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Abstract

Targeting metabolism is emerging as a promising therapeutic strategy for modulation of the

immune response in human diseases. In the presented study we used the lipopolysaccha-

ride (LPS)-mediated activation of RAW 264.7 macrophage-like cell line as a model to inves-

tigate changes in the metabolic phenotype and to test the effect of p-hydroxyphenylpyruvate

(pHPP) on it. pHPP is an intermediate of the PHE/TYR catabolic pathway, selected as ana-

logue of the ethyl pyruvate (EP), which proved to exhibit antioxidant and anti-inflammatory

activities. The results obtained show that LPS-priming of RAW 264.7 cell line to the acti-

vated M1 state resulted in up-regulation of the inducible nitric oxide synthase (iNOS) expres-

sion and consequently of NO production and in release of the pro-inflammatory cytokine IL-

6. All these effects were prevented dose dependently by mM concentrations of pHPP more

efficiently than EP. Respirometric and metabolic flux analysis of LPS-treated RAW 264.7

cells unveiled a marked metabolic shift consisting in downregulation of the mitochondrial oxi-

dative phosphorylation and upregulation of aerobic glycolysis respectively. The observed

respiratory failure in LPS-treated cells was accompanied with inhibition of the respiratory

chain complexes I and IV and enhanced production of reactive oxygen species. Inhibition

of the respiratory activity was also observed following incubation of human neonatal fibro-

blasts (NHDF-neo) with sera from septic patients. pHPP prevented all the observed meta-

bolic alteration caused by LPS on RAW 264.7 or by septic sera on NHDF-neo. Moreover,

we provide evidence that pHPP is an efficient reductant of cytochrome c. On the basis of

the presented results a working model, linking pathogen-associated molecular patterns

(PAMPs)-mediated immune response to mitochondrial oxidative metabolism, is put forward

along with suggestions for its therapeutic control.
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Introduction

Recent studies have highlighted the tight link between metabolic state and phenotype of

immune-competent cells both in the innate and acquired immunity [1–4]. The emerging

concept is that metabolism not only sustains diverse immune cell phenotypes as a conse-

quence of alterations in cellular signalling, but also feeds back and alters signalling to drive

the immune-cell phenotype. A common feature of pro-inflammatory immune cells, such as

effector lymphocytes, Tr1 regulatory T cells, M1 macrophages, mature dendritic cells, neu-

trophils and other granulocytes, is that they adopt a distinct metabolic signature termed “aer-

obic glycolysis” to support cellular biosynthetic processes: that is, glucose metabolized to

lactate in the presence of abundant oxygen. Aerobic glycolysis is strategic to cells engaged in

robust growth and proliferation because it provides fast ATP production (albeit with low

efficiency) and biosynthetic precursors that are essential for the synthesis of nucleotides,

amino acids, and lipids. Such a metabolic phenotype closely resembles what, since long

observed in many cancer cells, known as "Warburg effect". Conversely, other immune cell

subsets, such as naïve lymphocytes, memory T cells, FoxP3+ regulatory T cells, M2 macro-

phages, rely on oxidative metabolism [5].

In this context mitochondria are being increasingly recognized as signalling organelles for

both the maintenance and establishment of immune cell phenotypes [6]. In addition to the

recognized role in cellular bioenergetics mitochondria function as hubs integrating multiple

innate immune signalling [7]. Mitochondria are also a major source and target of reactive oxy-

gen and nitrogen species, establishing oxidative unbalance in various context, including the

response to bacterial infection. On this basis, targeting the mitochondrial oxidative metabo-

lism is becoming an attractive therapeutic strategy for modulation of the immune response in

human diseases.

Ethyl pyruvate (EP), the ester derivative of pyruvate, exhibits a variety of pharmacological

effects including: down-regulation of the secretion of pro-inflammatory cytokines; enhanced

anti-tumor immunity; amelioration of redox-mediated damage to cells and tissues; inhibi-

tion of apoptosis (under some circumstances) or promotion of apoptosis (under other cir-

cumstances); and support of cellular ATP synthesis [8–10]. Some of the pharmacological

effects of EP are likely to be linked to its function as ROS and RNS scavenger, a property elic-

ited by its α-cheto carboxylate moiety [11,12]. However, in spite of the protecting effect of

EP in several animal models of critical illness including myocardial or mesenteric ischemia/

reperfusion injury, sepsis, and hemorrhagic shock, its benefits in critical care patients has

not been confirmed [13]. A search of alternative EP-related chemical compounds led us to

characterize the effect of p-hydroxyphenylpyruvate (pHPP), an intermediate of the PHE/

TYR catabolism, on a rat model of profound hemorrhagic shock [14]. The results obtained

showed that a small volume administration of a pHPP solution significantly prolonged sur-

vival of rats subjected to 50% of blood withdrawal. Moreover, in vitro analysis on cultured

endothelial cell lines unveiled that pHPP prevented cell death under stressing conditions.

This effect was ascribable to antioxidant properties toward mitochondria-generated ROS

and to improvement of the mitochondrial respiration and related oxidative phosphorylation

(OxPhos) [14].

In the presented in vitro study we have extended our analysis on the pharmacological prop-

erties of pHPP in the context of a well-established pro-inflammatory model constituted by

lipopolysaccharide (LPS)-stimulated macrophage cell line. The results obtained clearly indicate

for pHPP a robust anti-inflammatory activity counteracting the metabolic rewiring of LPS-

stimulated macrophage and the related ensued pro-inflammatory pathways.

pHPP prevents LPS-mediated macrophage activation
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Materials and methods

2.1 Cell cultures

RAW 264.7 macrophage-like cell line (obtained from ATCC, Manassas, VA) and neonatal

normal human dermal fibroblasts (NHDF-neo) (obtained from Lonza Group Ltd., Basel, Swit-

zerland) were maintained in a humified 5% CO2 incubator at 37˚C in Dulbecco’s modified

Eagle medium (DMEM—low glucose (i.e. 5.5 mM)) supplemented with 10% FBS (Hyclone

Laboratories, Logan, UT), 1% penicillin/streptomycin, 1% pyruvate. Cells were passed once a

week and used for experiments at 80–90% confluence. All cell culture lines were routinely

tested on a monthly basis for Mycoplasma contamination using the Lonza MycoAlert1 Myco-

plasma Detection Kit (Rockland, ME). RAW 264.7 cell line and NHDF-neo were never used at

passages higher than 15 and 8 respectively.

