Transcription profiling
100 ml yeast were grown to an OD600 of ∼1 in yeast ex-
tract/peptone/dextrose media and treated with either 50 nM rapa-
mycin or vehicle control [90 % (v/v) ethanol, 10 % (v/v) Tween-
20] for 30 min. Approximately 50 mg of total RNA isolated from
these cells was fluorescently labelled and hybridized to DNA mi-
croarrays spotted with 70 mer oligos representing all of the known
reading frames in the yeast genome as previously described [26].
Microarrays were obtained from Genome Consortium for Active
Teaching. These data represent an average of two independent
experiments. K-means clustering was performed using the pro-
gram Cluster and visualized in Treeview [27]. Genes that were
not up- or down-regulated at least 2-fold in at least one of the cell
types were excluded from this analysis.

RT-qPCR (quantitative PCR)
The coding regions of selected genes were each amplified from
100 ng of total RNA using Qiagen SYBR Green RT-PCR mix
in an Opticon 2 real-time PCR machine (Bio-Rad) accord-
ing to the manufacturers’ instructions. The following primer
pairs were used for quantitative RT-PCR: NSA2, 5′-CCAAGT-
GCGTTGAGACAGAA-3′ and 5′-GTTCGTTTGTGACCTGA-
GCA-3′; NMD3, 5′-AATGGAACGTGCAGAAAAGG-3′ and
5′-ATTCAACGGGTGTGTTCTCG-3′; NOG2, 5′-GGAAACA-
CCACACAAGCATTT-3′ and 5′-TTTGGATAGCCGATAAAC-
CCTA-3′; GAP1, 5′-CCAAAGTATAGAGA-3′ and 5′-TT-

GAATTTAGCACC-3′; BMH1, 5′- TTTTGACGACGCTATTG-
CTG-3′ and 5′- ACTTTGGTGCTTCACCTTCG-3′; BMH2,
5′- TCCTGATAAGGCTTGCCACT-3′ and 5′- GCTGT-
TGCTGTTGCTGTTGT-3′; TUB2, 5′-TCCGGTATGGGTAC-3′

and 5′-ACGTGGGCATTGTAT-3′. Fold-change in expression of
each gene was determined using the Pfaffl method [28]. For each
gene examined, the coding region of TUB2 was used as the ref-
erence. Each fold-change in expression represents the average of
3–5 independent experiments, each done in duplicate.

Chromatin immunoprecipitation
DNA associated with Bmh1 or Bmh2 was immunoprecipitated
from 90 ml of yeast cells containing endogenously HA-tagged
BMH1 or BMH2 grown to an OD600 of ∼1.0, then treated
for 30 min with either 50 nM rapamycin or a vehicle control.
Cells were crosslinked and lysed as described [29]. The immun-
oprecipitation was carried out using 15 μl of anti-HA antibody
(Millipore) as described [29]. Approximately 1/50 of the pre-
immunoprecipitation material, referred to as WCE (whole-cell
extract) was reserved and treated exactly as the immunoprecipit-
ated DNA.

Quantitative PCR
The promoters of selected genes were each amplified from
approximately 1/30 of the immunoprecipitated material using
Qiagen SYBR Green PCR mix in an Opticon 2 real-time PCR
machine (Bio-Rad) according to the manufacturers’ instructions.
The following primer pairs were used for quantitative PCR:
NSA2 promoter, 5′-CAAGGATTCTGATGTCGCAGT-3′ and
5′-GTGCATCTCATCGCTGTCC-3′; NMD3 promoter, 5′-
GGGTGAGAAAATCGCTGTAAA-3′ and 5′-TAGTGTTATG-
TACCAGGCGACAA-3′; NOG2 promoter, 5′-GTGCCAAT-
GCTCCCTCTG-3′ and 5′-CGCTTCTTTATATGCCCAAAA-3′;
GAP1 promoter, 5′-AAAGGAGAATAGGG-3′ and 5′-GA-
GGTCAATGGGTA-3′; TUB2 promoter, 5′-GGCCTAA-
CAGTAAA-3′ and 5′-GTTGTAGTAGCTGC-3′. Fold binding
of Bmh1 and Bmh2 to gene promoters was determined using
the Pfaffl method [28]. For each promoter examined, the
promoter of TUB2 was used as the reference. Measurements
compare the amounts of Bmh1 and Bmh2 recovered in the
immunoprecipitated material to amounts recovered in the WCE.
Each fold-binding represents the average of 3-5 independent
experiments, each done in duplicate.

