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Abstract

Purpose

We aim to determine an advantageous approach for the acceleration of high spatial resolu-

tion 3D cardiac T2 relaxometry data by comparing the performance of different undersam-

pling patterns and reconstruction methods over a range of acceleration rates.

Methods

Multi-volume 3D high-resolution cardiac images were acquired fully and undersampled ret-

rospectively using 1) optimal CAIPIRINHA and 2) a variable density random (VDR) sam-

pling. Data were reconstructed using 1) multi-volume sensitivity encoding (SENSE), 2) joint-

sparsity SENSE and 3) model-based SENSE. Four metrics were calculated on 3 naïve

swine and 8 normal human subjects over a whole left-ventricular region of interest: root-

mean-square error (RMSE) of image signal intensity, RMSE of T2, the bias of mean T2, and

standard deviation (SD) of T2. Fully sampled data and volume-by-volume SENSE with stan-

dard equally spaced undersampling were used as references. The Jaccard index calculated

from one swine with acute myocardial infarction (MI) was used to demonstrate preservation

of segmentation of edematous tissues with elevated T2.

Results

In naïve swine and normal human subjects, all methods had similar performance when the

net reduction factor (Rnet) <2.5. VDR sampling with model-based SENSE showed the lowest

RMSEs (10.5%-14.2%) and SDs (+1.7–2.4 ms) of T2 when Rnet>2.5, while VDR sampling

with the joint-sparsity SENSE had the lowest bias of mean T2 (0.0–1.1ms) when Rnet>3.

The RMSEs of parametric T2 values (9.2%-24.6%) were larger than for image signal
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intensities (5.2%-18.4%). In the swine with MI, VDR sampling with either joint-sparsity or

model-based SENSE showed consistently higher Jaccard index for all Rnet (0.71–0.50) than

volume-by-volume SENSE (0.68–0.30).

Conclusions

Retrospective exploration of undersampling and reconstruction in 3D whole-heart T2

parametric mapping revealed that maps were more sensitive to undersampling than images,

presenting a more stringent limiting factor on Rnet. The combination of VDR sampling pat-

terns with model-based or joint-sparsity SENSE reconstructions were more robust for

Rnet>3.

Introduction

Recently, interest in parametric mapping of the relaxation times of myocardium has increased

as techniques have improved and potential diagnostic value is uncovered and quantified [1–

12]. Most myocardial relaxometry techniques acquire multiple differentially-weighted images

with varying contrast. Parametric maps are then reconstructed on a pixel-by-pixel basis, fitting

data to two- or three-parameter models.

The acquisition of multiple images (in 2D) or image volumes (in 3D) for parametric map-

ping results in increased scan time. Clinical 2D single-shot imaging lacks k-space segmentation

and utilizes relatively long diastolic acquisition windows which result in increased blurring

due to motion as well as limited spatial resolution. Segmented 3D imaging [13–19] addresses

these issues using shorter, sharper diastolic acquisition windows while providing much higher

achievable spatial resolution. Image quality can be significantly improved though scan times

are extended well beyond breath-holding and therefore require respiratory motion compensa-

tion. The increased scan time presents a barrier to the use of this approach in standard clinical

workflows.

A typical 3D whole heart parametric mapping acquisition achieving an in-plane resolution

of 1.5 mm and through-plane resolution of 5–10 mm [13–19] can span more than 10 min.

With parallel imaging or sparsity driven reconstruction strategies, which take advantage of

redundancies between individual coil images or across different contrasts, the scan time can

be significantly reduced, minimizing potential bulk motion artifacts or, conversely, increasing

achieved image resolution for a given scan duration. Clinically prevalent 2D single-shot imag-

ing already uses parallel imaging with high in-plane acceleration rates (typically�3) since each

image must be acquired with accurate timing and within a single diastolic phase [2, 4, 7].

Moreover, 3D imaging is amenable to higher acceleration rates due to two phase encoding

dimensions and a higher number of pixels contained in the 3D volume in addition to the

inherently increased signal-to-noise ratio (SNR) produced by slab selection. Hence, incorpo-

rating parallel imaging and sparsity driven reconstruction into 3D parametric mapping pres-

ents a logical approach to reducing overall scan duration as is needed to facilitate the

translation of 3D techniques into clinical practice.

There are many combinations of undersampling strategies and reconstruction techniques

to accelerate image acquisition that integrate parallel imaging [20–22] or go beyond [20, 21,

23, 24]. The effects of these various approaches on the parametric maps are unclear. In this

work, we explore the use of several likely candidate techniques for the acceleration of multi-

volume segmented 3D whole-heart T2 mapping. We consider standard image-per-image
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reconstructions as well as joint reconstructions driven by either sparsity or a model describing

the expected behavior of exponential decay. We focus both on effects on the reconstructed

images as well as on parametric maps including the global distribution of T2 values throughout

the whole heart and individual pixel-by-pixel changes in T2. The comparison amongst tech-

niques is performed retrospectively on fully sampled data acquired in naïve swine and in nor-

mal human subjects. In addition, data from one swine with acute myocardial infarction (MI),

which demonstrated significant elevation of T2, is studied to determine the effects of accelera-

tion on T2-based segmentation of injury.