2.2 Materials

para-Hydroxylphenylpyruvate (pHPP), ethylpyruvate (EP), dichloroacetate (DCA), rotenone,

oligomycin, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), carbonyl cya-

nide m-chlorophenylhydrazone (CCCP) were purchased from Sigma-Aldrich Chemical Co.

All the other chemicals were of the highest purity grade commercially available.

2.3 Cell viability assay

For MTS assay, cells were seeded in a 96-well culture plate in DMEM supplemented without

or with graded concentrations of pHPP for 24h. Cell viability was measured using solutions of

the novel tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium, inner salt (CellTiter 961 AQueous MTS Reagent Powder,

Promega) and the electron coupling reagent, phenazine methosulfate, PMS (Sigma Aldrich,

Saint Louis, MO, USA). MTS is bioreduced by cells into a formazan product that is soluble in

tissue culture medium. The absorbance of the formazan at 490 nm was measured directly from

96-well assay plates using the Plate Reader (das srl, Italy) with a reference filter at 630 nm. All

measurements were performed in triplicate for each assay.

2.4 Nitrite/nitrate and IL-6 measurements

RAW 264.7 macrophage-like cells were plated in 6-well plates and used the following day.

Cells were stimulated by adding 10 ng/ml Escherichia coli LPS (serotype O111:B4) in the pres-

ence or absence of graded concentrations of the tested compounds (EP, pHPP). Nitrite/nitrate

and IL-6 concentrations were measured after 18 h in cell supernatants using a commercially

available Griess reaction kit (Oxis International, Portland, OR) and the commercially available

Quantikine Immunoassay Kit for IL-6 (R&D Systems, Minneapolis, MN) respectively.

2.5 q-RT-PCR analysis of iNOS

RAW 264.7 cells were harvested at 24 h in 1 ml of TRI-Reagent as directed by the manufac-

turer (Molecular Research Center, Inc.). Bromochloropropane was used for the extraction.

The final RNA pellet was dissolved in nuclease-free water and quantified using a GeneQuant

pro UV spectrophotometer (GE Healthcare). Extracted RNA (1 μg /reaction) was converted

to single-stranded cDNA in a 20 μl reaction using the Reverse Transcriptase System Kit (Pro-

mega) as directed by the manufacturer. The mixture was heated to 70˚C for 10 min, main-

tained at 42˚C for 30 min, and then heated to 95˚C for 5 min using a Gene Amp PCR System

9700 (Applied Biosystems, Foster City, CA). TaqMan Gene Expression Assays for mouse

iNOS and 18S RNA (endogenous control) and real-time PCR reagents were from Applied
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Biosystems (Foster City, CA). The oligonucleotide primers used were: (F)50-CCCTTCCGAAG
TTTCTGGCAGCAGC-30 and (R)50-GGCTGTCAGAGAGCCTCGTGGCTTTGG-30 for the

mouse macrophages iNOS; (F)(50-ATGCCATCCTGCGTCTGGACCTGGC-30 and (R)50-
AGCATTTGCGGTGCACGATGGAGGG-30 for the mouse β-actin. Reaction mixtures for PCR

were assembled as follows: 10 μl TaqMan Universal PCR Master Mix, 1 μl of each Gene

Expression Assay mix, 1 μl cDNA template and 7 μl of water. The real time RT-PCR analysis

was performed using ABI Prism 7900HT (University of Pittsburgh Genomics and Proteomics

Core Laboratories) by incubating at 50˚C for 2 min, 95˚C for 10 min, 95˚C for 15 s, and 60˚C

for 1 min; the two final steps were repeated for 40 cycles. Each sample was assayed in duplicate

and the values were averaged. A ΔΔCt relative quantification method was used to calculate

mRNA levels in the samples. Results were first normalized relative to 18S mRNA expression

levels and than to the control (calibrator).

2.6. Imaging of intracellular NO and peroxide production

RAW 264.7 cells, plated in 6-well plates, were treated with 10 ng/ml LPS with or without 3

mM pHPP for 18 h. Thereafter, either 10 μM DAF-FM (4-amino-5-methylamino-2’,7’-difluor-

ofluorescein diacetate) or 5 μM DCF-DA (2’,7’-dichlorofluorescein diacetate) were added to

detect RNS (mainly NO) or ROS (mainly peroxides) respectively. Specificity of the NO-probe

was verified by treating the LPS-challenged cells with 1 mM of the NOS pan-inhibitor

L-NAME (L-NG-nitroarginine methyl ester). Imaging of the intracellular fluorescent probes

was performed by the EVOS Cell Imaging System (Thermo Fisher). Quantitative analysis of

the digitalized images was carried out with ImageJ (https://imagej.nih.gov/ij/).

2.7. Respirometry

Oxygen consumption rate in intact cells suspension was measured by high resolution oxyme-

try (Oxygraph-2K, Oroboros) in thermostatically controlled tween-chambers (T = 37˚C)

equipped with a stirring device and a gas-tight plug equipped with a narrow port enabling

addition by microsyringe. Cultured RAW 264.7 and NHDF-neo were detached from the plate

by trypsinization, washed in PBS and suspended at 2–4 x106 cells/ml in 50 mM KH2PO4, 10

mM Hepes, 1mM EDTA, pH7.4 in both the oxymeter chambers. Respiration of untreated and

immunostimulated cells samples (± co-incubation with pHPP) were assayed in parallel. After

attainment of the stationary resting oxygen consumption rate, 1 μg oligomycin/ml was added

followed 5 min later by addition of 0.5 μM FCCP and finally of 2 μM rotenone + 1 μM antimy-

cin A.

