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For over 100 years, the group-theoretic characterization of crystalline solids has provided the
foundational language for diverse problems in physics and chemistry. However, the group
theory of crystals with commensurate magnetic order has remained incomplete for the past
70 years, due to the complicated symmetries of magnetic crystals. In this work, we complete
the 100-year-old problem of crystalline group theory by deriving the small corepresentations,
momentum stars, compatibility relations, and magnetic elementary band corepresentations
of the 1,421 magnetic space groups (MSGs), which we have made freely accessible through
tools on the Bilbao Crystallographic Server. We extend Topological Quantum Chemistry to
the MSGs to form a complete, real-space theory of band topology in magnetic and non-
magnetic crystalline solids - Magnetic Topological Quantum Chemistry (MTQC). Using
MTQC, we derive the complete set of symmetry-based indicators of electronic band topol-
ogy, for which we identify symmetry-respecting bulk and anomalous surface and hinge states.
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crystal is defined by its discrete translation symmetry.

Over the past 140 years':2, a tremendous number of

physical phenomena have been shown to arise from the
complicated mathematical structures implied by this otherwise
simple definition of a crystal. For example, the symmetry and
group theory of crystalline solids have been used to characterize
phase transitions’, identify biological structures like the DNA
double helix#, and, most recently, to elucidate the position-space
origin of topological bands through the theories of Topological
Quantum Chemistry (TQC)>¢ and equivalent works”=.

In time-reversal- (7-) symmetric, periodic systems — which
most familiarly include nonmagnetic crystalline solids - the
energy (Bloch) eigenstates respect the symmetries of the non-
magnetic (Type-IT) Shubnikov space group (SSGs)!0-12 [see Fig. 1
and Supplementary Note (SN) 2]. Though there are 230 Type-II
SSGs, including SSGs with complicated combinations of glide and
screw symmetries, the group theory of nonmagnetic crystalline
solids has been largely solved for over 40 years!!. In particular, the
enumeration of the irreducible momentum-space [small] cor-
epresentations [coreps, see SN 13], and a partial enumeration of
the space group (elementary band) coreps [EBRs, see SN 17] of the
Type-II SSGs were completed prior to the advent of personal and

Type-1 | Type-Il Type-Ill | Type-IV
(1651) MSGs SGs MSGs MSGs
(230) (230) (674) (517)
(Co)reps v v
Compatibility rel. v v v
EBRs v v 4 4
Enforced SMs 4 v 4 4
Sl group v v v v
Sl formulas v v 4 4
Fragile criteria v
Stable invariants * 4 * *
Boundary states * v * *
S| — invariants v v v 4

Fig. 1 Summary of results. In this work, we have derived the complete sets
of trivial bands [elementary band (co)representations (EBRs), see SN 17]
and symmetry-indicated, spinful, stable topological bands in the 1,651
Shubnikov space groups [SSGs]. The EBRs subdivide into the physical EBRs
of the 230 Type-Il nonmagnetic space groups [SGs] and the magnetic EBRs
[MEBRs] of the 1,421 Type-|, lll, and IV magnetic SGs [MSGs, see SN
21'0-12_ We have additionally performed the first complete calculation of
the small (co)representations [(co)reps] and compatibility relations [see
SN 11] for all 1,651 single and double SSGs, which we have made accessible
through the tools listed in Table 1. These results comprise the theories of
Magnetic Topological Quantum Chemistry (MTQC) and fermionic
symmetry-based indicators (double Sls)7:30-3251 which apply to all
possible 3D magnetic and nonmagnetic crystals with mean-field
Hamiltonians. We have also determined the physical bases of all double
(spinful) symmetry-based indicators (Sls), and symmetry-indicated
topological bulk and anomalous boundary states for all 1,651 double SSGs
(SN 26). Lastly, the MEBRs of the Type-IIl and Type-IV MSGs computed in
this work also facilitates the complete enumeration of symmetry-enforced
magnetic topological semimetals (SMs) - examples are provided in Fig. 4c
and in SN 15. In this figure, we have used red checks to indicate areas of
magnetic topological band theory completed in this work, and we have used
red stars to indicate areas in which we have solved complete subareas
(such as the double Sls of the 1,651 double SSGs), but in which there remain
topological features outside of the scope of this work, such as non-
symmetry-indicated stable topological bands2>26:3455 and bosonic
(spinless) topological crystalline insulators (TCls).

distributed computing!"13-16, In recent years, the group theory of
Type-1I SSGs has facilitated a revolution in the search for topo-
logical insulators (TIs)!7-22 and topological crystalline insulators
(TCIs)?3-25, including the recent discovery of higher-order TCIs
(HOTIs)27-2% through TQC and related methods0-34,

However, the 230 Type-II SSGs represent only a fraction of the
1,651 (magnetic and nonmagnetic) SSGs (MSGs and SGs,
respectively, see Fig. 1 and SN 2). Specifically, while Type-II SGs
contain unitary symmetries and 7 about any point ({77|0}), there
are also Type-I MSGs with only unitary symmetries, Type-III
MSGs that contain combinations of 7" and rotation or reflection
(e.g. {C,,x 7|0}, in which C,; is a rotation by 27/n about the i
axis), and Type-IV MSGs that contain the combination of 7 and
fractional lattice translation ({7 |a/2}, in which a is an odd-integer
linear combination of lattice vectors). The small (co)reps and
magnetic EBRs [MEBRs] of the MSGs are necessary for a wide
range of physical applications, including characterizing magnetic
topological semimetals (SMs)3°-38, TIs3%40, and TCIs*!#2, Beyond
topological materials, the magnetic small (co)reps are also required
to construct theories of magnetic phase transitions with nonzero q
vectors from magnetic structure data obtained through neutron
diffraction experiments*>*4, and to characterize 7 -breaking
superconducting phases** with nonzero Cooper-pair momenta,
such as Fulde-Ferrell-Larkin-Ovchinnikov states6-4°. Never-
theless, due to the relative complexity of the MSGs, and despite a
number of significant partial tabulations®®>!, progress towards
completing the group theory of magnetic crystals has largely stalled
for the past 70 years!®11,