Materials and methods

Imaging studies were performed at 3T (Achieva TX, Philips Healthcare, Best, Netherlands)

using a 32-channel phased array. Animal studies were approved by the Johns Hopkins Univer-

sity Animal Care and Use Committee and the human studies were approved by Institutional

Review Board of Tsinghua University. Written informed consent was obtained from all sub-

jects. Image reconstruction and processing, and statistical analyses were implemented in

MATLAB (MathWorks, Natick, Massachusetts, USA).

Data acquisition: Fully sampled whole heart 3D T2 mapping

The pulse sequence used for the acquisition of fully sampled 3D T2 maps is detailed by Ding

et al. [13]. The feasibility of this approach has been validated on phantoms, swine and human

subjects [13]. Briefly, three or four saturation-prepared volumes with a variety of T2-weight-

ings imparted by T2-Preparation (T2-Prep) [25] were acquired in an interleaved manner. The

resulting image volumes are co-localized and suitable for pixel-by-pixel parametric fitting.

Whole-heart T2 mapping data were acquired using 3D Cartesian sampling with 5/8 frac-

tional readout segmented radiofrequency spoiled gradient echo. The following include typical

imaging parameters: acquired resolution = 1.25×1.25×5.0mm3, T2-Prep echo times (TE) = 0,

25, 35, 45ms, repetition time/TE = 4.0/1.2ms, flip angle = 18˚, 2.5 mm respiratory navigator

acceptance window, ECG-triggered mid-diastolic acquisition, 12–18 readouts per heartbeat.

Both volume localized B1+ and B0 shimming [26, 27] were performed to compensate for field

inhomogeneities. Although fractional readouts were used, the datasets were regarded as fully

sampled as only undersampling in the phase encoding directions was tested.

A total of 4 swine and 8 normal human subjects (1 male, 43±13 years old) were imaged.

Three animals were imaged in the naïve state, and one was imaged 3 days after myocardial

infarction induced by a 2-hr balloon occlusion of the left anterior descending coronary artery.

The infarction resulted in significant edema. For the swine with infarction, the whole-heart T2

mapping data were acquired using the same methods as above but only 3 T2-Prep TEs 0, 25,

and 45ms.

Three retrospective undersampling patterns

All raw data were retrospectively undersampled using three different patterns (Fig 1). An auto-

calibration signal (ACS) composed of the 16×16 central ky×kz lines was kept fully sampled and

an elliptical k-space shutter was applied to all patterns. The remaining k-space was under-

sampled by an outer k-space reduction factor (ORF) varying from 2–8 (Fig 1). The net reduc-

tion factor (Rnet), defined as the ratio between the number of sampled k-space lines and the

total number of k-space lines in the elliptical window, appears in the corner of each subplot.

The ACS not only preserves image contrast but also provides low resolution images for sensi-

tivity map estimation [28]. The sensitivity map was calculated by a root-sum-of-square
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approach [29]. The size of the ACS was chosen empirically as a compromise between the qual-

ity of the calculated sensitivity maps and Rnet.

Three different undersampling patterns were tested: equally spaced (ES) sampling, opti-

mized 3D Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration (Caipi) [30–

32], and variable density random (VDR) sampling [23, 33–35].

First, the ES sampling pattern (Fig 1, top row) is typically utilized in Cartesian sensitivity

encoding (SENSE) [29] and generalized autocalibrating partially parallel acquisitions

(GRAPPA) [36] and is the pattern most widely used in a clinical setting. The same undersam-

pling pattern was applied to all image volumes with different T2-prep TEs.

Second, the Caipi sampling pattern (Fig 1. middle row) depends on the ORF [30] and care-

fully selects the sampling pattern to minimize undersampling-induced aliasing in both phase

encoding and parametric dimensions based on the point spread function [30–32]. The optimal

k-space-temporal sampling patterns introduced in [30] were adopted. The sampling patterns

for T2-prep images with larger TE were shifted by a pre-designed distance described in [30]

compared to the image without T2-Prep. This pre-designed distance is periodic in ORF so if

the ORF was greater than the number of TEs, only the first 3 or 4 shifts were applied.

Finally, the VDR sampling pattern causes incoherent aliasing [37] and is suitable for com-

pressed sensing or sparsity-driven reconstruction [23]. In this work, 2D VDR sampling pat-

terns were applied [35]. K-space lines were chosen according to a Gaussian probability density

function (mean = 0, standard deviation = 0.5×maximum k-space radius) with respect to the

distance from the k-space center. N unrepeated k-space lines outside the fully sampled central

ACS k-space were selected, where N is the number of acquired k-space lines in the Caipi pat-

tern leading to the same ORF. Therefore, VDR patterns have identical Rnet as Caipi patterns

for each ORF. These patterns were repeated 6 times independently to better characterize the

outcomes given the random nature of VDR. The same undersampling pattern was applied to

all image volumes with different T2-prep TEs for VDR sampling.

Three image reconstruction approaches

Three different reconstruction approaches were quantitatively compared in this work. All

three utilize iterative reconstruction [38, 39] and jointly reconstruct all volumes with different

T2-prep weightings. The second and third approaches include regularization terms to rein-

force similarity among volumes with different T2 weightings, based either on image structure

or on exponential signal decay, and are expected to improve image quality [40].

The first approach, ‘multi-volume SENSE,’ uses conjugated gradient based iterative SENSE

optimization [38], which is able to restore images from arbitrarily undersampled k-space.