2.8. Metabolic flux analysis

Oxygen consumption rate (OCR) and extra-cellular acidification rate (ECAR) were measured

in adherent RAW 264.7 cells with a XF96 Extracellular Flux Analyzer (Seahorse Bioscience,

Billerica, MA, USA). For OCR analysis, after replacing the growth medium with 180 μl of

bicarbonate-free DMEM supplemented with 10 mM glucose 2 mM L-glutamine and 1 mM

sodium pyruvate pre-warmed at 37˚C, cells were preincubated for 45 min before starting the

assay procedure. After measuring basal respiration, Oligomycin (1 μM), carbonyl cyanide m-

chlorophenylhydrazone (0.8 μM), and rotenone + antimycin A (1 μM + 1 μM) were injected

into each well sequentially to assess respectively coupling of respiratory chain, maximal and

non-mitochondrial oxygen consumption. For ECAR analysis, after replacing the growth

medium with 180 μl of bicarbonate-free DMEM pre-warmed at 37˚C, cells were preincubated

for 45 min before starting the assay procedure. Glycolytic flux (basal glycolysis, glycolytic

capacity, and glycolytic reserve) was analyzed by the sequential addition of 10 mM glucose,
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1 μM oligomycin, and 100 mM 2-deoxyglucose. OCR and ECAR values were normalized to

protein content in each well, determined with BCA assay.

2.9. Mitochondrial respiratory complexes activity

The specific activities of the complexes I and IV of the mitochondrial respiratory chain were

assayed spectrophotometrically on frozen–thawn and ultrasound-treated cells as previously

described [15,16].

2.10. Spectrophotometric analysis of cytochrome c

Time-course of absorbance at 550 nm (ε = 21 mM-1cm-1) and UV-Vis spectra of horse heart

cytochrome c (Sigma-Aldrich Chemical Co) were carried out by a split-beam spectrophotome-

ter (Perkin-Elmer λ40); εred,550nm = 29.5 mM-1cm-1, εred-ox,550nm = 21.1 mM-1cm-1.

2.11. Isolation of mitochondria

Mitochondria were isolated from beef heart homogenate by differential centrifugation in 0.25

M sucrose, 5 mM Hepes, 1 mM EDTA, 5 mM MgCl2 as described in [17] and stored frozen at

-80˚C.

2.12. Western blotting analysis

Aliquots containing 40 μg of proteins from each cell lysate were subjected to SDS polyacryl-

amide gel electrophoresis and transferred to a polyvinylidene difluoride membrane (Bio-Rad

Laboratories; Hercules, CA, USA) using Trans Blot Turbo Transfer System. Membranes were

probed with the following primary antibodies: HIF-1α (1:1000; Santa Cruz Biotechnology Inc.,

sc-13515) and β-actin (1:5000; SIGMA Aldrich, St. Louis, MO, USA). After incubation with

corresponding suited horseradish peroxidase-conjugated secondary antibody (1:2500; Cell

Signaling Technology) signals were developed using the enhanced chemiluminescence kit

(ClarityTM Western ECL Substrate, Bio-Rad), acquired by ChemiDoc Imaging System XRS +

(BioRad) and analyzed for densitometry with the ImageJ Lab 4.1 software.

2.13. Septic patients’ serum collection

Eight adult (> 18 years) septic shock patients, as defined by The Third International Consen-

sus Definition for Sepsis and Septic Shock (Sepsis-3) [18] were enrolled. All patients had to

exhibit positive blood cultures or a defined focus of infection (e.g. peritonitis or pneumonia)

requiring vasopressor therapy (> 0.5 μ/kg/min norepinephrine) to maintain mean arterial

pressure greater than 65 mm Hg despite adequate volume expansion. All patients were

required to have procalcitonin levels > 2 ng/ml, CRP > 10 mg/ml and ScVO2� 70% [19,20].

For serum separation, venous blood samples (10 ml) were withdrawn 24 h after the diagnosis

of sepsis from each informed patient in Vacutainer1, centrifuged at 500 g for 10 min at 25˚C

and then the supernatants were harvested and directly used following decomplementation

(56˚C for 30 min). Blood from eight healthy volunteers (control group) was subjected to the

same treatment. NHDF-neo cells were incubated in DMEM supplemented with 1:10 (v/v) of

either normal or septic sera for 18 h in the absence or in the presence of 3 mM pHPP. For the

utilization of patients’ samples specific approval of the Local Ethical Committee was obtained

for this study (Opedali Riuniti University Hospital cod. XX/CE/2014). Written informed con-

sent was obtained from all participants.
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2.14. Statistical analysis

Data are presented as means ± S.E.M. and analyzed using the variance analysis test (ANOVA)

followed by a post hoc Bonferroni test or the two-tailed student t-test. A value of P<0.05 was

set as statistically significant.

Results

The murine macrophage RAW 264.7 cell line is a well-established in vitro model used to test

the immunomodulatory activity of compounds following immunostimulation by LPS [21]. Fig

1A shows that treatment of the RAW 264.7 cell line with 10 ng LPS/ml for 18 h induced a

change in the cell phenotype highlighted by morphological changes leading to progressive

polarization of macrophages from the undifferentiated rounded-shaped M0 state to the acti-

vated dendritic-shaped M1 state. Consistently, LPS-stimulation of the RAW 264.7 cell line

resulted in release of the pro-inflammatory cytokine IL-6 (Fig 1C). pHPP or ethyl pyruvate

(EP) (Fig 1B) prevented dose-dependently IL-6 production in LPS-stimulated macrophages

albeit with different efficiency. Indeed, while 10 mM pHPP fully suppressed IL-6 production, a

similar concentration of EP caused only about 40% decrease of the cytokine release (Fig 1C).

The IC50 estimated from non-linear fit of the experimental points was 16.9 and 2.0 mM for EP

and pHPP respectively. The limited solubility of EP impeded to test higher concentration of

this compound. In spite of its marked inhibition on the release of the pro-inflammatory cyto-

kine, pHPP-treatment had no statistical significant impact on the LPS-induced morphological

changes of RAW 264.7 cell line (Fig 1A). When cells were incubated with pHPP alone no sig-

nificant morphological changes were observed except for the appearance of a few spindle-like/

elongated cells (Fig 1A).