In this work, we use a combination of computational and
analytic methods to derive the small (co)reps and MEBRs of the
MSGs, completing the 100-year-old problem of crystalline group
theory. Using the small (co)reps and MEBRs, we construct a
complete position-space theory of mean-field band topology in
the 1,651 single (spinless) and double (spinful) SSGs - Magnetic
Topological Quantum Chemistry (MTQC) - that subsumes the
earlier theory of TQC>® [see Fig. 2]. The completeness of MTQC
stems from the completeness of our tabulation of the MEBRs.
Specifically, even in MSGs in which trivial and topological states
cannot be distinguished by symmetry eigenvalue labels, the
MEBRs provide a complete basis for constructing and analyzing
all possible lattice models of trivial, gapless, and stable and fragile
topological insulating phases (for specific examples of non-
symmetry-indicated topological phases analyzed using EBRs, see
refs. 3$52-3%). To access the data generated for this work, we have
implemented several programs on the Bilbao Crystallographic
Server (BCS)>%>7, which are listed in Table 1. Each of the pro-
grams listed in Table 1 contains data for both the magnetic and
nonmagnetic SSGs, and therefore replaces an existing tool on the
BCS. In the Results section below, we will first describe the
underlying machinery of MTQC through which band (co)reps in
momentum space are induced from magnetic atomic (Wannier)
orbitals in position space. Next, we will detail the topological
information that can be inferred from the MEBRs, which include
lattice models for magnetic exceptions to fermion doublin,
theorems?%8, and symmetry-based indicators (SIs)7-30-32>1 for
magnetic SMs, TIs, and TCIs (see SN 26). In particular, in this
work, going beyond the earlier tabulation of the magnetic SI
groups in ref. °1, we have for the first time generated the complete
double SI formulas, as well as symmetry-respecting topological
bulk and boundary states for all 1,651 double SSGs, which
characterize spinful electronic states in solid-state materials.
Through this calculation, we have obtained the complete set of
symmetry-indicated 3D spinful (fermionic) topological phases.

We find that many of the symmetry-indicated spinful magnetic
topological phases consist of familiar Weyl SMs with surface
Fermi arcs°”~l, 3D quantum anomalous Hall (QAH) phases
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Fig. 2 Magnetic Topological Quantum Chemistry in the scheme of topological band theory. The complete scheme of topological band theory for 3D
crystals, following the framework and notation established in refs. 56:3166.67 Through crystal symmetry eigenvalues [small (co)reps] in momentum space
(SN 13), the compatibility relations (SN 16) indicate whether a set of bands is allowed by symmetry to be energetically isolated from other bands in the
energy spectrum. If the bands are energetically isolated, then there exists a wide range of methods for diagnosing whether the bands exhibit the stable
topology of topological insulators (Tls) and TCls!7-20.23-34.54 fragile topology>2->45564-67 or the polarization-nontrivial topology of obstructed atomic
limits>>484_ For example, as detailed in refs. 7:30-32.5166,67 the small (co)reps of a set of isolated bands comprise momentum-space symmetry data that
can be mapped to position-space topology and boundary states through stable and fragile Sls and real-space invariants. If the bands are instead required by
symmetry to cross, then the bands characterize a topological SM, which may exhibit surface38 or hinge34>4 states. In this figure, the pink boxes indicate

areas of topological band theory completed in this work.

Table 1 Applications on the Bilbao Crystallographic Server
implemented for MTQC.

BCS Applications Implemented for MTQC

Application Contents Description
MKVEC Momentum stars of the MSGs SN 12
Corepresentations Small and full magnetic (co)reps SN 13
MCOMPREL Compatibility relations in SN 16
the MSGs
CorepresentationsPG  Magnetic site-symmetry group SN 18
(co)reps
MSITESYM Magnetic small (co)reps at one k SN 22
point induced from a site q
MBANDREP MEBRs of the MSGs SN 23

For this work, we have implemented the Bilbao Crystallographic Server (BCS) programs listed in
this table to access group-theoretic properties of the MSGs that we have computed to complete
the theory of MTQC. In order, this table contains the name of the program, the data accessible
through the program, and the Supplementary Note in which the program is detailed. In addition
to the properties of the MSGs listed in this table, each tool contains the analogous properties of
the 230 Type-Il (nonmagnetic) SGs. Therefore, as respectively detailed in each

listed Supplementary Note, each program in this table subsumes the content of an existing
program on the BCS.

constructed from layered integer quantum Hall states (2D Chern
insulators)3%-62, and axion insulators (AXIs), which are equivalent
to 3D TIs with magnetically gapped surface states on particular
crystal facets?1:°>63, However, we also in this work discover the
existence of previously unidentified non-axionic magnetic HOTIs
with mirror-protected helical hinge states (see SN 33). We con-
clude by briefly discussing future directions in magnetic group

NATURE C

theory, including the prediction of spinless (bosonic) TCIs, and
applications of magnetic crystal symmetry beyond mean-field
theory. We have also included extensive Supplementary Notes
containing additional details of our methodology, historical
commentary, references, documentation for the BCS programs
introduced in this work, and data for the EBRs and double SIs
(see SN 1 and 36).