Compared to traditional iterative SENSE where each T2-prep weighted volume is recon-

structed separately, here all volumes are combined and reconstructed jointly, which can be

expressed as a minimization problem with a cost function of:

Î SENSE ¼ argmin
I
ðkDEI � kk2

2
Þ; ð1Þ

where I and Î SENSE are intermediate and final estimated multi-volume image, respectively, D is

a diagonal undersampling operator, E is the encoding matrix, and k is the undersampled raw

k-space data.

Fig 1. Sampling patterns used for the variety of reconstruction techniques tested. The net reduction rate (Rnet),

shown in the bottom corner of each panel, is reduced relative to the outer reduction factor (ORF) due to the complete

sampling of the center of k-space. Six different VDR sampling patterns were tested (only one shown).

https://doi.org/10.1371/journal.pone.0252777.g001
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The second approach, ‘joint-sparsity SENSE,’ incorporates joint total variation constraint

[21] as a sparsity constraint for regularization that enforces similarity of the edges of the

images with different T2-prep TEs to regularize the conjugate gradient optimization. As is the

case with most parametric mapping, the differentially-weighted volumes share a large amount

of structural information and differ primarily in contrast. Joint-sparsity SENSE should

improve reconstruction performance by further reinforcing those common structural details.

The cost function for joint-sparsity SENSE is:

Î JS� SENSE ¼ argmin
I
fkDEI � kk2

2
þ lkIkJTVg; ð2Þ

where the regularization parameter λ is a weight for the joint total variation across the parame-

ter dimension (i.e. differentially-weighted image volumes), fixed at 0.1 We define joint total

variation [22, 41, 42] as follows:

kIkJTV ¼
X

r!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

p
rxIð r

!
; pÞ

� �2

þ ryIð r
!
; pÞ

� �2

þ rzIð r
!
; pÞ

� �2

� �s

ð3

where r! ¼ ðx; y; zÞ is the location of the voxels, and x, y, and z are the pixel coordinate indexes

in image space, p 2 f1::#weighted imagesg indexes the parameter space, i.e. the differentially

weighted images, andrx,ry andrz correspond to the discrete first order partial derivative in

x, y and z, respectively. Note that with this definition of a joint l1 norm, the existence of large

coefficients in one of the differentially-weighted images protects the coefficients in the rest of

the images from being suppressed by the non-linear reconstruction [41].

The third approach, ‘model-based SENSE,’ applied a T2-decay fitting error as a regulariza-

tion constraint [22]. This fitting error is defined as the l1,2 norm of the difference between

reconstructed image intensities and a fitted exponential decay curve (Ifit) using the pixel by

pixel natural log-transformed linear regression along the parametric dimension. This regulari-

zation enforces the T2 decay behavior of the T2-prepared images. Ifit were estimated from the

parameters obtained from the intermediate image I. The cost function is expressed as:

ÎMB� SENSE ¼ argmin
I
ðkDEI � kk2

2
þ lkI � Ifitk1;2

Þ: ð4Þ

The l1,2 norm of the parametric fitting error kI � Ifitk1;2 is calculated as

kI � Ifitk1;2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

r!
ð
X

p
jIð r!; pÞ � Ifitð r

!
; pÞjÞ2:

q
ð5Þ

The Projected Gradients MOdelConsistency COndition in robust (l1) fashion algorithm

described in [22], which is a Projection onto Convex Sets [39] based iterative reconstruction

algorithm, was implemented with an updated weight (λ) of 0.5 to balance SENSE and T2 fit-

ting error. Ifit is synthesized form the log-transformed linear regression by:

Ifitð r
!
; pÞ ¼ exp ½1 � TEp�

log A0ðr
!
Þ

� �

R2ðr!Þ

" # !

ð6Þ

where A0 is the image intensity without T2 weighting, and R2 = 1/T2 is the spin-spin relaxation

rate. For any voxel r!, estimates A0 and R2 are generated from linear regression of the image

intensities as described in [13].

For comparison, two reference reconstructions were used: First, after pre-whitening and

homodyne processing to compensate for partial echo sampling [43], the fully sampled data

was reconstructed by direct inverse fast Fourier transform with root-sum-of-square coil
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combination to generate the ‘Reference’ reconstruction. Second, as an additional reference,

standard SENSE reconstruction [29] using ES undersampling was applied separately to each

individual T2-prep weighted image volume and referred to as ‘Traditional SENSE.’ The two

references were used to determine the deterioration of the parametric maps with respect to

reconstructions using original fully sampled data as well as those obtained from undersampled

data processed using a well-understood and readily available linear reconstruction approach.

Image analysis

For each swine and human dataset, the left ventricular (LV) myocardium was manually seg-

mented on the fully sampled reference to generate a 3D region of interest (ROI) by an observer

with>10 years’ experience with cardiac MRI. Root-mean-square errors (RMSE) relative to the

fully sampled reference were calculated via pixel-wise comparison within the ROI. RMSE was

calculated for both reconstructed images and T2 maps. The resulting data are provided as sup-

plementary material in S1 Dataset.

For naïve swine and human subject data, we assumed uniform T2 values in the LV and spa-

tially averaged the T2 values in the ROI and calculated the corresponding standard deviation

(SD) as a measure of precision. The bias in T2, the difference of the average T2 relative to that

of the fully sampled reference data, was calculated to examine the potential loss of accuracy in

T2.

