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Comprehensive analyses of RNA-seq and genome-wide data
point to enrichment of neuronal cell type subsets in
neuropsychiatric disorders
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Neurological and psychiatric disorders, including substance use disorders, share a range of symptoms, which could be the result of
shared genetic background. Many genetic loci have been identified for these disorders using genome-wide association studies, but
conclusive evidence about cell types wherein these loci are active is lacking. We aimed to uncover implicated brain cell types in
neuropsychiatric traits and to assess consistency in results across RNA datasets and methods. We therefore comprehensively
employed cell type enrichment methods by integrating single-cell transcriptomic data from mouse brain regions with an
unprecedented dataset of 42 human genome-wide association study results of neuropsychiatric, substance use and behavioral/
quantitative brain-related traits (n= 12,544,007 individuals). Single-cell transcriptomic datasets from the Karolinska Institute and
10x Genomics were used. Cell type enrichment was determined using Linkage Disequilibrium Score Regression, Multi-marker
Analysis of GenoMic Annotation, and Data-driven Expression Prioritized Integration for Complex Traits. We found the largest degree
of consistency across methods for implication of pyramidal cells in schizophrenia and cognitive performance. For other phenotypes,
such as bipolar disorder, two methods implicated the same cell types, i.e., medium spiny neurons and pyramidal cells. For autism
spectrum disorders and anorexia nervosa, no consistency in implicated cell types was observed across methods. We found no
evidence for astrocytes being consistently implicated in neuropsychiatric traits. In conclusion, we provide comprehensive evidence
for a subset of neuronal cell types being consistently implicated in several, but not all psychiatric disorders, while non-neuronal cell
types seem less implicated.
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INTRODUCTION
It is well documented that several neuropsychiatric disorders,
including substance use disorders (SUDs), share symptoms, which
could be the result of shared genetic underpinnings [1, 2]. Much of
the heritability (h2) of genetically complex or polygenic brain
disorders—e.g., schizophrenia (SCZ), Parkinson’s disease, and
alcohol use disorder—is due to common genetic variation [3]. In
addition, genome-wide association studies (GWASs) have dee-
pened the understanding of such disorders, unraveling thousands
of associated loci [4, 5]. However, elucidating disease mechanisms
has remained challenging. One reason is missing heritability,
meaning the gap between twin-based and single-nucleotide
polymorphism (SNP)-based h2 estimates, which may result from
limited statistical power, phenotypic heterogeneity, clinical mis-
classification, GWASs not probing associations with rare variants,
epigenetics, genomic interactions, and structural genomic altera-
tions [6]. Due to missing heritability, underlying causal genetic
contributors might remain undetected. This impedes the transla-
tion of GWAS associations into their functional effects. Another

reason explaining why elucidating disease mechanisms in
neuropsychiatric disorders has remained challenging is that over
90% of identified variants are located within non-coding regions
of the genome, indicating that regulatory elements—e.g.,
promoters, enhancers, and insulators—may explain part of the
underlying genetic mechanisms in some polygenic disorders [4, 7].
Due to extensive linkage disequilibrium (LD), it is also challenging
to identify a causal variant within a given associated locus [4].
To overcome gaps between associated and causal genetic loci,

their functional effects, and ultimately the biological pathways,
extensive research has been performed to identify brain tissues
having a role in neuropsychiatric disease. Functional genomic
studies using macroscopic brain samples point to enrichment in
phylogenetically conserved areas of the brain in psychiatric
disorders and brain-related behavioral phenotypes, whereas
typically fewer brain regions are found to be enriched in
neurological disorders [3]. However, identification of specific cell
types within brain tissues is considerably less well studied. Specific
cell types that are associated with SCZ and anorexia nervosa (AN)
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have previously been identified by integrating GWAS findings with
mouse single-cell RNA (scRNA) brain data: while medium spiny
neurons (MSNs), cortical interneurons, hippocampal CA1 pyrami-
dal cells (pyramidal CA1), and pyramidal cells from the somato-
sensory cortex (pyramidal SS) seem implicated in SCZ [8],
suggestive findings were reported for the enrichment of MSNs
and pyramidal cells (CA1) in AN [9]. Recently, more extensive cell
type enrichment analysis was performed for 28 phenotypes using
mouse gene expression from the entire central nervous system
(CNS) [10]. In psychiatric disorders, enrichment was found for
MSNs, cortical interneurons, striatal interneurons, neuroblasts,
pyramidal cells (CA1 and SS) [10]. In neurological disorders, fewer
cell types were identified and these were dissimilar across
disorders [10]. These cell type enrichment analyses have mainly
been performed using Linkage Disequilibrium Score Regression
(LDSC) and/or Multi-marker Analysis of GenoMic Annotation
(MAGMA). However, in this landmark and other studies, MAGMA
versions <1.08 have been employed [8–10], of which it was
recently reported that its SNP-level P value aggregation into gene-
level P values might result in type-I errors [11]. In addition, cell
type enrichment in SUDs and several other disorders, such as
anxiety disorders, has to the best of our knowledge not been
studied.
Here, we systemically investigated cell type enrichment in an