Results

MEBRs from magnetic atomic orbitals. To construct the theory
of MTQC, we first tabulate the EBRs of the 1,651 SSGs, which
include the MEBRs of the MSGs [Fig. 3b and SN 17]. In each SSG,
the EBRs correspond to the independent topologically trivial
bands. Specifically, each EBR corresponds to a (set of) band(s) that
can be inverse-Fourier-transformed into exponentially localized,
symmetric Wannier orbitals, and the set of EBRs in each SSG
forms the basis for all energetically isolated sets of trivial bands (i.e.
bands without stable or fragile topology)>-%-1>16:30-34,52-55,64-67,

We begin by considering a nonmagnetic crystal that is
furnished with atomic orbitals that are sufficiently weakly coupled
as to not invert bands at any k point in the Brillouin zone (BZ).
Each atomic orbital occupies a site in a Wyckoff position of a
Type-II SG. Crucially, the atomic orbitals on each site transform
in direct sums of the irreducible coreps of the site-symmetry
group (SN 7 and 18), which is necessarily isomorphic to one of
the 32 nonmagnetic point groups (PGs, see SN 8).

We next consider the case in which the crystal undergoes a
transition into a phase with lattice-commensurate magnetic order
[Fig. 3a]. The onset of magnetism lowers the crystal symmetry
from a Type-II SG into either a Type-I, III, or IV MSG (see
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Fig. 3 Magnetic band (co)reps from magnetic atomic orbitals. a A crystal with lattice-commensurate magnetic order. In the mean-field, the basis states of
the electronic Hamiltonian of the crystal in (@) are magnetic atomic orbitals (SN 18). When weakly coupled, the magnetic atomic orbitals in (a) continue to
form a set of exponentially localized, symmetric Wannier orbitals>1516.53 that transform in the (co)reps of magnetic site-symmetry groups [SN 7]. b The
magnetic site-symmetry (co)reps in (a) induce a band (co)rep in momentum [k] space. ¢ Correspondingly, the Bloch eigenstates of the Fourier-
transformed electronic Hamiltonian of the magnetic crystal in (a) transform in the band (co)rep in (b) [see SN 221.

refs. 10-12 and SN 3, 5, and 6, respectively). Specifically, in the
limit in which the magnetic moments are taken to be decoupled
from the underlying lattice, the crystal of moments may appear to
exhibit additional symmetries, such as global and local spin
rotation. However, when the coupling between the spins and the
underlying lattice is not ignored, the magnetic phase transition
strictly lowers the system symmetry to that of a magnetic
Shubnikov subgroup M of the Type-II SG G of the parent
nonmagnetic crystalll.

Hence, the magnetic order also lowers the symmetry at each site
in the crystal. This can be seen by recognizing that {770} is an
element of every site-symmetry group in a nonmagnetic crystal,
but cannot be an element of any site-symmetry group in a
magnetic crystal (SN 9). For example, in a solid-state material with
magnetic atoms, the orbitals of nonmagnetic atoms elsewhere in
the unit cell are necessarily subject to a background magnetic
potential (see SN 10). While the energy scale of the magnetic
potential is detail-dependent, the magnetic potential on the atoms
considered to be nonmagnetic is only exactly zero in a fine-tuned
limit. This statement remains valid whether individual atoms in
the magnetic crystal are taken to host localized magnetic dipole
moments, or whether the magnetic crystal is taken to consist of
multi-atom clusters with higher magnetic multipole moments®8:69,
Consequently, independent of the phenomenological microscopic
treatment of the magnetic order, each site-symmetry group in the
magnetic crystal is isomorphic to one of the 90 crystallographic
magnetic point groups (MPGs, see SN 8). In a solid-state material
in which the effects of magnetism can be approximated through
mean-field theory, the atomic orbitals of the original crystal [e.g., s
and p,,| split into magnetic atomic orbitals [e.g., s and p, *ip,]
that transform in (co)reps of the MPGs [see SN 19, 20, and 21].
For this work, we have implemented the CorepresentationsPG
tool (http://www.cryst.ehu.es/cryst/corepresentationsPG, detailed
in SN 18), through which users can access the (co)reps of all
122 single and double PGs and MPGs.

Next, the magnetic site-symmetry (co)reps in each Wyckoff
position in the crystal induce a band (co)rep into M [Fig. 3(b)]. The
set of all possible band (co)reps in each MSG is spanned by the
MEBRs of M. In this work, we have for the first time computed the
22,611 MEBRSs of all 1,191 single and double Type-III and Type-IV
MSGs, which - along with the 5,641 MEBRs of the 230 Type-I
MSGs and the 4,757 EBRs of the 230 Type-II SGs previously
calculated for TQC>!>16:53 [Fig. 1] - can be accessed through the
MBANDREP tool on the BCS (http://www.cryst.ehu.es/cryst/
mbandrep, further detailed in SN 23). To enumerate the MEBRs
of each MSG M, we begin by inducing band (co)reps from each
irreducible (co)rep of one site-symmetry group within each of the
highest-symmetry [i.e. maximal, see SN 9] Wyckoff positions in M.

We next exclude the exceptional cases in which the induced band
(co)reps are equivalent to direct sums of other bands (co)reps [SN
24 and 37]. The remaining band (co)reps are defined as elementary
[i.e. MEBRs]; statistics and further details for the MEBRs are
provided in SN 25 and 38.