For the swine with acute MI, an Otsu’s threshold [44] was chosen to segment pixels into

normal and edematous myocardium. The thresholds were separately computed from each

reconstructed T2 map. The intersection-over-union index, i.e., the Jaccard index, was then cal-

culated to examine the effects of acceleration rate on the accuracy of tissue characterization

with parametric mapping. More specifically, the Jaccard index is the ratio of the number of

voxels in the overlapped area over the union area of edematous myocardium segmented from

the reference image (Aref) and the undersampled reconstructions (Arecon):

Jaccard index ¼
jAref \ Areconj

jAref [ Areconj
; ð7Þ

where j � j is the number of voxels in an area. The Jaccard index ranges from 0 (Aref and Arecon

do not match at all) to 1 (Aref and Arecon completely match).

While comparing T2 maps, voxels within the ROI with T2>100 or T2<15 were considered

unsuccessfully recovered through recon and excluded. These voxels were counted and the per-

centage relative to the total number of voxels in the ROI was determined for each individual.

To compare the most successful reconstructions, the Wilcoxson signed rank test was used

for all 4 metrics across ORF (significance at p<0.05/4 after modified Bonferroni correction).

Results

The average scan time of fully sampled data acquired from the 3 naïve swine and 8 normal

human subjects was 6.6±1.8 min. Rnet of the retrospectively undersampled data using ES,

Caipi and VDR sampling patterns ranged from 1.8 to 4.9 when ORF varied from 2 to 8 (Fig 1).

The net reduction factors further varied among subjects due to differences in the prescribed

field-of-view and, hence, matrix size.

Fig 2 shows one slice of the reconstructed T2-weighted images (T2-prep TE = 45ms) and

the T2 maps of a representative normal human subject. The complete 3D datasets can be

viewed in S1 Video. All sampling patterns and reconstruction methods are demonstrated with

the full range of ORF from 2–8 together with the fully sampled reference. At ORF = 2 and 3,

the reconstructed images and T2 maps are similar to the reference. As ORF increased to 4–6,
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some aliasing artifacts can be observed in the T2-weighted images with traditional SENSE and

Caipi based reconstructions and some blurring can be observed in VDR based reconstructions.

The T2 values of the inferior septal and posterior part of the LV wall using the joint-sparsity

SENSE and the model-based SENSE with VDR sampling are better preserved than other meth-

ods. When ORF is high (7 and 8), both artifacts and blurring can be observed in the

T2-weighted images of all methods and the artifacts and blurring in the T2-weighted images

are much stronger. T2 maps using joint-sparsity SENSE and the model-based SENSE with

VDR sampling are less corrupted than other methods though errors can be observed in the

septal and posterior part of the LV wall. The T2 maps with ORF>4 (Rnet larger than 3) exhibit

significant artifacts compared to the fully sampled reference, therefore, the following results

focus on ORF = 2, 3, and 4.

Fig 3 demonstrates one image of the T2-prepared volume with the longest T2-Prep TE = 45

ms (Fig 3A, 3C and 3E) and, hence, the lowest SNR of the differentially-weighted volumes, and

the corresponding T2 maps of a naïve swine dataset (Fig 3B, 3D and 3F). At ORF = 2 (Fig 3A

and 3B), all T2-weighted images are well preserved. The error maps of traditional SENSE and

all other reconstruction methods sampled with the VDR pattern are slightly higher in intensity

(larger error) compared to those obtained with Caipi undersampling. The model-based

SENSE reconstruction with Caipi undersampling shows the lowest error intensity. The T2

errors are slightly larger in the posterior wall of the LV in all sampling patterns and reconstruc-

tion methods. Model-based SENSE has the lowest error in T2 for both Caipi and VDR sam-

pling. At ORF = 3 (Fig 3C and 3D), the reconstructions are similar to ORF = 2 though with a

slight increase in errors in both images and maps. For ORF = 4 (Fig 3E and 3F), strong aliasing

artifacts in images sampled with the Caipi pattern appear with concordant errors reflected in

the T2 maps. VDR sampling does not exhibit these aliasing artifacts. At ORF = 4, images from

ES sampling reconstructed with the traditional SENSE method also have increased errors and

Fig 2. T2-weighted images and T2 maps of a normal human subject with ORF = 2–8 and all reconstruction approaches. T2-Prep TE is 45

ms in the T2-weighted images. As ORF increases (top to bottom), images from all approaches appear noisier and blurrier, and additionally

images from traditional SENSE and Caipi sampling patterns suffer from ghosting artifacts. The complete dataset including all slices for all

reconstructions can be seen in S1 Video.

https://doi.org/10.1371/journal.pone.0252777.g002
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g-factor map based noise. Fig 3F shows that T2 maps based on VDR sampling pattern com-

bined with model-based SENSE reconstruction have the lowest errors in the LV, especially in

septal and posterior wall areas.

Fig 4 plots the mean and SD (error bars) of T2 for the entire LV corresponding to the data of

the swine shown in Fig 3. The black and green lines indicate the mean and SD of the two refer-

ence methods. The bias remains low (<1.1 ms) for all methods and ORF = 2–4. The SD of tradi-

tional SENSE acquired with ES pattern (shown in green) increases by 52% from 5.2 ms to 7.9 ms

for ORF 2 to 4, respectively, compared to 3.6 ms of the fully sampled reference. The SD of multi-

volume SENSE is similar to that of traditional SENSE for both Caipi and VDR sampling patterns.