A well-established feature of LPS-stimulated macrophage is the transcriptional activation of

the inducible nitric oxide synthase (iNOS) [22]. Therefore, next we tested the effect of pHPP

on the LPS-mediated induction of iNOS expression and NO production. Fig 2A shows that

LPS-stimulation of RAW 264.7 macrophages elicited a large increase in transcription of the

NOS2 gene (coding for iNOS) and in consequential production of NO assessed as NO2
-/NO3

-

formation (Fig 2B). Grading amounts of pHPP prevented progressively both iNOS expression

and NO production with an estimated IC50 of 0.9 and 0.5 mM respecively. Conversely, though

the limited solubility of EP hindered a precise estimation of its IC50, nevertheless a much

lower inhibitory effect was evident on both iNOS expression and NO production in LPS-

treated cells, as compared with pHPP.

From this point ahead we decided to characterize more in depth the specific properties of

pHPP. The testing concentration of 3 mM of the compound was chosen to minimize solubil-

ity-related harms. The MTS-based citotoxicity assay showed that 3 mM pHPP caused no

change in cell viability (Fig 3A).

The marked effect of pHPP on the NO production was was further confirmed by micros-

copy imaging by the intracellular fluorescent probe DAF [23]. Fig 3B and 3C show that the

overproduction of NO in LPS-stimulated RAW 264.7 cells was almost completely abrogated

by 3 mM pHPP; similar result was obtained by the NOS pan-inhibitor L-NAME thus confirm-

ing the specificity of the probe.

Along with the generation of NO, LPS stimulation of macrophages caused also reactive oxy-

gen species (ROS) overproduction [24]. Accordingly, Fig 4 shows a large change in the intra-

cellular redox tone of LPS-treated RAW 264.7 using the redox-sensitive fluorescent probe

DCF. Though DCF was found to react with a variety of reactive redox-active species neverthe-

less its commonly considered a sensor of peroxides [25]. As for NO, 3 mM pHPP largely pre-

vented production of bona fide ROS in LPS-stimulated RAW 264.7 macrophages.
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Fig 1. Effect of graded concentrations of EP and pHPP on IL-6 release in LPS-treated RAW 264.7

macrophage cell line. (A) Cultured cells were treated with 10 ng/ml LPS for 18 h and morphological changes

analyzed by light transmission microscopy. Images show representative micrographs of untreated and LPS-

stimulated cells (± 3 mM pHPP). The histograms in the pictures show the morphometric analysis carried out on

images collected from 3–4 independent experiments averaging (± SEM) at least 5 different optical fields for each

condition in each biological replicate; *: P<0.05 vs untreated ± 3 mM pHPP cells. See text for further details. (B)
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Cultured cells were treated with LPS as in (A) in the absence and in the presence of the indicated concentrations

of either EP or pHPP and assayed for the IL-6 released in the supernatant as described in Materials and

Methods. The values are means ± SEM of the percentages of untreated sample and refer to 3 independent

experiments under each condition; *: P<0.005, **: P <0.0001.

https://doi.org/10.1371/journal.pone.0188683.g001

Fig 2. Effect of graded concentrations of EP and pHPP on iNOS expression and nitrite/nitrate release in LPS-treated RAW

264.7 macrophage cell line. Cultured cells were treated with 10 ng/ml LPS for 18 h in the absence and in the presence of the indicated

concentrations of either EP or pHPP and assayed for iNOS mRNA level in cell lisates (A) and for the nitric oxide (NO) derivatives nitrite/

nitrate in the supernatant (B). The values in (A) and (B) are means ± SEM of 3 independent experiments under each condition;

*: P<0.05, **: P <0.01, ***: P <0.001.

https://doi.org/10.1371/journal.pone.0188683.g002
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Fig 3. Fluorescence microscopy imaging of cellular production of NO in LPS-treated RAW 264.7

macrophage cell line and effect of pHPP. Cultured cells were treated with LPS as in Fig 1 in the absence or

presence of either 1 mM L-NAME or 3 mM pHPP. Then after cells were supplemented with DAF-DA and

visualized by fluorescence microscopy as detailed under Materials and Methods. (A) Representative

fluorescence images along with the corresponding bright-fields. (B) Intracellular fluorescence quantification
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Since NO and ROS are potential inhibitors of the mitochondrial respiratory chain com-

plexes [26], we measured the oxygen consumption rate in intact RAW 264.7 cells by high reso-

lution respirometry. Fig 5A illustrates the results of a systematic analysis showing that LPS-

stimulation of RAW 264.7 resulted in a significant 50% reduction of the oxygen consumption

rates measured under condition of resting respiration (OCRRR) as compared with untreated or

pHPP-treated cells. In the presence of the F0F1 ATP-synthase inhibitor oligomycin the OCR

was largely depressed in all the conditions. This respiratory activity is an indirect measurement

of the passive proton leak ensued by the built-up of the mitochondrial membrane potential no

longer collapsed by the ATP-synthase activity (OCRL). The difference between the OCRRR and

the OCRL is taken as an indirect measure of the effective mitochondrial oxygen consumption

utilized to make ATP synthesis (OCRATP). The OCRATP in LPS-challenged cells was signifi-

cantly depressed thereby indicating a severe OxPhos failure in immune-stimulated RAW

264.7 cells. Notably, when LPS-stimulated cells were treated with pHPP both the decrease of

OCRRR and OCRATP was largely prevented displaying activities comparable with untreated

cells. A small but statistically significant increase of the OCR was observed treating unstimu-

lated cells with pHPP. Results similar to those attained by pHPP were observed co-incubating

LPS-stimulated RAW 264.7 with dichloroacetate (DCA), a known activator of the mitochon-

drial pyruvate dehydrogenase and effector of cell metabolism [27,28]. All the above reported

OCRs were corrected for the rotenone+antimycin A-insensitive respiration and therefore

attributable to the activity of the respiratory chain. Notably, the mitochondria-unrelated cellu-

lar OCR (i.e. the residual oxygen consumption in the presence of the respiratory chain inhibi-

tors) resulted significantly higher in LPS-treated cells and was re-normalized to the control

levels by pHPP (Fig 5B).