Importantly, just as each MEBR is the Fourier-transformed
description of a crystal of site-symmetry (co)reps, the Wannieriz-
able bands that transform in each MEBR are the Bloch eigenstates
of the Fourier-transformed electronic Hamiltonian of weakly
coupled magnetic atomic orbitals [Fig. 3¢ and SN 22]. Conse-
quently, in each momentum star of each MSG - which are
accessible through the MKVEC tool (http://www.cryst.ehu.es/cryst/
mkvec, see SN 12) — each MEBR contains a set of full (co)reps that
is specified by the Wyckoff position from which the MEBR is
induced. Each full (co)rep can be reduced through subduction to a
set of irreducible small (co)reps at each k point that are known as
the symmetry data [Fig. 3b]. The complete set of small and full (co)
reps of each MSG and direct dependencies between the site-
symmetry (co)reps at q and the induced symmetry data at k are
respectively accessible through the Corepresentations (http://
www.cryst.ehu.es/cryst/corepresentations, detailed in SN 13) and
MSITESYM  (http://www.cryst.ehu.es/cryst/msitesym, detailed in
SN 22) tools. Lastly, to determine whether the bands that
transform in the induced symmetry data are required by symmetry
to be degenerate or cross along high-symmetry paths in the BZ, we
have computed the magnetic small (co)rep compatibility relations,
which are accessible through the MCOMPREL tool introduced in
this work (https://www.cryst.ehu.es/cryst/mcomprel, detailed in
SN 16).

Before discussing topological applications of the MEBRs and
the small and full (co)reps of each MSG, we will first briefly
discuss the advances made in this work in the context of previous
studies of magnetic symmetry and group theory. First, in the
1960’s, Miller and Love in ref. °% performed the largest tabulation
of magnetic small (co)reps prior to this work. Specifically, in
ref. >0, Miller and Love computed the single- and double-valued
irreducible small (co)reps of the little groups of each MSG at
high-symmetry points and along high-symmetry lines, but not
along high-symmetry planes or in the BZ interior, which are
required to complete the insulating compatibility relations for
each MSG (SN 16) and to compute the MEBRs (SN 17).
Additionally, the magnetic small (co)reps computed in ref. > are
displayed in difficult-to-read tables outputted directly from
computer code, and are hence difficult to verify. For this work,
we have implemented the Corepresentations tool on the BCS [SN
13], which represents the first complete and publicly available
online tabulation of the magnetic small (co)reps. Through
Corepresentations, users may obtain the matrix representatives
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in each magnetic small (co)rep of the generating symmetries of
the magnetic little group at each k point in each MSG in an
accessible format readily suited towards analyzing the output of
tight-binding and first-principles calculations [see SN 14 and 15
for representative examples of the output of Corepresentations].
We additionally note that prior to this work, Evarestov Smirnov,
and Egorov in ref.1¢ introduced a method for obtaining the
MEBRs of the MSGs and computed representative examples, but
did not perform a large-scale tabulation of MEBRs or establish a
connection to magnetic band topology. In this work, we have
employed a method equivalent to the procedure in ref.1¢ to
perform the first complete tabulation of the single- and double-
valued MEBRs of the 1,421 MSGs (see SN 23), which we have
additionally made publicly accessible through the MBANDREP
tool on the BCS.

Having computed the MEBRs of the single and double MSGs
and established the theory of MTQC, we will next describe two
applications of the MEBRs and MTQC to the discovery and
characterization of novel topological phases of matter: elucidating
the relationship between topological SMs and TCIs through
symmetry-enhanced fermion doubling theorems, and extending
the SIs of stable band topology”-30-32:34 to the MSGs.

Symmetry-enhanced fermion doubling theorems. The surface
states of each d-dimensional [d-D] TI and TCI are termed
anomalous because the surface states cannot be stabilized in a
(d—1)-D lattice model with the symmetries of the TI or TCI
surface. In 3D TIs, AXIs, and Chern (QAH) insulators, the
boundary anomaly and bulk response can be understood from the
perspective of well-known high-energy field theories21:0263, For
example, the bulk of a 3D TI is characterized by a quantized
axionic magnetoelectric response governed by a Lagrangian
density L, o 6E - B in which the axion angle 6 is pinned to the
nontrivial value 6 mod 27 =m by {7]0} symmetry?1:03. As a
consequence of the bulk axionic topology, each surface of a 3D TI
exhibits an odd number of twofold-degenerate Dirac cones,
representing an exception to the 2D parity anomaly - a fermion
doubling theorem that mandates the existence of an even number
of symmetry-stabilized twofold Dirac cones in any 2D system
with a lattice (-regularized) description!®-21:26:63, However, in
other gapped topological phases, such as 3D helical TCIs and
HOTIs, the boundary anomalies and bulk response theories have
not yet been elucidated in the language of high-energy field
theory26:28:29,32,34.55 Nevertheless, as shown in refs. 262932, the
anomalous surface states of d-D TIs and TCIs may be classified
through a comparison to the complete set of (d — 1)-D lattice
models of symmetry-stabilized topological SMs.

It is possible to evade a fermion doubling theorem by either
stabilizing the anomalous nodal point[s] on the (d—1)-D
boundary of a d-D topological [crystalline] insulator [i.e. through
spectral flow], or by modifying one of the system symmetries so
that the symmetry is represented differently at low and high
energies. For example, the matrix representatives of {7 |0} and
{7 |a/2} are the same near k=0, but differ at larger k (see SN
15). In effect, systems with {7|0} symmetry and integer lattice
translations are nonmagnetic (see SN 4) and constrained by
fermion doubling theorems that derive from {77|0} symmetry2°,
whereas systems generated by {7]a/2} and integer lattice
translations are antiferromagnetic (see SN 6), and are not
constrained by the same doubling theorems8. As discussed in
ref. 79, it is desirable to identify lattice-regularizable systems that
circumvent fermion doubling theorems, because correlation
effects in these systems can be modeled without also incorporat-
ing complicated and numerically intensive bulk degrees of
freedom. Many of the symmetry-enhanced fermion doubling

theorems exceptions discovered to date rely on emergent unitary
particle-hole symmetries that act nonlocally’%7!, and relate to the
anomalous surface states of particle-hole-symmetric TCIs in Class
ATII in the nomenclature of ref.”2. However, emergent unitary
particle-hole is typically only a valid symmetry in a handful of
solid-state materials, and only then at low energies. As we will
discuss below, by considering nodal degeneracies stabilized by
MSG symmetries — which are conversely valid in solid-state
magnetic materials at all energies without fine-tuning - it is
possible to systematically enumerate symmetry-enhanced, single-
particle fermion doubling theorems, as well as materials-relevant
models that circumvent symmetry-enhanced fermion doubling.