The SD is reduced for Caipi sampling and further improved for VDR sampling for both joint-

sparsity and model-based SENSE. The lowest SD, the highest precision, is achieved by combining

VDR sampling and model-based SENSE reconstruction for all 3 acceleration factors.

Fig 5 shows one image of the volume with T2-Prep TE = 45 ms and the corresponding T2

maps of a human subject dataset (different from that in Fig 2). With ORF = 2, all approaches

obtained good image quality. Similar to the results shown in Fig 3, the error of T2-weighted

images sampled with the VDR pattern is slightly higher compared to those sampled with the

Caipi pattern. T2 maps shown in Fig 5B have comparable error levels. The behavior of images

and T2 maps at ORF = 3 (Fig 5C and 5D) is similar to ORF = 2 except for a minor increase in

errors. For ORF = 4, aliasing artifacts can be observed in images (Fig 5E) undersampled with

Caipi pattern and less so with VDR pattern. Similar to Fig 3, the combination of VDR and joint-

sparsity or model-based SENSE reconstruction shows the lowest errors in T2 maps (Fig 5F).

Fig 6 demonstrates the mean and SD (error bars) of T2 values of the entire LV correspond-

ing to the data of the human subject shown in Fig 5. Again, results from human data are

Fig 3. T2-weighted images and T2 maps from a naive swine with ORF = 2–4 and all reconstruction approaches.

T2-Prep TE is 45 ms in the T2-weighted images. Errors maps are multiplied by 5 for increased visibility and T2 map

error maps are masked with the segmented left ventricular ROI. As ORF increases (left to right), traditional volume-

by-volume SENSE reconstruction begins to fail. At ORF = 4, images based on Caipi sampling pattern suffer from

significant ghosting artifacts, which are reduced with VDR sampling (E), and T2 maps based on VDR sampling show

lower T2 error (F).

https://doi.org/10.1371/journal.pone.0252777.g003
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Fig 4. Comparison of the effects of sampling patterns and reconstruction approaches on whole-heart LV T2 mean and SD (error bars) for

ORF = 2–4. The swine is the same as shown in Fig 3. Reconstruction of fully sampled data (black) is used as the reference, with mean and standard

deviation extended throughout the plots (black dotted lines). Traditional SENSE (green), represents a secondary reference with independent volume-

by-volume processing which demonstrates the results of acceleration as readily available online on scanners, with mean and SD extended throughout

the plots (green dotted lines). Variable density random (VDR) sampling was repeated six times (gray lines) for each method and results were

averaged. Deviation from the mean T2 of the fully sampled reference represents bias and SD represents precision.

https://doi.org/10.1371/journal.pone.0252777.g004
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consistent with those from swine. The bias is<1.7 ms for all methods and ORF = 2–4. The SD

of traditional SENSE acquired with ES pattern (shown in green) increases by 51% (6.3 ms to

9.5 ms) for ORF 2 to 4, respectively, compared to 3.3 ms of the fully sampled reference. The

SD of multi-volume SENSE is similar to that of traditional SENSE for both Caipi and VD sam-

pling patterns for ORF 2 and 3. At ORF = 4, the SD of multi-volume SENSE (8.1 ms) is lower

by 15% than the SD of traditional SENSE (9.5 ms). The SD of the T2 values estimated from the

combination of VDR sampling patterns and model-based SENSE reconstruction (4.6 ms, 4.8

ms, and 5.1 ms for ORF = 2, 3, and 4, respectively) are smallest, followed by the combination

of VDR sampling patterns and joint-sparsity SENSE reconstruction (5.0 ms, 5.4 ms, and 5.8

ms for ORF = 2,3, and 4, respectively).

Fig 7A shows the effects of acceleration on RMSEs in the LV ROI averaged over 3 naïve

swine (left) and 8 normal human subjects (right). There is good consistency between results

from swine and humans. In general, the RMSE of T2 (9.2%-24.6%) is higher for a given Rnet

than the RMSE of signal intensity (5.2%-18.4%). As expected, RMSEs of both signal intensity

and T2 increase with Rnet. The RMSE of signal intensity (top row) of the traditional SENSE

method is highest when Rnet>3. Model-based SENSE with either Caipi or VDR sampling pro-

duces RMSEs that are consistently, albeit slightly, lower than all other methods. For T2, the

RMSEs of most approaches are comparable for Rnet<2.5 (9.2%-16.8%). For Rnet>2.5, the T2

Fig 5. T2-weighted images and T2 maps from a normal human subject with ORF = 2–4 and all reconstruction approaches. Data is displayed in the

same manner as in Fig 3. As ORF increases (left to right), artifacts become apparent for all methods, most severely for Traditional SENSE and least for

VDR sampling. Consistent with the observations in swine (Fig 3), at ORF = 4, images based on Caipi sampling pattern suffer from significant ghosting

artifacts, which are reduced with VDR sampling.

https://doi.org/10.1371/journal.pone.0252777.g005
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Fig 6. Comparison of the effects of sampling patterns and reconstruction approaches on whole-heart LV T2 mean and SD (error bars) for

ORF = 2–4. The subject is the same as shown in Fig 5 and data is displayed using the same conventions as in Fig 4. VDR undersampling

outperformed Caipi undersampling at all ORF.