RESULTS

BMH1 and BMH2 are required for the
rapamycin-induced regulation of different sets of
genes
To determine the roles of BMH1 and BMH2 in transcriptional
regulation following rapamycin treatment, we used microarrays
to examine relative levels of each yeast mRNA. We compared
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Figure 1 BMH1 and BMH2 regulate overlapping gene sets follow-
ing treatment with rapamycin
Log-transformed, averaged transcription profile data sets were clustered
using k-means with the program Cluster [27]. The results are displayed
with Treeview [27]. Red bars indicate genes that were transcription-
ally induced, and green bars indicate genes that were transcriptionally
repressed. The data set for each strain compares yeast treated with
vehicle to those treated with rapamycin.

the RNA from yeast treated with rapamycin to those treated with
a vehicle control for WT yeast and otherwise isogenic yeast
missing the BMH1 or BMH2 gene. We obtained similar data
from our WT microarray experiment to that obtained in previ-
ous studies [13,26], suggesting that these data are reliable. Be-
cause the amino acid sequences of BMH1 and BMH2 are 93 %
identical, we expected them to play similar roles in regulating
transcription. Indeed, we found that deleting either BMH1 or
BMH2 alters the rapamycin-induced transcription profile in sim-
ilar ways, and they are required for both the activation and re-
pression of genes (Figure 1, Supplementary Table S1 at http://
www.bioscirep.org/bsr/034/bsr034e099add.htm). However, we
also found that BMH1 and BMH2 activate and repress distinct
sets of genes (Figure 1). Of the top 200 genes that are activated
by BMH1 and BMH2, approximately 54 % of them overlap.

BMH1 and BMH2 attenuate the repression of
different classes of genes
To determine which classes of genes require BMH1 and BMH2
for rapamycin-induced transcriptional regulation, we looked for
Gene Ontology (GO) function terms that are associated with
the top 200 genes that are either activated or repressed in bmh1
mutants or bmh2 mutants more than in WT cells. While genes that
perform many functions are regulated by both BMH1 and BMH2
following rapamycin treatment (Figure 2A), there are also GO
terms that are associated with only the bmh1 mutant and oth-

ers that are associated with only the bmh2 mutant. We found
that genes involved in translation are repressed more in a bmh1
mutant than in WT cells or in a bmh2 mutant (Figure 2B). In
contrast, genes involved in the various steps of ribosome biogen-
esis are repressed more in a bmh2 mutant than in WT cells or in
a bmh1 mutant (Figure 2C). We did not find any significant GO
terms for genes that are activated more in a bmh1 or bmh2 mutant
than in WT cells, suggesting that the 14-3-3 proteins act primar-
ily as transcriptional activators following rapamycin treatment.
Because there appear to be more genes that require BMH2 but
not BMH1 for normal levels of transcriptional regulation follow-
ing rapamycin treatment, and because Bmh1 is present at much
higher levels in cells than Bmh2 [30], we focused on genes that
depend on BMH2 for regulation.

BMH2 is required to attenuate the repression of
ribosome biogenesis genes
Treating yeast with rapamycin leads to a decrease in transla-
tion, which is caused in part by transcriptional down-regulation
of genes involved in ribosome biogenesis [13]. Based on the
microarray data, BMH2 but not BMH1 acts to decrease the re-
pression of many ribosome biogenesis genes. We selected three
ribosome biogenesis genes, NSA2, NMD3 and NOG2, and used
quantitative reverse-transcription PCR (RT-qPCR) to verify this
observed decrease in repression (Figure 3A). We found that
Bmh2, but not Bmh1, attenuates the repression of all of these
genes following rapamycin treatment. Next, we wanted to know
whether the transcriptional regulation of these genes by BMH2
was direct or indirect. To do this, we used ChIP (chromatin im-
munoprecipitation) followed by qPCR. We found that Bmh2 as-
sociates with the promoters of these genes following rapamycin
treatment (Figure 3B), suggesting that this is a direct effect.