Next, we sought to verify if the pro-inflammatory background observed in septic patients

could elicit inhibition of the mitochondrial respiratory activity as observed in LPS-stimulated

RAW 264.7 and if this was sensitive to pHPP treatment. To these aim sera from a cohort of

septic patients were supplemented to the culture medium of TLR4-expressing neonatal normal

dermal human fibroblasts (NHDF-neo) [29] and their respiratory activity assessed after 18 h

incubation; sera from healthy donors served as control. Fig 5C shows that treatment of

NHDF-neo with septic serum caused a significant 50% reduction of the mitochondrial respira-

tory efficiency as compared with NHDF-neo treated with normal human sera. Importantly,

co-incubation of septic sera with pHPP resulted in a respiratory profile comparable with that

of control NHDF-neo if not slightly increased. To note, pHPP had a significant stimulatory

effect of respiration also on NHDF-neo incubated with normal non-septic sera.

Complexes I and IV (NADH-dehydrogenase and cytochrome c oxidase respectively) of the

respiratory chain are the major enzymatic steps controlling the overall respiratory flux [30].

Consistently measurements in LPS-stimulated RAW 264.7 of the enzymatic activity of both

complexes I and IV (normalized to the citrate synthase activity) unveiled a significant inhibi-

tion of both, which was fully prevented by co-treatment with pHPP (Fig 5D).

To confirm the above reported observations on the respiratory activity of RAW 264.7 cells

we measured directly the metabolic fluxes in cultured cells by the SeaHorse technology [31].

As shown in Fig 6A the inhibitory effect of LPS on the rotenone-sensitive OCRs under basal

and uncoupled states, and the preserving effect of pHPP were substantially confirmed. In addi-

tion, we assessed the extracellular acidification rates (ECAR) which is an indirect measurement

performed on digitalized images by ImageJ. The bars are means ± SEM of 4 independent biological replicates

obtained by averaging the intracellular pixel intensity obtained from at least 5 different fields for each

condition. The statistical significance of the difference is also shown.

https://doi.org/10.1371/journal.pone.0188683.g003
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Fig 4. Fluorescence microscopy imaging of cellular production of peroxides in LPS-treated RAW 264.7

macrophage cell line and effect of pHPP. Cultured cells were treated with LPS as in Fig 1 in the absence or

presence of 3 mM pHPP. Then after cells were supplemented with DCF-DA and visualized by fluorescence

microscopy as detailed under Materials and Methods. (A) Representative fluorescence images along with the

corresponding bright-fields and image merge; digital magnifications of selected areas is also shown. (B)

Intracellular fluorescence quantification performed on digitalized images by ImageJ. The bars are means ± SEM

of 4 independent biological replicates obtained by averaging the intracellular pixel intensity obtained from at least

5 different fields for each condition. The statistical significance of the difference is also shown.

https://doi.org/10.1371/journal.pone.0188683.g004
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Fig 5. Measurement of mitochondrial respiratory chain activity in LPS-treated RAW 264.7 murine

macrophage cell line and in septic sera-treated NHDF human fibroblasts and effect of pHPP. (A)

Respirometric analysis of intact RAW 264.7 cells. Cultured cells were incubated for 18 h with the indicated

compounds at the following concentrations: 10 ng/ml LPS, 3 mM pHPP, 2.5 mM DCA. The bars indicate the oxygen

consumption rate (OCR) recorded by high-resolution polarimetry, corrected for 2 μM rotenone + 1 μM antimycin A-
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of the glycolytic flux. Fig 6B shows that LPS-treated cells exhibited a significant increase of gly-

colysis which was fully prevented by pHPP. All together the presented observations clearly

show that LPS-treatment caused rewiring of the main catabolic pathways depressing mito-

chondrial OxPhos meanwhile fostering glycolysis and that pHPP was able to largely prevent

such a metabolic shift (Fig 6C).

The hypoxia-inducible factor 1 is a transcription factor controlling the expression of genes

involved in the glycolysis under hypoxic conditions [32]. However, its normoxic activation has

been demonstrated in macrophages and dendritic cells by pro-inflammatory stimuli [33,34].

Fig 6D shows that treatment of RAW 264.7 cells with either the hypoxia-mimetic CoCl2 or

LPS induced normoxic stabilization of the transcription factor subunit alpha (HIF-1α) over

the ground level in untreated cells. Co-treatment of LPS with pHPP resulted in no change in

the basal level of the HIF-1α subunit.

Finally, we sought to verify the redox properties of pHPP under our experimental condi-

tions. While testing the direct antioxidant activity of pHPP in the assay which monitors the

reducibility of ferric cytochrome c in the presence of a superoxide anion generator system (i.e.

xanthine plus xanthine oxidase) [35] we noticed that pHPP alone caused direct reduction of

cytochrome c. Thus we decided to deepen this point. Following absorbance changes at 550

nm, Fig 7A shows that in the presence of 3 mM pHPP ferric cytochrome c was rapidly con-

verted in ferrous cytochrome c (with a t1/2� 8 s). Spectral deconvolution analysis documented

that the reduction of cytochrome c was accompanied with disappearance of the UV spectral

feature of pHPP peacking at 295 nm (Fig 7B) [36]. Moreover, addition of graded concentra-

tions of ferric cytochrome c to a suspension of isolated mitochondria supplemented with

pHPP resulted in a progressive increase of the NaN3-sensitive OCR significantly higher than

that attained in the absence of pHPP (Fig 7C and 7D). To notice, even in the absence of exoge-

nously added cytochrome c the mitochondria-mediated OCR was higher in the presence of

pHPP indicating the capability of the compound to directly transfer electrons to the endoge-

nous mitochondrial cytochrome c.