https://doi.org/10.1371/journal.pone.0252777.g006
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Fig 7. Average effects of the different reconstruction approaches on 4 metrics. Average effects of undersampling and reconstruction

approaches on RMSE of both image data and T2 (A), and directly on accuracy (bias) and precision (SD) of T2 (B) in response to increases in

acceleration rate. The bias in T2 represents the difference of mean T2 from the reference mean T2. The results in naïve animals (left) and normal

human subjects (right) follow very similar patterns. The VDR undersampling pattern outperforms the Caipi pattern as acceleration factors

increase.

https://doi.org/10.1371/journal.pone.0252777.g007
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RMSE of joint-sparsity SENSE and model-based SENSE reconstructions with VDR sampling

(10.5%-15.4%) is lower than those of other methods (11.3%-26.3%). Finally, model-based

SENSE with VDR sampling has consistently lower T2 RMSE than that of the joint-sparsity

SENSE reconstruction with VDR sampling (p = 0.0156, not significant, Wilcoxson signed rank

test with modified Bonferroni correction).

Fig 7B shows the effects of acceleration of T2 bias (top) and SD (bottom). Bias in T2 is <1

ms as long as Rnet<3 for both swine and human data. As acceleration increases (Rnet>3), the

bias of VDR-based methods (0.0–1.4 ms) is lower than traditional SENSE and corresponding

Caipi-based methods (0.3–2.9ms) and VDR sampling with joint-sparsity SENSE is lowest

(0.0–1.1ms). The shape of T2 SD curves (Fig 7B, bottom) is very similar to the T2 RMSE curves

(Fig 7A, bottom). The reference SD from fully sampled data (3.9 ms for swine, 3.7 ms for

humans) is shown as a lower bound. The increase in T2 SD of most undersampling methods is

comparable when Rnet<2.5 (+1.6–4.0 ms) with T2 SD increasing by 39.4–99.8%. When

Rnet>2.5, the SDs of T2 with joint-sparsity SENSE and model-based SENSE with VDR sam-

pling (+1.8–2.9 ms) are lower than other methods (+2.5–7.0 ms). The combination of VDR

sampling with model-based SENSE produced SDs lower than that of VDR sampling with

joint-sparsity SENSE for all Rnet tested (p = 0.0156, not significant, Wilcoxson signed rank test

with modified Bonferroni correction).

Fig 8A displays representative T2-weighted images (T2-Prep TE = 45 ms) and T2 maps of

the swine with acute MI with ORF = 3. Edema in the anterior LV wall and septum shows ele-

vated T2 (60.2±6.8 ms) compared to normal LV tissue (44.4±4.4 ms) in the T2 map. RMSEs in

T2-weighted signal intensity and T2 increase monotonically with acceleration (Fig 8B). The

combination of ES sampling and traditional SENSE leads to larger errors compared to VDR

sampling combined with joint-sparsity SENSE or model-based SENSE. While T2-W signal

intensity RMSE increased by 0.4%, 1.9%, and 2.5% (Fig 8B), T2 RMSE of traditional SENSE

increased by 1.4%, 2.2%, and 5.2% (Fig 8C), respectively, compared to VDR sampling com-

bined model-based SENSE, for ORF = 2–4 (Rnet = 1.9, 2.6, and 3.2), respectively. The increase

in T2 RMSE had an effect on tissue characterization (Fig 8D). As Rnet increased, the Jaccard

index, a measure of the accuracy of the area-at-risk segmentation where 1 indicates a complete

pixel-to-pixel match, decreased. For ES undersampling with traditional SENSE reconstruction

the Jaccard index dropped from 0.68 to 0.30 (44.6%) as Rnet increases from 1.9 to 5.2. Con-

versely, for VDR undersampling with model-based SENSE reconstruction the Jaccard index

decreases by 31% to 0.50. The Jaccard indices of joint-sparsity SENSE and model-based

SENSE applied to VDR undersampled data are equivalent.

Fig 9 demonstrates the percentage of unsuccessfully recovered pixels with T2<15ms or

T2>100ms within the LV ROI in swine (left) and human subjects (right). These percentages

indicate the number of pixels in which acceptable T2 was not obtained after reconstruction,

implying that significant residual artifacts were observed with a potential loss of information.

The percentage was�1.61% for all methods when Rnet�2.5. Both the joint-sparsity SENSE

and the model-based SENSE reconstruction of swine data undersampled by VDR patterns

show ~0% unsuccessfully recovery pixels from through reconstruction. In human data, only

the model-based SENSE with VDR undersampling achieved this level of pixel recovery, though

joint-sparsity SENSE achieved good performance as well. Caipi-based methods displayed

rapid growth with increasing Rnet, as did traditional SENSE.

Discussion

In this work, we studied the impact of different undersampling strategies and reconstruction

approaches on 3D cardiac T2 parametric maps. Fully sampled acquisitions were
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retrospectively undersampled with ES, Caipi and VDR patterns with ORF ranging from 2–8

leading to net reduction factors Rnet from 1.8–4.9. Images were reconstructed with traditional

SENSE, multi-volume SENSE, joint-sparsity SENSE and model-based SENSE. The perfor-

mance of the different sampling patterns and reconstruction methods were comparable for

lower acceleration rates, Rnet<3. For Rnet�3, the VDR sampling pattern in combination with

either joint-sparsity SENSE or model-based SENSE outperformed the other methods. VDR

with joint-sparsity SENSE had the lowest T2 bias while the VDR with model-based SENSE

showed the lowest T2 RMSE and T2 SD. Acceleration resulted in increased SD but with a very

small bias, trading precision for shorter scan time.