extensive set of brain-related phenotypes by integrating mouse
scRNA brain data from the Karolinska Institute (KI) and 10x
Genomics with summary statistics from 42 phenotypes related to
neuropsychiatry, SUDs, and brain-related behavior. Our goals were
to perform cell type enrichment for a more comprehensive set of
brain-related traits than previously studied and to assess consis-
tency in results across a wider array of methods. We went beyond
previous studies by systematically performing cell type enrichment
analyses using the most recent releases of different methods that
rely on different assumptions and algorithms, i.e., LDSC, MAGMA
v1.08, Data-driven Expression Prioritized Integration for Complex
Traits (DEPICT), and Functional Mapping and Annotation (FUMA).
We found evidence for a subset of neuronal cell types being
consistently implicated in several, but not all psychiatric disorders,
while non-neuronal cell types seem less implicated.

METHODS
GWAS summary statistics
Our goals were to identify salient cell types that are implicated in more
brain-related traits than previously studied and to assess consistency in
results across methods. Brain-related GWAS summary statistics from
predominantly European samples were obtained from publicly available
sources. A total of 41 summary statistics from brain-related phenotypes
(Table 1, Table S1) were obtained, among which 11 psychiatric disorders
(486,142 cases and 1,002,695 controls), 11 neurological disorders (186,171
cases and 2,278,970 controls), and 8 substance use disorders (case/control:
11,569 cases and 34,999; cohorts with continuous substance use data: n=
3,683,037). All psychiatric and neurological disorders for which summary
statistics were available had also been included in the Brainstorm project
[3]. Substance use disorders were added because of the high comorbidity
[12, 13] and genetic covariance [14] with psychiatric traits. Eleven well-
powered (n > 250,000) brain-related behavioral/quantitative phenotypes
(n= 4,166,895) were additionally selected. Because of the association
between BMI and brain structure, we considered BMI a brain-related trait
[15]. Finally, to discriminate cell types that were specific to the brain, height
(n= 693,529) was included as a non-brain-related anthropomorphic trait.

Single-cell RNA sequencing datasets
All cell type enrichment analyses were conducted using the KI dataset
[8, 16–18] and the 10x Genomics dataset [19]. These datasets were
selected because they cover brain regions that are generally accepted to
be involved in the pathogenesis of brain-related disorders [20]. Addition-
ally, their high coverage may enable the identification of different cell
types. Detailed information about the 10x Genomics dataset, quality

control, necessity of a randomized representative subset of cells, and cell
type identification are reported in the Supplementary Methods. The quality
control of the KI dataset is described elsewhere [16].

Overview of cell type enrichment analyses
To identify cell types underlying various phenotypes, we employed four
methods (Fig. 1). LDSC (version 1.0.1) [21, 22] was first used to estimate
SNP-h2 and bivariate genetic correlations across all traits. We then
constructed the specificity metric Sg,c from the 10x Genomics dataset,
denoting specificity of a gene g for cell type c, which was used as input for
LDSC, MAGMA and DEPICT (Supplementary Methods). The specificity
metric of the KI dataset was previously constructed [8]. Next, LDSC (version
1.0.1) [21, 23], MAGMA (version 1.08) [8, 24] and DEPICT (version 1, release
194) [25] were employed to test cell type enrichment using the 10x
Genomics and KI datasets. We utilized the diversity in statistical
approaches of these methods to strengthen the confidence in consistently
enriched cell types across methods. In brief, with LDSC we investigated the
top 10% cell type-specific genes for enrichment of SNP-h2; with MAGMA
we tested whether trait associations linearly increased with cell type-
specificity or whether the top 10% cell type-specific genes were associated
with gene-level association to traits; with DEPICT we evaluated the
enrichment of cell type for genes from trait-associated loci.
LDSC computes an LD score by summarizing the correlations of a given