Discussion

In a previous study we tested the therapeutic potential of pHPP in a rat model of hemorrhagic

shock showing its efficacy in prolonging animals’ survival. In the same study we further dem-

onstrated that pHPP displays antioxidant and energetic substrates-supplying properties in a

cultured endothelial cell line under stressing conditions [14]. The purpose of that investigation

was to screen analogs of EP, which in spite of its cytoprotective action in a number of in vitro

insensitive activity and normalized to the cell number; means ± SEM of 4–6 independent biological replicates under

each condition. OCRRR, activity measured under resting respiration; OCRL, activity measured in the presence of

oligomycin; OCRATP, difference between OCRRR and OCRL (see Materials and methods and Results for their

functional meaning). *, P < 0.05 vs the corresponding OCRs of control (CTRL); **, P < 0.01 vs the corresponding

OCRs of all the other conditions. (B) Mitochondria-unrelated OCR. The histogram shows the OCR recorded after

addition of rotenone + antimycin A; means ± SEM of 6 independent biological replicates under each condition;

*, P < 0.05 vs CTRL. (C) Respirometric analysis of intact human NHDF. Cultured cells were incubated for 18 h with

media supplemented with 1/10 volume of sera isolated from either healthy or septic patients without or with 3 mM

pHPP as indicated. The bars indicate the oxygen consumption rate (OCR) recorded by polarimetry and normalized

to the cell number and are means ± SEM of 4 independent biological replicates under each condition. *, P < 0.05 vs

CTRL; #, P < 0.05 vs septic sera-treated cells. (D) Activity of mitochondrial respiratory chain complexes. RAW 264.7

cell were incubated with the indicated compounds as in panel (A). Then after cells were lysated and the specific

enzymatic activity of the NADH dehydrogenase (CxI) and cytochrome c oxidase (CxIV) assessed by

spectrophotometric assays under condition of saturating substrates as detailed under Materials and Methods. The

measured activities were normalized to the citrate synthase activity. The bars indicate the means ± SEM of 4

independent biological replicates under each condition. *, P < 0.05 vs all the other conditions; **. P < 0.01 vs all the

other conditions.

https://doi.org/10.1371/journal.pone.0188683.g005
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Fig 6. Metabolic flux analysis and expression of HIF-1α in LPS-treated RAW 264.7 macrophage cell line and

effect of pHPP. Cells were seeded in a 96-wells cell culture microplate and incubated 18 h without or with 10 ng/ml

LPS ± 3 mM pHPP (see the color code legend on the right). The histograms in (A) and (B) show the oxygen consumption

rates (OCR) and the extra cellular acidification rates (ECAR) respectively assayed by the SeaHorse platform as

described under Materials and Methods and normalized to the protein content of the cells removed from each well at the
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and in vivo animal models of organ damages, failed to show benefit in preclinical trials in

human patients [10,13]. In keeping the well-documented anti-inflammatory action of EP we

sought to establish whether a similar property was shared with pHPP. To this aim we used the

well-established in vitro model of the LPS-challenged macrophage cell line RAW 264.7 [21].

The results obtained allow to propose the working model schematically shown in Fig 8A and

detailed onward.

Macrophages play a pivotal role in the innate immunity and respond to local immune- and

or pathogen-derived signals to adopt different activation states. Toll like receptor (TLR) ago-

nist such as LPS promotes activation of macrophage from a quiescent to an activated state M1

[37–39]. From the host-defense standpoint, M1 macrophages are inflammatory, secreting

mediators such as IL-6, which activates other immune cells, and NO, which is directly cyto-

toxic, by upregulation of iNOS. Activation of the transcription factor NF-κB is long known to

be the major down-stream target of the TLR4-related signaling pathway [40]. The results of

the presented study show that, like EP, pHPP was able to prevent the IL-6 release in LPS-

treated macrophage but with a much greater efficacy (Fig 1C). It is worth nothing that pHPP

did not prevent the M1-polarized morphological changes induced by LPS. This could be

related to an LPS-mediated activation of a pathway leading to cytoskeleton remodelling, which

is pHPP-insensitive. Alternatively, pHPP could prime polarization of the macrophages from

the M0 state towards an alternatively activated anti-inflammatory/immunosuppressive pheno-

type (M2). Indeed, pHPP-treatment of unstimulated RAW 264.7 cells caused the appearance

of elongated spindle-like shaped cells [41]. Analysis of the level of expression of specific M2

markers would help to clarify this point. Even more effective was pHPP in preventing the

expression of iNOS and the production of NO as compared with EP (Figs 2 and 3). Moreover,

pHPP was able to substantially prevent the over-production of ROS, which is known to accom-

pany the LPS-mediated pro-inflammatory response in macrophage as well as in other immune

cells [42]. A direct interaction of the activated macrophage TLR4 with a member of the

NADPH oxidase (NOX) family has been shown to be an early event in the LPS-induction of

ROS and activation of NF-KB [43]. Consistently, we observed alteration of the redox state and

enhanced mitochondria-unrelated OCR in LPS-treated RAW 264.7 (Figs 4 and 5B). However,

also dysfunctional mitochondria are recognized as a major source of ROS under condition of

pro-inflammatory priming [44,45]. This may well be a consequence of the direct inhibitory

effect of NO, competing with O2, on the cytochrome c oxidase (CxIV), the terminal electron

acceptor of the mitochondrial respiratory chain [46]. The resulting slow-down of the electron

transfer rate through the respiratory chain would ensue in accumulation of redox intermedi-

ates up-stream of CxIV and enhanced electron leakage producing ROS [47,48]. In addition to

end of the assay. OCR in (A): Basal, resting OCR; Oligo, OCR measured after the addition of the ATP synthase inhibitor

oligomycin also referred as proton leak; FCCP, OCR measured after the addition of the uncoupler FCCP eliciting the

maximal respiratory capacity. The OCR were corrected for the residual OCR measured after the addition of the CxI

inhibitor rotenone (not shown). ECAR in (B): Glycolysis, resting ECAR; Glycolytic Capacity, ECAR measure after the

addition of oligomycin and FCCP and refers to the maximal glycolytic activity with the OxPhos inhibited; Glycolytic