A central finding in this work was that error in T2 was larger and maps degraded more

with increasing acceleration than the source images themselves. Although errors in T2 mea-

surements may be reduced due to fitting of data from multiple T2-weighted image volumes, it

is clear that small errors in image intensity can result in more pronounced errors in T2,

Fig 8. Results from the swine with acute myocardial infarction displaying significant edema. (A) Comparison of T2 maps generated with fully sampled reference,

ES sampling pattern with widely available traditional SENSE reconstruction and the two best performing methods tested here: variable density random (VDR)

sampling reconstructed with both joint-sparsity SENSE and model-based SENSE. (B) RMSE of T2 prepared images and (C) RMSE of T2 maps in LV increase as the

net acceleration rate increase. Arrow corresponds to images shown in (A) using ORF = 3. These results show that though the images can support acceleration rates

ORF>3, parametric maps quickly degrade resulting in differences in the sensitivity to changes in T2. (D) Jaccard index, a measure of pixel-by-pixel correspondence of

the segmented area with enhanced T2, decreases as the acceleration rate increases. Both joint-sparsity SENSE and model-based SENSE with VDR produce similar

results and outperform traditional SENSE.

https://doi.org/10.1371/journal.pone.0252777.g008
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including some unsuccessfully reconstructed pixels (Fig 9). Further work is needed to explore

the tradeoff between the number of T2-weighted volumes and acceleration (with constant scan

time).

In both swine and human subjects, all tested methods of acceleration resulted in the degra-

dation of the 3D parametric maps, an interesting finding that merits further investigation.

This work hints that more attention should be paid to potential corruption of parametric map-

ping acquired with R = 3, the pervasive approach in 2D single-shot T1 and T2 mapping. As

clinical applications of T2 mapping expand beyond acute myocardial infarction and segmental

analysis into assessment of more focal disease (e.g., Takotsubo cardiomyopathy, hemorrhage)

[45–48], high-resolution 3D acquisitions become more attractive. Attention must be paid to

the degree of acceleration and the resulting artifacts as changes in T2 could compromise the

desired sensitivity to disease.

Strong residual aliasing artifacts can be observed when undersampling rates are higher. Par-

ticularly troubling are those that overlap with the myocardial ROI. These points can be pre-

dicted for ES and Caipi undersampling patterns [29–32]. For VDR sampling, the strength of

the aliasing is lower due to incoherence introduced by the undersampling pattern. However,

the spatial localization of the errors is unpredictable given the random k-space samples

acquired [23]. These effects can be ameliorated with the appropriate selection of an undersam-

pling approach. Case and point, for the swine with acute MI, the use of the higher performance

acquisition/reconstruction combinations studied permitted more accurate segmentation of

the area-at-risk despite significant acceleration. Considering the compromise between T2 map

quality and Rnet, the choice of undersampling patterns and reconstruction methods, could be

made based on the metrics discussed herein. Furthermore, from this work it is clear that to

accurately test a 3D parametric mapping technique, metrics beyond the mean value of the fit

parameter relative to that of a reference need to be considered: bias and standard deviation, as

Fig 9. Average percentage of unsuccessfully recovered pixels in response to increases in acceleration rate. Percentage of pixels with T2 beyond 15 ms and 100 ms

in LV ROI are regarded unsuccessfully recovered and averaged over 3 naïve animals (left) or 8 normal human subjects (right). Higher numbers of unsuccessfully

recovered pixels indicate decreased robustness to undersampling and potential loss of information. VDR sampling with either joint-sparsity SENSE and model-based

SENSE reconstruction yields a high degree of pixel recovery, maintaining very low percentages of unrecovered pixels for all Rnet.

https://doi.org/10.1371/journal.pone.0252777.g009
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well as the preservation of potential segmentations must be included to truly assess the feasibil-

ity of an approach.

Undersampling patterns

The Caipi patterns greatly outperformed the traditional ES patterns in the RMSE of

T2-weighted images, but there is little improvement in all metrics with regard to T2 maps.

Instead, VDR undersampling, which achieved results comparable to Caipi in terms of RMSE

of T2-weighted images, improved all other metrics with regard to T2 maps. As expected, VDR

undersampling with artifacts exhibiting incoherence across differentially-weighted volumes,

supports higher undersampling rates when combined with sparsity-driven reconstructions,

whether sparsity is enforced in the image (joint-sparsity SENSE) or parameter space (model-

based SENSE).

Reconstruction algorithms

Multi-volume SENSE reconstruction differs from traditional SENSE by jointly reconstructing

all weighted image volumes. This approach maintains individual image contrast [40], and rep-

resents an achievable extension for manufacturers to incorporate into online reconstructions

as it makes no assumptions about the jointly-reconstructed data and therefore requires no tun-

ing (e.g. Lagrange multipliers). Images and parametric maps obtained with multi-volume

SENSE was equivalent to traditional SENSE for lower Rnet and outperformed traditional

SENSE at higher Rnet (Figs 4 and 6). These maps were more consistent with those from joint-

sparsity SENSE or model-based SENSE (Figs 3 and 5)

For Rnet<2.5, all tested methods provide similar T2 RMSE, T2 bias, and T2 SD. The per-

centage of recovered pixels in LV ROI is also high (�99.8%) for all methods. Relative to tradi-

tional SENSE, joint-sparsity SENSE or model-based SENSE with VDR sampling offered a

lower bias (higher accuracy), a lower SD (higher precision), a higher percentage of recovered

pixels, and a more accurate segmentation of edematous tissue. Nevertheless, traditional

SENSE provides a reasonable alternative that is fast and, with online reconstruction on MR

scanners, easily achieved with only a small cost in image quality.