The elucidation of a (symmetry-enhanced) fermion doubling
theorem and an example of its evasion has historically required a
significant theoretical effort. For example, in ref. 73, it was shown
that unpaired fourfold-degenerate Dirac fermions cannot be
stabilized in lattice models of 2D, 7 -symmetric SMs. Through an
exhaustive analysis of the symmetry-enforced spectral flow in 3D
crystals, a 3D 7 -symmetric TCI with an unpaired (anomalous),
symmetry-stabilized, fourfold surface Dirac fermion was identi-
fied in ref.26. Crucially, using the fourfold Dirac fermion
doubling theorem established in ref.”3, the authors of ref.2¢
were able to diagnose the surface fourfold Dirac fermion as
anomalous without establishing a bulk or boundary field theory.
Lastly, it was subsequently shown in ref.>® that fourfold Dirac
fermion doubling can also be evaded in lattice models of 2D
magnetic SMs with the symmetry {7 |a/2} common to Type-IV
2D symmetry (wallpaper or layer) groups (see SN 15). Hence, one
may infer the existence of novel quantized response effects and
condensed-matter realizations of high-energy anomalies by
exploiting the restrictions imposed by crystal symmetries on
lattice models of SMs, TIs, and TClIs.

Because a complete tabulation of the magnetic small (co)reps
was previously unavailable, then earlier theoretical searches for
magnetic exceptions to fermion doubling theorems, such as
ref. °8, were performed ad hoc. However, the magnetic small (co)
reps, the magnetic compatibility relations, and the MEBRs
computed in this work allow, for the first time, the immediate
enumeration of the complete set of lattice models of symmetry-
stabilized magnetic SMs in three or fewer dimensions. Below, we
will outline the method for enumerating the complete set of stable
magnetic SMs using the data generated in this work. We will then
detail the simplest possible magnetic fermion doubling exception
that can be obtained by considering the set of lattice models of 1D
magnetic SMs inferred from the 1D MEBRs. Despite the
simplicity of the example below, we find that it has not been
addressed from the intuitive picture of mean-field magnetic band
theory in previous literature. In SN 34, we also introduce a
doubling theorem for twofold Dirac fermions in magnetic 2D
symmetry groups, which we find to be evaded on the surfaces of
the non-axionic magnetic HOTIs discovered in this work (see
SN 35).

To begin, by occupying the bands that transform in each
connected branch of each MEBR with integer-valued numbers of
electrons increasing from one to one less than the dimension of
the MEBR (see refs. >0 and SN 16, 25, and 38), we have obtained
the exhaustive list of connectivity-enforced 3D magnetic SMs.
The remaining stable 3D SMs can then be obtained through band
inversion in lattice models constructed from sums of MEBRs (or
branches of decomposable MEBRs, see SN 25) using the magnetic
compatibility relations, as well as previously established topolo-
gical invariants for nodal fermions at low-symmetry k points.
Specifically, in each MSG, the minimal multiplicity of stable nodal
points may be obtained by considering the small (co)reps along
all high-symmetry BZ lines and planes [which are accessible
through Corepresentations, see SN 13], in addition to the nodal
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Fig. 4 Dirac fermion doubling from elementary band (co)representations. a A pair of spinful bands that transform in the double-valued EBR of a Type-II
line group generated by {7|0} and lattice translation [isomorphic to Type-Il double SG 1.2 P11" modulo lattice translations]. At half-filling, there are two,
twofold Dirac fermions in (@), representing an example of twofold Dirac fermion doubling in 1D. b The edge spectrum of a 2D Tl features an unpaired
twofold Dirac fermion that circumvents the doubling theorem in (a)!7:1821, (¢) A pair of spinful bands that transform in the double-valued MEBR of a Type-
IV magnetic line group generated by {7'|1/2} [isomorphic to Type-IV double MSG 1.3 Ps1 modulo lattice translations]. At half-filling, the spectrum in (¢)
consists of an unpaired twofold Dirac fermion with the same k - p Hamiltonian as the Dirac points at I" and X in (a) and the 2D Tl edge in (b), representing a

magnetic exception to twofold Dirac fermion doubling in 1D.

points stabilized by topological invariants evaluated along with
closed manifolds in the BZ (e.g. Weyl points, see refs. 2%°>°9-61),
Lastly, the complete set of 2D and 1D lattice models of magnetic
SMs may be obtained by restricting the above procedure to MSGs
that are isomorphic modulo integer lattice translations to layer
and rod groups, respectively (see SN 2 and refs. 26°458),

In Fig. 4, we show the simplest example of a fermion doubling
exception obtained using the MEBRs. First, in Fig. 4(a), we show
a pair of spinful bands in a nonmagnetic 1D crystal that
transform in the double-valued EBR of the Type-II 1D double
symmetry (line) group generated by {7 |0} and lattice translation.
At half-filling, the band structure in Fig. 4(a) exhibits two,
twofold Dirac fermions per 1D BZ. Additionally, in the absence of
chiral symmetry - which is not generically a symmetry of
crystalline solids — unpaired nodal points away from I' and X in
Fig. 4a cannot be stabilized. Specifically, even if a nodal point
stabilized by reflection or rotation symmetry is present at a point
ky, {70} symmetry mandates the existence of a second stable
nodal point at—k, By further investigating the symmetry-
allowed band connectivities in all Type-II 1D (line and rod)
supergroups of the line group in Fig. 4(a) (which can be inferred
from the Corepresentations, MCOMPREL, and MBANDREP
tools in Table 1), we conclude that an odd number of twofold
Dirac fermions cannot be stabilized in 1D nonmagnetic, spinful
lattice models.