Reserve, difference between ECAR measured in the presence of oligomycin + FCCP and under resting conditions. The

bars in (A) and (B) are means ± SEM of 3 independent experiment carried out in 3 technical replicates under each

condition; *, P<0.05 vs all the other conditions. (C) Energy map obtained plotting the maximal ECAR and OCR capacity

measured in (A) and (B) (same color code). (D) Immunoblotting of HIF-1α. Fourty micrograms of proteins from total

protein extracts from untreated and compound-treated cells were subjected to SDS-PAGE and immunoblotted for

detection of HIF-1α and β-actin, as loading control, as detailed in Materials and Methods. The experimental conditions for

compounds treatments are as in panel (A). CoCl2 refers to a positive control carried out treating RAW 264.7 cells with

100 μM of the hypoxia-mimetic CoCl2 for 18 h. The upper panel shows a representative immunoblot, the lower histogram

shows the densitometric values of HIF-1α normalized to β-actin as means ± SEM of 3 independent experiment;

*, P < 0.05.

https://doi.org/10.1371/journal.pone.0188683.g006
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Fig 7. Redox properties of pHPP. (A) Spectrophotometric absorbance changes at 550 nm. Where indicated ferric cytochrome c was

added to 0.25 M sucrose, 5 mM Hepes, 1 mM EDTA, 3 mM MgCl2, pH = 7.4 ± 3 mM pHPP; complete reduction of cytochrome c was

attained by addition of a few grains of sodium dithionite (Na2S2O4). The time-course shown is representative of 3 independent

experiments with and average t1/2 for cytochrome c reduction of 0.8 ± 0.05 sec. (B) Spectra analysis in the UV and visible range. (a),

50 μM ferric cytochrome c; (b) 50 μM cytochrome c reduced with dithionite; (c), 100 μM pHPP; (d), summation spectrum obtained as (b)

+(c); (e), 50 μM ferric cytochrome c + 100 μM pHPP recorded 20 min after mixing; (f) subtraction spectrum obtained as (d)-(e). The

spectral analysis is representative of 3 independent experiments yielding similar results. (C) Oxymetric traces. Isolated beef heart

mitochondria (BHM) where added to the medium of (A) at the final concentration of 0.5 mg prot/ml and cytochrome c added to reach the

indicated final concentrations; where indicated 5 mM NaN3 were added. The shown oxymetric traces are representative of 3

independent experiments; the graph on the left shows the means ± SEM (n = 3) of the OCRs attained at the indicated concentrations of

cytochrome c and corrected for the NaN3-insensitive activity; the P value was < 0.01 for each data point in the presence of pHPP vs the

corresponding CTRL.

https://doi.org/10.1371/journal.pone.0188683.g007

pHPP prevents LPS-mediated macrophage activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0188683 November 27, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0188683.g007
https://doi.org/10.1371/journal.pone.0188683


Fig 8. Schematic drawing of the anti-oxidant-mediated anti-inflammatory effect of pHPP. (A) The scheme highlights the

effect of pHPP as resulting from its combined reactive species scavenger and respiratory substrate-supplier actions. See

Discussion for details. PAMPS, pathogen associated molecular patterns; LPS, lipopolysaccharide; TLR4, toll-like receptor 4;

NOX, NADPH oxidase; iNOS, inducible nitric oxide synthase; HIF-1α, hypoxia inducible factor 1 alpha; NF-KB, nuclear factor

kappa-light-chain-enhancer of activated B cells; ROS, reactive oxygen species; NO, nitric oxide; RNS, reactive nitrogen
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compete with O2 to the active site of CxIV, NO was shown to inhibit CxIV, as well as CxI, via
nitrosative covalent modifications [26,49]. This scenario might also include a functional inter-

action between NOXs and mitochondria via a ROS-induced ROS release (RIRR) mechanism

whereby ROS generated by NOX would cause further production of ROS by the mitochondrial

respiratory chain [50,51]. The resulting pro-oxidative state is thought to directly activate

redox-sensitive transcription factors, like NF-KB [52], priming immune cells to pro-inflamma-

tory commitment.

Consistent with this model we found a significant inhibition of the mitochondrial respira-

tory activity in intact RAW 264.7 challenged with LPS and of both CxI and CxIV enzymatic

activity (Fig 5A and 5D). This latter result, being attained in solubilized cells under normoxic

setting, would rule out the competitive inhibition of NO on CxIV suggesting instead a perma-

nent (nitro)oxidative modification of the respiratory complexes. It is worth noting that pri-

mary human fibroblasts treated directly with septic sera recapitulated the depressed

respiratory phenotype observed with the LPS-challenged murine macrophage cell line (Fig 5C)

highlighting the general relevance of this observation. Metabolic flux analysis by SeaHorse

technology revealed that the decreased mitochondrial OxPhos activity was accompanied with

a compensatory up-regulation of the aerobic glycolysis (Fig 6A–6C) somehow recalling a War-

burg-like effect. A major transcription factor controlling the expression of the glucose trans-

porters as well as of the glycolytic enzymes is the transcription factor HIF-1 [53]. Although the

alpha subunit of HIF-1 is rapidly degraded following its hydroxylation by O2-dependent prolyl

hydroxylases (PHDs) [54], hypoxia-independent stabilization of HIF-1α has been amply

described [55]. ROS and RNS, as well as intermediates of the Krebs cycle, proved to inhibit the

PHDs thereby activating HIF-1 also under normoxic conditions [56–60]. Moreover, activated

NF-KB was linked to enhanced transcription of the HIF-1α coding gene HIF1A [61–63].

Accordingly, stimulation of HIF-1 hallmarks the inflammatory activation of several immune

cells and it is thought to spur rewiring of their metabolic phenotype [64]. Consistent with this

notion we confirmed in LPS-stimulated RAW 264.7 a significant stabilization of HIF-1α as

compared with the unstimulated resting macrophages (Fig 6D).