SNP with all neighboring SNPs within 100 kb flanks. Then, the GWAS test
statistic χ2 is regressed against the LD score, of which the slope is rescaled
into an estimate of SNP-h2, explained by all SNPs included in the LD score.
Based on Sg,c, we binned genes in specificity deciles and used LDSC to test
for enrichment of SNP-h2 in the top 10% most associated genes. MAGMA
aggregates χ2 association statistics within a 10 kb upstream and 1.5 kb
downstream window into a gene-level P value (Supplementary Methods).
To compute gene-level P values, Brown’s method [26] was updated into
Imhof’s approach [27] in version 1.08 [28]. DEPICT maps genes to loci by
first selecting all significant SNPs and preserving lead SNPs as the most
significant SNP out of possible SNP-pairs in LD (r2 > 0.1) and/or within < 1
Mb distance of each other (Supplementary Methods). Then, boundaries of
the most distal SNP on either side around lead SNPs (r2 > 0.5) were used as
criteria to list genes from SNPs, from which potential enrichment of these
genes to specific cell types could later be assessed. By comparing cell
type enrichment results of LDSC, DEPICT, and MAGMA, we evaluated the
relative stringency of each method. This was accomplished by comparing
the P values, denoting the strength of association of a given cell type with
a given phenotype, of any two methods with one another.
Finally, additional human and mouse scRNA datasets (Table S2) were

used to conduct additional cell type enrichment analysis, using FUMA
(version 1.3.6a) [29] (Supplementary Methods). FUMA builds on MAGMA
(version 1.08). However, FUMA includes averaged expression per gene
across cell type as covariate in their model instead of Sg,c and was
therefore not included in our main analyses but as confirmational cell type
enrichment analysis.
To allow for comparison between LDSC, MAGMA, and DEPICT, we

compared the P values that refer to the strength of association of a given
cell type with a given phenotype. KI level 1, KI level 2, and 10x Genomics
cell types were identified as significant after passing a Bonferroni corrected
significance level of P < 0.05/(24*42), P < 0.05/(149*42), and P < 0.05/
(16*42), respectively. We then counted the number of methods pointing
to significant enrichment of specific cell types and report that number for
both KI levels and 10x Genomics as our main outcome measure.
Phenotypes implicating similar cell types were then identified by
hierarchical clustering. We discuss these methods more elaborately below
and in the Supplementary Methods.

Cell type enrichment using LDSC
Human orthologs were obtained using the One2One R package that is
incorporated in the MAGMA_Celltyping R package [8]. SNPs were annotated to
the human genome (hg19, version 33) of the GENCODE project [30]. Binary
annotations files were created for each cell type, containing 11 sub-
annotations. The first sub-annotation contained SNPs that mapped to genes
without a human ortholog (1= SNP belongs to a sub-annotation). The other
ten sub-annotations represented the SNPs in specificity deciles for a particular
cell type in increasing order. These specificity deciles were obtained by
restructuring the specificity metric Sg,c, described in the Methods section
“Overview of cell type enrichment analyses” using the “prepare.quantile.
groups” function in the MAGMA_Celltyping package [8]. LD scores were then
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Table 1. Phenotype descriptions.

Phenotype Cases Controls Total number of
participants

Source Ancestry

Psychiatric disorders Attention-deficit/hyperactivity
disorder (ADHD)

19,099 34,194 53,293 PGC European

Anorexia nervosa (AN) 16,992 55,525 72,517 PGC European

Anxiety disorders 7016 14,745 21,761 ANGST European

Autism spectrum disorder (ASD) 18,382 27,969 46,351 PGC European

Bipolar disorder (BIP) 20,352 31,358 51,710 PGC European

Cross disorders 162,151a 276,846a 438,997a PGC European

Major depressive disorder (MDD) 170,756 329,443 500,199 PGC European

Obsessive-compulsive
disorder (OCD)