However, it is well established that twofold Dirac fermion
doubling in 1D is evaded on the edge of a 2D TI through spectral
flow!7-18.21 [Fig. 4(b)]. Recently, in ref. 74, the author performed
an intensive, high-energy field-theory calculation demonstrating
that a 1D lattice model with an unpaired twofold Dirac fermion
could be formulated by invoking an exotic, non-on-site 7 -like
symmetry. However, in this work, we recognize that a simpler,
alternative interpretation of a non-on-site 7 symmetry is the
antiferromagnetic (AFM) symmetry {7|1/2} common to all
Type-IV magnetic line groups (SN 6). Correspondingly, in
Fig. 4(c), we show a pair of spinful bands that transform in the
double-valued MEBR of a Type-IV magnetic double line group
generated by {7|1/2}. When the bands in Fig. 4c are half-filled,
the band structure features an unpaired twofold Dirac fermion
with the same k - p Hamiltonian as the anomalous twofold Dirac
fermion on the edge of a 2D TI [Fig. 4b]. Hence, the crystal in
Fig. 4c represents a magnetic exception to twofold Dirac fermion
doubling in 1D, analogous to the magnetic exception to fourfold
Dirac fermion doubling in 2D demonstrated in ref. >3.

Symmetry-based indicators of stable band topology in the
1,651 double SSGs. If a set of bands in a crystal is energetically
isolated along all high-symmetry BZ lines and planes, then a

subset of the topological properties of the bands may be inferred
through the eigenvalues of unitary crystal symmetries. Restricting
focus to symmetry-indicated stable topological bands, which do
not transform in integer-valued linear combinations of EBRs [see
SN 27], the crystal symmetry eigenvalues that indicate stable
topology [encoded in the small (co)reps of the isolated bands, see
SN 13] form the symmetry-based indicators (SIs) of stable band
topology [see SN 28 and refs.7-30-3234]. In each SSG, the SIs
consist of an SI group (e.g. Z,x 73) and an SI formula (e.g. the
Fu-Kane parity criterion for 3D TIs?0, see SN 29 for an additional
detailed example). The complete SIs of spinful band topology in
nonmagnetic 3D crystals — which we term the double SIs of the
230 Type-II double SGs - were previously computed in
refs. 73132 Following those works, the single and double SI
groups in the 1,421 MSGs were computed in ref.?!, but the
authors of that work did not compute the SI formulas or deter-
mine the physical interpretation (i.e. the bulk topology and
anomalous boundary states) of the magnetic bands with non-
trivial SIs [see Fig. 1].

In this work, we have computed the complete set of double SI
groups and formulas for spinful band topology in all 1,651 double
SSGs. We have further determined symmetry-respecting bulk and
anomalous surface and hinge states for all nontrivial values of the
double SIs. The SI formulas introduced in this work (see SN 31
and 32) have been unified into a consistent basis in which all
previously identified nonmagnetic double SI formulas correspond
to established nonmagnetic SM, T1I, and TCI phases, and in which
the SIs of symmetry-indicated TIs and TCIs with the same bulk
topology (e.g. 3D TIs and AXIs with the common nontrivial
axion angle 6 = 7) are related by intuitive SI subduction relations.
To summarize our calculation of the double SIs, we begin by
considering a set of bands that is energetically isolated along all
high-symmetry lines and planes, such that the Bloch states across
all k points transform in small (co)reps that satisfy the insulating
compatibility relations [see SN 16]. If the bands exhibit nontrivial
SIs, then the bands cannot be inverse-Fourier-transformed into
exponentially localized, symmetric Wannier orbitals. This can be
seen by recognizing that the set of bands does not transform in an
integer-valued linear combination of EBRs. Consequently, the set
of bands either forms a topological semimetal with nodal points
in the BZ interior — which we term a Smith-index SM (SISM), or
corresponds to a stable TI or TCI phase with anomalous 2D
surface or 1D hinge states”>17-20:23-34.54,

Because there are 1,651 double SSGs, then individually
calculating the bulk and anomalous surface and hinge states
and physical basis for each nontrivial SI in each double SSG is a
practically intractable task. However, in this work, we have
reduced the size of the calculation by recognizing that the double
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Table 2 The minimal double Sls of spinful band topology in all 1,651 double SSGs.