For Rnet>2.5, joint-sparsity SENSE and model-based SENSE with VDR sampling had the

lowest impact on T2 RMSE, T2 bias, T2 SD, percentage of recovered pixels and Jaccard index.

Comparing these two methods, joint-sparsity SENSE resulted in a lower bias of mean T2 while

model-based SENSE resulted in a lower SD. Lower SD can be beneficial in the separation of

bimodal distributions, hence it is not surprising that model-based SENSE reconstruction

resulted in a more accurate segmentation of the area-at-risk, as corroborated by the highest

Jaccard indices for the majority of tested Rnet (Fig 8B).

The methods tested here do not offer comprehensive coverage but represent a sampling of

the better-understood image reconstruction techniques. Similarly, the use of T2 mapping rep-

resents a sole example of 3D parametric mapping amongst many. Hence, extrapolation of

these results to other scenarios should still include testing. Nevertheless, the images and maps

utilized here are not significantly different in SNR from other approaches, indicating that the

results from this work are likely applicable to other scenarios.

Choice of Rnet

The choice of undersampling factor for 3D parametric mapping must consider the balance

between the corruption of the target values and total scan duration. In this work, Rnet�3

(ORF~2–4) yielded reasonable results. At this acceleration factor (Rnet = 3), scan time is

reduced to approximately 3 min. Joint-sparsity SENSE with VDR sampling resulted in mean
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T2 bias of -0.03±0.26 ms and 0.28±0.24 ms, T2 standard deviation of 6.39±0.87 ms and 6.58

±0.87 ms, in swine and humans respectively. The increase in T2 standard deviation was 54.6%

±0.8% and 64.5%±10.1%. Similarly, model-based SENSE with VDR sampling resulted in mean

T2 bias of 0.14±0.23 ms and 0.31±0.14 ms, T2 standard deviation of 6.07±0.98 ms and 5.86

±0.59 ms, in swine and humans respectively. The increases in SD were 46.7%±6.3% and 46.9%

±7.2%, though large in magnitude, still resulted in an accurate segmentation of an edematous

heart. The Jaccard index of segmentations from reconstructions with joint-sparsity SENSE or

model-based SENSE with VDR undersampling was maintained at 0.59 vs. a 0.50 for traditional

SENSE, which suffered an additional 16.5% drop. Further increase in Rnet requires a more

aggressive increase in ORF due to the overhead cost of the fully sampled center of k-space used

for coil sensitivity autocalibration. More work is needed to determine the optimal size of the

ACS region in the context of parametric mapping where preserving base image contrast is crit-

ical for accurate fitting.

Limitations

This study does not include many of the optimizations that are currently available for the dif-

ferent reconstructions approaches as these are continuously evolving and improving. Never-

theless, the impact of reconstruction on the parametric maps requires direct quantification

and study. The results obtained on the animal with acute MI represent anecdotal findings

(N = 1) and more studies should be performed to demonstrate the effects of reconstruction on

the segmentation of parametric maps. No statistical comparisons are made between quantita-

tive metrics as the number of samples is likely too small to generate valid statistically signifi-

cant results. Similarly, the metrics used in this work, namely the bias in the mean T2 and the

standard deviation of T2 across the whole left ventricular ROI, don’t necessarily describe the

effects of acceleration on the uniformity of the T2 measurements. More analysis involving

changes to the underlying distribution of T2 for each could potentially yield more information,

as could an expanded set of experiments involving more swine with acuty injury.”

This study utilized the retrospective undersampling of fully sampled data, which resulted in

long acquisition times. Though prospective acquisition could yield more accurate results since

protracted scans are more susceptible to motion artifacts, the required scan duration is prohib-

itive given the large number of permutations tested herein.

Conclusion

In this work, we explored the effects of undersampling and iterative reconstruction in 3D

whole-heart T2 parametric mapping. The reconstruction approaches tested exploit the redun-

dancy in data that is found in images that are remarkably similar albeit with variation in con-

trast. The parametric maps were more sensitive to the degree of undersampling than the raw

images used in fitting, implying that for relaxometry, selection of approach can be critical. Tra-

ditional SENSE with ES sampling could be considered at low acceleration. However, for net

reduction factors Rnet>3, model-based SENSE and joint-sparsity SENSE reconstruction using

variable density random sampling were found more robust and better at preserving parametric

T2 maps.

Supporting information

S1 Dataset. Complete dataset including 4 metrics displayed in Fig 7 for all animals and

human subjects in study.

(XLSX)

PLOS ONE Accelerating 3D T2 mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0252777 September 10, 2021 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252777.s001
https://doi.org/10.1371/journal.pone.0252777


S1 Video. Animation showing all imaging slices in Fig 2. Animation showing all cross-sec-

tional slices of the 3D whole-heart dataset described in Fig 2.
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