BMH2 is required to attenuate the activation of
NCR genes
The microarray data indicate that genes sensitive to NCR are
more highly expressed in bmh2 mutants than in bmh1 mutants.
These genes are activated to approximately the same extent in WT
and bmh1 cells, but activated, on average, approximately 1.5-fold
more in bmh2 mutants than in WT cells or bmh1 mutants. We ex-
amined the transcription of GAP1, an NCR gene, by quantitative
RT-PCR to verify these microarray results. We found that BMH2
attenuates the activation of GAP1 to a greater extent than does
BMH1 (Figure 4A), verifying our microarray data. Bmh2 binds
to the promoter of GAP1 upon rapamycin treatment (figure 4B),
suggesting that this is a direct effect.

The yeast 14-3-3 proteins do not regulate each
other’s expression
One possible explanation for our data is that the absence of
one of the yeast 14-3-3 genes could lead to altered expression
levels of the other 14-3-3 gene. To test this possibility, we ex-
amined the expression of BMH1 and BMH2 when the other
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Figure 2 Gene ontology terms enriched (P < 10− 4) in the top 200 genes that are transcribed at lower levels in bmh1
cells or bmh2 cells than in WT cells following rapamycin treatment were determined
(A) Enriched gene ontology terms in both bmh1 and bmh2 cells, (B) enriched gene ontology terms in only bmh1 cells and
(C) enriched gene ontology terms in bmh2. The per cent of the 200 genes that map to each term is represented in each
gene ontology bar.
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Figure 3 BMH2 but not BMH1 acts at the promoters of ribosome biogenesis genes to attenuate their repression following
rapamycin treatment
(A) Quantitative RT-PCR was used to determine the transcriptional effect of treating the indicated yeast strain (WT, bmh1
and bmh2) with rapamycin. Each data point represents the abundance of NMD3, NSA2 and NOG2 RNA in rapamycin-treated
cells compared with vehicle-treated cells, relative to the RNA levels of TUB2. Error bars indicate the standard error of the
mean (n = 3). (B) ChIP followed by quantitative PCR was used to determine the extent to which Bmh1 and Bmh2 bind
to the promoters of NMD3, NSA2 and NOG2. Each data point represents the fold enrichment of the indicated promoter
after the immunoprecipitation compared with the whole cell extract, relative to the enrichment of the promoter of TUB2.
Error bars indicate the standard error of the mean (n = 4).

14-3-3 gene was deleted both in untreated cells and in cells
treated with rapamycin. We found that deleting one 14-3-3 gene
does not lead to changes in the expression of the other 14-3-3
gene (Figure 5).

DISCUSSION

Here, we present evidence that BMH1 and BMH2 play over-
lapping but distinct roles in regulating rapamycin-induced tran-
scriptional changes. Previous genome-wide studies of the effects
of yeast 14-3-3 proteins on transcription used systems in which
both BMH1 and BMH2 were inactivated, and looked only at
steady-state conditions [24,25]. We found some of the same gene
classes to be regulated by individual 14-3-3 proteins following
rapamycin treatment, but also identified new groups of genes that
require 14-3-3 proteins for transcriptional regulation following
rapamycin treatment.

To the best of our knowledge, this is the first report of Bmh1
and Bmh2 performing different roles in regulating transcription.
However, Bmh1 and Bmh2 appear to be required for some differ-
ent processes in cells. For example, previous results demonstrate
that Bmh1, but not Bmh2 is required for the efficient forward
transport of Pmp2 [31] and that the two yeast 14-3-3 proteins
have different subcellular localization patterns [32]. This sug-
gests that while Bmh1 and Bmh2 have very similar sequences,

there is sufficient variability to allow them to perform unique
functions.