Minimal Double Sls of Spinful Band Topology the 1,651 Magnetic and Nonmagnetic Double SSGs

SI Minimal Double SSG(s) Bulk Topology Sl Minimal Double SSG(s) Bulk Topology

na 2.4 P1 WSM/QAH/AXI Zimn 83.43 P4/m weak Tl/weak TClI

Z1i 24 P1 QAH zi o 84.51 P4,/m QAH/weak Tl/weak TCI

1y 24 P1 AXI Zg 83.44 P4/m7, 123.339 P4/mmm AXI/TCI/HOTI

ZoR 3.1 P2, 41.215 Ab'd'2 QAH 73R 147.13 P3 QAH

Som 10.42 P2/m QAH/AXI/TCI Zor 168.109 P6 QAH

Zy o 10.42 P2/m QAH/weak Tl/weak TCI O3m 174133 P6 QAH/AXI/TCI

74 2.5 P11, 47.249 Pmmm, AXI/TCI/HOTI Z3na 174.133 P6 weak Tl/weak TClI
83.45 P4’ /m

Z, 135.487 P4, /mbc AXI/TCI Som 175137 P6/m QAH/AXI/TCI

Zow,i 2.5 P11, 47.249 Pmmm, weak Tl/weak TCl zgm 175137 P6/m weak Tl/weak TCl
83.45 P4’ /m

Z4r 75.1 P4 QAH Zino 176.143 P63/m QAH/weak Tl/weak TCI

Zop, 27.81 Pc'c’2, 54.342 Pc'ca, QAH 712 175138 P6/m1’, 191.233 P6/mmm AXI/TCIl/HOTI

Zo 56.369 Pc'c'n, 60.424 Pb'cn,
773 P4,, 110.249 14,cd

Z4s 8133 P4 QAH 2z, 176.144 P65 /m1V AXI/TCI/HOTI

825 8133 P4 WSM Zie 103.199 P4c'c QAH

7 8133 P4 AXI Zp 184.195 Péc’'c QAH

Sam 83.43 P4/m QAH/AXI

double SSG associated to each double SSG - are provided in SN 26 and 39.

In order, this table contains the symbol of each double SI, the minimal double SSG(s) [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial band topology, see SN 30 and 39], and
the bulk topological phase(s) associated to nontrivial values of the double SI. All symmetry-indicated spinful SISM (specifically symmetry-indicated WSM), quantum anomalous Hall (QAH), Tl, and TCI
phases in magnetic and nonmagnetic crystalline solids necessarily exhibit nontrivial values of at least one of the double Sls listed in this table. We note that, in this table, the symbol AXI refers to both
magnetic AXIs and 7-symmetric 3D Tls, because AXI and 3D Tl phases are both defined by the nontrivial bulk axion angle 8 =z [Fig. 5b and refs. 215563]. Additionally, the symbols TCI and HOTI
respectively indicate helical (i.e. non-axionic) mirror Chern insulators24 and HOTIs26:28.2931.32 which include the magnetic HOTIs in Fig. 5(c-e) introduced in this work, as well as the nonmagnetic helical
HOTI phases previously identified in bismuth33 and MoTe,34. Specific details of our Sl calculations - including explicit SI formulas, TI and TCl layer constructions, tight-binding models, and the minimal

SIs in each double SSG G continue to exhibit unique, nontrivial
values - termed the minimal double SIs — when the SI topological
bands in G are subduced onto a double SSG M from the
considerably smaller subset of 34 minimal double SSGs. In SN 30,
we rigorously detail the procedure for obtaining the minimal
double SIs, and in SN 39, we list the minimal double SSG
associated to each double SSG. Across all of the minimal double
SIs, we have implemented a consistent physical basis for the SI
formulas, determined symmetry-respecting topological bulk and
boundary states, and formulated layer constructions of the stable
TI and TCI phases - the minimal double SIs are summarized in
Table 2 and the details of our SI calculations are provided in
SN 26.

Using the subduction relations and layer constructions
contained in SN 31, we have determined by direct computation
that, for spinful bands in 3D crystals, all symmetry-indicated
topological phases are either strong topological Weyl SISMs,
AXIs, 3D TIs, helical TCIs or HOTIs, or can be deformed into
weak stacks of 2D TIs, mirror TCIs, or Chern insulators with
nonzero net Chern numbers in each unit cell [termed QAH
states]. Curiously, we find that there are no Type-IV minimal
double SSGs (SN 39). This implies that symmetry-indicated
spinful SISM, TI, and TCI phases in Type-IV MSGs are actually
protected by the symmetries of Type-I or Type-III double MSGs,
as opposed to the symmetry {7 |a/2} common to Type-IV MSGs
[though, as shown in Fig. 4c and in ref. >3, there exist topological
SM phases unique to Type-IV MSGs]. For example, in ref. 7, the
authors introduced Z-symmetric AFM TClIs in which 6 =7 was
enforced by the symmetry {7]a/2} common to all Type-IV
MSGs. However, we have shown that the spinful, symmetry-
indicated TCI phases in Type-IV MSGs can be subduced onto
Type-I or Type-III MSGs without closing a gap or changing the
bulk topology. Hence, the symmetry-indicated AFM TClIs
introduced in ref.”> can more simply be understood as
Z-symmetry-enforced AXIs that remain topological when

subduced onto the minimal Type-1 double MSG 2.4 P1. Through
the layer constructions and double SI dependencies in SN 31 and
39, we have also demonstrated that all of the 3D symmetry-
indicated spinful magnetic TCIs with odd numbers of chiral
modes on crystal hinges (edges) in the 1,421 double MSGs exhibit
the nontrivial axion angle 6 =7, and are therefore AXIs21:°%:63,
Specifically, we find that all of the symmetry-indicated, spinful
magnetic TCIs with chiral hinge states are AXIs in which = is
either quantized by Z, or by one of the rotoinversion symmetries
Cy,xZ or CgxZ (see Table 2). This result is not necessarily
intuitive — for example, when cut into a rod with the same point
group symmetry as the bulk MSG, an Z-symmetric AXI in Type-I
double MSG 2.4 P1 exhibits two chiral hinge states, whereas a
Cy, x T-symmetric AXI in Type-III double MSG 83.45 P4'/m
exhibits four chiral hinge states; nevertheless, as shown in SN 31,
both AXI phases exhibit 8 = 7. We additionally note that there do
not exist symmetry-indicated, spinful magnetic TCIs with even
numbers of intrinsic copropagating chiral hinge states (though
magnetic TCIs with mirror symmetry may in principle exhibit
copropagating chiral hinge modes, depending on the bulk mirror
Chern numbers and boundary termination details).