2688 7037 9725 PGC European

Post-traumatic stress disorder 23,212 151,447 174,659 PGC European

Schizophrenia (SCZ) 40,675 64,643 105,318 PGC European

Tourette syndrome 4819 9488 14,307 PGC European

Substance use
disorders

Alcohol use N/A N/A 121,604 PGC European

Alcohol dependence 11,569 34,999 46,568 PGC European

Drinks per week N/A N/A 941,280 GSCAN European

Cannabis use N/A N/A 162,082 PGC European

Age smoking initiation N/A N/A 341,427 GSCAN European

Ever smoked regularly N/A N/A 1,232,091 GSCAN European

Cigarettes per day N/A N/A 337,334 GSCAN European

Smoking cessation N/A N/A 547,219 GSCAN European

Neurological
disorders

Amyotrophic lateral sclerosis 20,806 59,804 80,610 AVS European

Alzheimer’s disease 71,880 383,378 455,258 PGC European

Epilepsy 15,212 29,677 44,889 ILAE Multi-
ancestry

Generalized epilepsy 3769b 29,677b 33,446b ILAE Multi-
ancestry

Focal epilepsy 9671b 29,677b 39,348b ILAE Multi-
ancestry

Stroke 40,585 406,111 446,696 MEGASTROKE European

Ischemic stroke 34,217b 406,111b 440,328b MEGASTROKE European

Large artery stroke 4373b 406,111b 410,484b MEGASTROKE European

Cardioembolic stroke 7193b 406,111b 413,304b MEGASTROKE European

Small vessel stroke 5386b 406,111b 411,497b MEGASTROKE European

Parkinson’s disease 37,688 1,400,000 1,437,688 IPDGC-PDWBS-
SGPD

European

Behavioral/
quantitative

Body mass index (BMI) N/A N/A 681,275 GIANT European

Chronotype N/A N/A 449,734 SDKP European

Excessive daytime sleepiness N/A N/A 452,071 SDKP European

Sleep duration N/A N/A 446,118 SDKP European

Short sleep duration 106,192b 305,742b 411,934b SDKP European

Long sleep duration 34,184b 305,742b 339,926b SDKP European

Insomnia N/A N/A 453,379 SDKP European

Intelligence N/A N/A 269,867 CTGLAB European

Educational attainment N/A N/A 766,345 SSGAC European

Cognitive performance N/A N/A 257,828 SSGAC European

Neuroticism N/A N/A 390,278 CTGLAB European

Non-brain-related
control

Height N/A N/A 693,529 GIANT European

Total 683,882 3,316,664 12,544,007

Detailed descriptions, including references, are listed in Table S1.
PGC Psychiatric Genomics Consortium; ANGST Anxiety Neuro Genetics STudy, GSCAN GWAS and Sequencing Consortium of Alcohol and Nicotine use, AVS ALS
Variant Server, ILAE International League Against Epilepsy, IPDGC International Parkinson’s Disease Genomics Consortium, SGPD Systems genomics of
Parkinson’s disease consortium, PDWBS Parkinson’s disease web based study, SDKP Sleep Disorder Knowledge Portal, CTGLAB Complex Traits Genetics Lab,
SSGAC Social Science Genetic Association Consortium.
aMay include sample overlap with AN, ADHD, ASD, BIP, MDD, OCD, SCZ, and Tourette syndrome.
bSample count of a phenotype that is part of larger group.
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calculated for each annotation file using a 1 centimorgan (cM) window, 1000
Genomes Project Phase 3 files [31], and restricted to 1,217,311 Hapmap3 SNPs.
For each summary statistics dataset, we generated munged summary statistics
by applying previously described quality control steps [22] (Supplementary
Methods), implemented in the LDSC “munge_sumstats.py” script. Finally, SNP-
h2 was partitioned, using the munged summary statistics, 1000 Genomes
Project Phase 3 minor allele frequency files, and both the 1000 Genomes
Project phase 3 baseline model and all sub-annotations as independent
variables. For the regression weights, we used the LD weights calculated for
HapMap3 SNPs, excluding the major histocompatibility complex (MHC) region
(chr6: 25–34Mb) using the “overlap-annot” to account for SNPs grouped into
multiple deciles. In addition to the settings described above, we performed
sensitivity analyses, including removing the HapMap3 SNPs restriction, using
only SNPs that pass a genome-wide significance threshold, changing the
software version, and changing the reference genome version to determine
differences in cell type enrichment results for SCZ using the KI dataset. To allow
comparison of all enrichment methods, cell type enrichment figures show the
P value associated with the most specific decile for each cell type as not all
methods provide an enrichment score. Methods for MAGMA, DEPICT, and cell
type enrichment analyses using additional mouse and human scRNA datasets
are outlined in the Supplementary Methods.