We identified genes that are regulated by just Bmh1, just
Bmh2, or both Bmh1 and Bmh2 following rapamycin treatment.
Genes that require one of the yeast 14-3-3 proteins but not the
other for WT expression levels likely have a requirement for
the corresponding 14-3-3 protein homodimer. Genes that have
altered expression in both bmh1 and bmh2 mutants likely require
a Bmh1/Bmh2 heterodimer for proper expression, or require a
14-3-3 protein to be present and are sensitive to changes in the
overall levels of 14-3-3 proteins caused by deleting one of the iso-
forms. All three of these dimer types occur in vivo, with approx-
imately 65 % of Bmh2 and 79 % of Bmh1 occurring in homodi-
mers [33]. However, since there are approximately 3.3 copies of
Bmh1 for every copy of Bmh2, all three dimer types are likely
to be present in sufficient abundance to allow for functionality
[30,33].

Our data suggest that there is a stronger role for Bmh2
than Bmh1 in regulating rapamycin-mediated transcription. This
could be explained if there were higher levels of Bmh2 than
Bmh1. In fact, the opposite result has been found [30]. This sug-
gests that our results are not due to a dosage effect. We also show
that our results are not a due to deleting one of the 14-3-3 iso-
forms altering the expression levels of the other isoform. In order
to control transcription, however, proteins must be localized to the
nucleus. Under steady-state conditions, Bmh2 is localized to both
the cytoplasm and the nucleus, whereas Bmh1 is localized only
to the cytoplasm [32]. Since we have identified a role for Bmh1 in
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Figure 4 BMH2 but not BMH1 acts at the promoter of GAP1 to
decrease its activation following rapamycin treatment
(A) Quantitative RT-PCR was used to determine the transcriptional ef-
fect of treating the indicated yeast strain (WT, bmh1 and bmh2) with
rapamycin. Each data point represents the abundance of GAP1 RNA
in rapamycin-treated cells compared with vehicle-treated cells, relative
to the RNA levels of TUB2. Error bars indicate the standard error of
the mean (n = 3). (B) ChIP followed by quantitative PCR was used to
determine the extent to which Bmh1 and Bmh2 bind to the promoter of
GAP1. Each data point represents the fold enrichment of the promoter
of GAP1 after the immunoprecipitation compared with the whole cell
extract, relative to the enrichment of the promoter of TUB2. Error bars
indicate the standard error of the mean (n = 4). Based on the microarray
data, GAP1 is activated upon rapamycin treatment and deleting BMH1
or BMH2 increases that activation.

regulating transcription, it is likely that there is at least a small
amount of Bmh1 in the nucleus following rapamycin treatment.
Bmh1 becomes localized to the nucleus upon DNA replication
stress [34], suggesting that such a translocation is possible.

Our data suggest that Bmh2 is necessary for the regulation
of gene classes including ribosome biogenesis genes and NCR
genes. Bmh2 binding to the promoters of these genes increases
following rapamycin treatment, suggesting that Bmh2 is directly
regulating these genes. This regulation may be due to Bmh2
binding to either the DNA or other proteins in the promoters of
these genes.

We found that both Bmh1 and Bmh2 act to moderate many
of the transcriptional effects of rapamycin treatment, including
the down-regulation of ribosome biogenesis genes and the up-
regulation of NCR genes. This is consistent with Bertram et al.
[14] who showed that the 14-3-3 proteins decrease rapamycin-
induced growth suppression, and also with Wang et al. [35] who
showed that deleting BMH1 extends lifespan by enhancing the
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Figure 5 Deleting one 14-3-3 gene does not alter the expression
of the other 14-3-3 gene
Quantitative RT-PCR was used to determine the transcriptional effect
of deleting one 14-3-3 gene in (A) untreated cells and (B) cells treated
with rapamycin. Each data point represents the abundance of BMH1
or BMH2 RNA in the indicated mutant cells compared with WT cells (A) or
in rapamycin-treated cells compared with vehicle-treated cells, relative
to the levels of TUB2. Error bars indicate the standard error of the mean
(n = 3).

stress response, and does so in part through interactions with the
TOR pathway.

We found that Bmh2 attenuates the activation of NCR-
sensitive genes. Following rapamycin treatment, the transcription
factors Gln3 and Gat1 translocate into the nucleus and activate
the transcription of these genes. It was previously determined
that the yeast 14-3-3 proteins bind Gln3 and Gat1 [36], suggest-
ing a potential mechanism for this effect.
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