Overall, across the 1,651 double SSGs, we find that there are
only five families of 3D symmetry-indicated, spinful, strong
topological phases [Fig. 5]: Weyl SISMs, AXIs and 3D TIs, and
helical TCIs and HOTIs with twofold, fourfold, and sixfold
symmetries. We note that helical TCIs and HOTIs in particular
exhibit trivial axion angles 8 mod 27 =0, and are therefore non-
axionic. In this work, we have discovered three novel variants of
non-axionic magnetic HOTIs, which are shown in Fig. 5(c-e).
Further details for the non-axionic HOTIs in Fig. 5(c-e),
including symmetry-enhanced fermion doubling theorems26-2°
and tight-binding models, are provided in SN 33. When cut into
the finite nanorod geometries shown in Fig. 5(c-e), the non-
axionic magnetic HOTIs exhibit helical, mirror-protected hinge
states. We note that, if the mirror-symmetric HOTI hinges in
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Fig. 5 The five families of 3D symmetry-indicated, spinful, strong topological phases. In this work, we have computed the complete set of symmetry-
indicated spinful topological phases of 3D magnetic and nonmagnetic crystalline solids (see SN 26). We find that, for spinful bands in 3D crystals that
satisfy the insulating the compatibility relations along all high-symmetry lines and planes [see SN 16], there are only five families of symmetry-indicated
strong topological phases: (a) Smith-index Weyl SMs (Weyl SISMs), (b) axion insulators (AXIs) and 3D Tls defined by the nontrivial axion angle’9-2155.63
0= [e.g., MnBi,Te,*142], (c) helical TCls and higher-order TCls (HOTIs) equivalent to two superposed AXls with the same orbital hybridization and
twofold rotation or rotoinversion symmetry [e.g., bismuth33 and MoTe,34], (d) helical TCls and HOTIs equivalent to four superposed AXls with the same
orbital hybridization®* and fourfold rotation or screw symmetry [e.g. SnTe2428], and (e) helical TCls and HOTIs equivalent to six superposed AXls with the
same orbital hybridization and sixfold rotation or screw symmetry. Through the double Sls calculated for this work (Table 2 and SN 31 and 32), we have
discovered the existence of helical magnetic HOTIs with mirror-protected hinge states and bulk topology respectively enforced by the mirror and rotation
symmetries of (¢) double MPG 8.1.24 mmm [i.e., Dap, see ref.1], (d) double MPG 15.1.53 4/mmm [Dgs], and (e) double MPG 27.1.100 6/mmm [Dgy],

where we have labeled MPGs using the notation of the CorepresentationsPG tool (see SN 18). The magnetic HOTIs in (c-e) are respectively indicated by
the minimal double Sls (¢) z4 = 2 in double MSG 47.249 Pmmm, (d) zg = 4 in double MSG 123.339 P4/mmm, and (e) z;, = 6 in double MSG 191.233 P6/

mmm [as well as trivial values for all other independent minimal double Sls, see Table 2 and SN 33 for further details].

Fig. 5(c-e) were sanded to expose mirror-symmetric 2D surfaces,
each surface would exhibit two anomalous, mirror-protected,
twofold Dirac cones, analogous to the mirror-protected helical
hinge states of SnTe discussed in ref. 28. Lastly, we emphasize that
the magnetic HOTIs in Fig. 5(c,e) exhibit the same nontrivial
double SI z;=2 as 7T-symmetric helical HOTI phases in
supergroups of Type-1I double SG 2.5 P11’ (see Table 2 and
refs. ©8:9:33.34)  Unlike for AXIs and 3D TIs!9-2L.63] the bulk
response theories of helical HOTIs have not yet been elucidated.
In light of recent experiments demonstrating incipient signatures
of helical higher-order topology in bismuth crystals®> and
MoTe,’%, the absence of a response theory for helical HOTTs
analogous to axion electrodynamics?1:%3 has become an urgent
issue. The discovery in this work of helical magnetic HOTI phases
whose bulk topology is solely enforced by the combination of
unitary (spinful) mirror and rotation symmetries should provide
crucial insight towards the elucidation of quantized response
effects in helical HOTIs.

Discussion

The theory of MTQC can also be applied to a wide variety of
problems beyond the topological applications highlighted in this
work. Most notably, while we have enumerated the spinful stable
topological phases with nontrivial double SIs, the analogous
enumeration of spinless magnetic SISMs and TCIs with nontrivial
single SIs remains an open problem. In particular, whereas
bosonic, symmetry-indicated AXI phases protected by Z and
SU(2) spin-rotation symmetry have been demonstrated in pre-
vious works34°1, it remains an open question whether there exist
symmetry-indicated, non-axionic spinless (bosonic) TCIs. Addi-
tionally, while we have restricted consideration to single-particle
topological phases, the magnetic (co)reps computed in this work
can also be used to characterize correlated systems, including spin
(-orbital) liquids’” and multipole tensor gauge theories’®. For
example, if a correlated magnetic insulator admits a mean-field
slave-rotor description’?, then the effective Hamiltonian of each
quasiparticle species, such as spinon and chargeon on degrees of
freedom®Y, can separately be analyzed with MTQC.

Data availability

The data supporting the findings of this study are available within the paper and through
the BCS applications listed in Table 1. Additional information regarding the data
generated for this study is available from the corresponding authors upon reasonable
request.
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