RESULTS
Cell type-specific gene expression in the 10x Genomics
dataset
In the quality control of a randomized representative subset (n=
108,844) of the 10x Genomics dataset, 8408 cells and 6419 non-
expressed genes were removed from further analyses (Figs. S1–S3).
Altogether, the subset consisted of a matrix with 21,579 genes and
100,436 cells with 16 cell clusters (Tables S3, S4). All cell clusters
were subsequently mapped to brain cell types by specifically
expressed marker genes (Figure S4).

LDSC, MAGMA, and DEPICT sensitivity analyses and quality
control
For cell type enrichment analyses using LDSC, we initially adopted
the same parameters that were previously described [8].
Additionally, to optimize the cell type enrichment pipeline we
tested various settings (Fig. S5, Table S5). The parameters
described in the Methods section “Cell type enrichment using
LDSC” provided cell type enrichment results that were most
consistent with DEPICT and MAGMA. For MAGMA, we found that
restricting to HapMap3 SNPs and excluding the MHC region
increased statistical power to identify associated cell types, whilst
not inflating cell types that were not associated (Fig. S6, Table S6).
In addition to MAGMA version 1.08, we also performed cell type
enrichment analyses using MAGMA version 1.07b (Table S7). We
found that, although cell type associations follow similar patterns
using both versions, the updated SNP-wise mean gene analysis
model modestly exerts effects on cell type enrichment results,
resulting in differently associated cell types (Fig. S7). However, no
consistent unidirectional differences in cell type enrichment
results were observed. Finally, for DEPICT, we found that not
restricting to HapMap3 SNPs increased statistical power to identify
associated cell types, without an upwards bias for non-associated
cell types (Fig. S8, Table S8).

Cell type enrichment analyses using the 10x Genomics dataset
Consistent with SNP-h2 estimate patterns (Table S9, Figs. S9, S10,
Supplementary Methods, Supplementary Results) and genetic
correlations (Table S10, Figs. S11, S12, Supplementary Methods,
Supplementary Results), we found that cell type association
patterns of neurological disorders were distinct from psychiatric,
substance use and behavioral/quantitative association patterns by

Fig. 1 Overview of the approach of dataset integration as inputs for enrichment methods, in order to detect implicated brain cell types
for various phenotypes. Two mouse brain transcriptomic datasets (10x Genomics, KI) have the data format Sg,c of cell type specificity for
genes, which was calculated by dividing expression of gene g in cell type c by expression of g in all cell types of a given dataset. Custom cell
type identification was performed for 10x Genomics (16 detected cell types), while existing annotation was re-used for KI (first level of 24 cell
types and second level of 149 cells (sub-)types). The datasets were integrated with genome-wide association study (GWAS) data, and these
were the input for cell type enrichment methods DEPICT, MAGMA and LDSC. External human and mouse brain transcriptomics data were
used in cell type enrichment method FUMA, so that enriched cell types from any of the other three methods could be compared to FUMA-
enriched cell types. Finally, LDSC was also used to estimate SNP-based heritability for each GWAS phenotype and to calculate genetic
correlations across all phenotypes.

M. Olislagers et al.

950

Molecular Psychiatry (2022) 27:947 – 955



hierarchical clustering (Figs. S13, S14). For brain-related pheno-
types, there were no cell types in the 10x Genomics dataset to
which implicated genomic loci consistently mapped using all
three methods (Figs. S13–S15, Table S11). By comparing the
P values of each cell type computed by LDSC, MAGMA, and
DEPICT against one another, we found that MAGMA linear mode
was considerably more lenient (Fig. S16) and susceptible to bias
due to GWAS sample size (Fig. S17). Therefore, MAGMA linear
mode was excluded from our main analyses.
Two methods provided evidence for certain neurons to be

implicated in cross-disorders (eight psychiatric disorders jointly
studied) [5]. A deeper cellular determination was not possible due
to low sequencing depth. The same neuronal cells were also
associated with educational attainment along with certain
interneurons according to two methods. Additionally, these
neurons were associated with intelligence. We also found
evidence by two methods that implicated genomic loci of
cognitive performance specifically mapped to certain neuroblasts.
Suggestive findings are reported in the Supplementary Results.