Notably, pHPP inhibited all the above described alterations in LPS-stimulated RAW 264.7.

Indeed the metabolic shift toward a glycolytic phenotype was completely prevented by pHPP

with both the cellular respiration and the respiratory chain complexes I and IV activity display-

ing no significant changes as compared with the unstimulated cells (Figs 5 and 6). Likewise,

the stabilization of HIF-1α was also inhibited.

It must be noticed that all the above-reported effects of pHPP were attained at the low mM

concentration range of the compound (i.e. 3 mM). This setting might be considered relatively

high in terms of its pharmacological utilization. However, RAW 264.7 cell viability was not sig-

nificantly affected up to 10 mM of the compound (Fig 3A) and in our previous study [14] 2.5

mM of pHPP resulted in growth stimulation of EA.hy 926 endothelial derived-cells. In the

same paper it was shown that administration of pHPP in rats to a calculated final concentra-

tion in the circulating blood of about 7 mM resulted in significant delayed death following

severe hemorrhagic shock as compared with untreated controls [14]. Consistently, pHPP

resulted beneficial in a rat model of multivisceral ischemia and reperfusion where it was

administered at a dosage of 0.86 mMol/kg corresponding to about 13 mM of the compound in

the circulating blood [65]. To notice for the pHPP-analogue EP a safety level in humans of 150

species; RC, mitochondrial respiratory chain; TCAC, tricarboxylic acid cycle; OxPhos, oxidative phosphorylation; MIF,

macrophage migration inhibitory factor. (B) Schematic representation of the redox buffering activity of pHPP. COX, cytochrome

c oxidase; pHPP+, oxidized pHPP.

https://doi.org/10.1371/journal.pone.0188683.g008
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mg/Kg was established and the drug cyclically injected at a blood concentration higher than 10

mM in high-risk patients undergoing cardiac surgery with cardiopulmonary bypass [13].

Based on the presented results our study clearly shows for pHPP a potent anti-inflamma-

tory activity combined with the ability to modulate the metabolic phenotype in stimulated

macrophage. Mechanistically we propose that the effects of pHPP can be mainly attributable

to its scavenging activity of reactive species. The pyruvoyl mojety present in pHPP can indeed

react with peroxides leading to decarboxylation according to the reaction:

R � CH2 � CO � COOHþH2O2 ! R � CH2 � COOHþ CO2 þH2O

where R is the phenol radical. However, the following further possibility can be offered.

Macrophages constitutively express the inflammatory cytokine macrophage migration

inhibitory factor (MIF), which plays an important regulatory role in innate immunity through

the suppression of anti-inflammatory effects of glucocorticoids [66]. Intriguingly, in addition

to its immunomodulatory function, MIF is endowed with an enzymatic activity catalyzing tau-

tomerization of pHPP. The biological function of such a catalytic activity of MIF is cryptic

since the Km for pHPP is in the millimolar range (i.e. 2.4 mM [67]) whereas the plasma con-

centration of pHPP is in the sub-micromolar range (i.e. 0.38 μM [68]). Irrespective of the func-

tion, if any, the tautomerization activity of MIF might have fortuitously provided additional

antioxidant properties to the administered pHPP under the experimental conditions of this

study. Indeed, the enol tautomer of pHPP is expected to extend the delocalization of the π elec-

trons of the aromatic phenol ring conferring to the enol tautomer the ability to scavenge one-

electron unpaired species such as O2•-, OH•, NO•. Accordingly, two compounds, 2-acetami-

doacrylate and its methyl ester, which mimics the enol structure of pyruvate (or EP), have

been demonstrated to have anti-inflammatory properties both in vitro and in vivo. In particu-

lar, methyl 2-acetamidoacrylate is at least 100-fold more efficient than EP to suppress LPS-

induced NO production by RAW 264.7 cells [69].

In addition of the afore-mentioned properties this study suggests an additional modality for

the antioxidant activity of pHPP (Fig 7A–7C). This may consist in a one-electron transfer to

cytochrome c, which then delivers it to the cytochrome c oxidase reducing O2 to water. The

oxidized form of pHPP can then be re-reduced by free radical reactive species thereby func-

tioning as a functional redox buffer (Fig 8B). Indeed, the cytochrome c oxidase activity is

linked to generation of a protonmotive force that enhances the coupling efficiency between

oxygen consumption and ATP synthesis.

Accordingly with our hypothesis a comparative study of the effects of EP and α-keto car-

boxylic derivatives including pHPP in a rat model of multivisceral ischemia and reperfusion

showed a superior antioxidant activity of pHPP in reducing the liver content of malondialde-

hyde an oxidative stress marker [65].

In addition to the antioxidant properties of pHPP it has to be considered its bioenergizing

function. pHPP is an intermediate of the catabolic pathway of phenylalanine/tyrosine leading

to acetoacetate and fumarate as end products in the cytosol. In our previous study we showed

that pHPP markedly induced oxygen consumption in isolated mitochondria only in the pres-

ence of the cytoplasmic fraction [14]. Both acetoacetate and fumarate, by the monocarboxylate

and dicarboxylate carriers respectively [70,71], can enter into the mitochondria and fuel the

Krebs’ cycle. This would bypass in the LPS-stimulated macrophage the impeded oxidative

entry of pyruvate in the terminal catabolism proved to be caused by the HIF-1-mediated

expression of the pyruvate dehydrogenase kinase, an inhibitor of the pyruvate dehydrogenase

activity [72].
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In conclusion all together the presented results point to the in vitro observed superior anti-

inflammatory action of pHPP as a combination of effects. These comprise on one hand a

broad antioxidant activity likely enhanced by the MIF-mediated keto-enol tautomerization of

the pyruvoyl mojety of the molecule, and on the other hand the capacity to deliver catabolic

end-metabolites that fueling the mitochondrial Krebs’ cycle and the OxPhos machinery coun-

teracts the glycolytic metabolic rewiring of activated immune cells.
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