Cell type enrichment analyses using the KI dataset
After integrating GWAS findings with the 10x Genomics dataset,
we leveraged cell type enrichment analyses by using the KI
dataset, which is distinct from the 10x Genomics dataset because
of its better coverage, higher resolution, and higher specificity to
identify cell type-specific gene expression markers. Therefore,
considerably more cell types were identified on a deeper cellular
level with the KI dataset. The largest degree of consistency across
methods in brain-related traits was found for SCZ and cognitive
performance (Figs. 2 and 3, Figs. S18, S19, Table S12). Genetic loci
that are associated with SCZ consistently mapped to excitatory
pyramidal cells (CA1 and SS), while those associated with
cognitive performance only mapped to pyramidal cells (SS). For
SCZ, we found evidence by two methods that MSNs were the
main implicated inhibitory neurons. MSNs and both types of
pyramidal cells were found to be associated with cross-disorders
by two methods, while only pyramidal cells were associated with
educational attainment, and MSNs and pyramidal cells (CA1) were
implicated in bipolar disorder. Suggestive findings are reported in
the Supplementary Results.
To identify more differentiated cell types, the analysis was

expanded by using the KI level 2 dataset (Figs. S20–S22, Table S13),
which includes 149 cell types that were subtypes of the cell types
identified in the level 1 dataset. Using both the KI level 1 and level
2 datasets, we again found that MAGMA linear mode, compared
to strength of association estimates computed by LDSC, MAGMA
top 10% mode and DEPICT, provided disproportionally large
estimates (Figs. S23, S24) and was prone to inflated results due to
GWAS sample size (Fig. S25).

Cell type enrichment analyses using additional scRNA
datasets
Finally, we performed additional analyses with FUMA using
additional mouse (n= 11) and human (n= 7) gene expression
datasets to compare our findings and to assess consistency
between species. We were able to identify at least one implicated
cell type in 22 phenotypes (Fig. S26, Table S14). Using human
gene expression data, 24 cell types were enriched in at least one
phenotype, while using mouse scRNA data 70 cell types were
revealed. Consistent with findings from 10x Genomics and KI
datasets, pyramidal cells from various mouse brain regions,
including pyramidal cells (CA1 and SS), were implicated in SCZ
and cognitive performance. Pyramidal cells were also enriched in
numerous psychiatric disorders, SUDs, and behavioral/quantitative
phenotypes. Along with pyramidal cells, inhibitory GABAergic and
MSNs were consistently enriched in psychiatric disorders, SUDs,
and behavioral/quantitative phenotypes. Using human datasets,
enrichment of pyramidal cells (CA1) was confirmed in SCZ,

cognitive performance, intelligence, cross-disorders, and overall
sleep duration. Additionally, pyramidal cells (CA1) were enriched
in cigarettes smoked per day. However, the strongest consistent
evidence was found for enrichment of GABAergic neurons from
the prefrontal cortex and midbrain in various psychiatric disorders,
SUDs, and behavioral/quantitative phenotypes. Consistent with
findings using 10x Genomics and KI data, fewer enriched cell types
were identified in neurological disorders. Human microglia were
enriched in Alzheimer’s disease and human inhibitory GABAergic
neurons from the prefrontal cortex and midbrain in generalized
epilepsy. Generalized epilepsy was the only neurological pheno-
type in which mouse cell types were identified, namely certain
pyramidal neurons and certain inhibitory neurons. We thus largely
confirmed the main cell type enrichment findings from the 10x
Genomics and KI dataset in mouse datasets and in human
datasets using FUMA.

DISCUSSION
Here, we provide a comprehensive overview of specific brain cell
types implicated in a range of brain-related phenotypes using
both mouse and human brain scRNA data. We show that results
from brain-related GWAS data consistently map to excitatory
pyramidal neurons (CA1 and SS) and inhibitory MSNs and less so
to glial and embryonic cells. The largest degree of consistency
across methods and tissue origins (rodent and human) was found
for implication of pyramidal cells in schizophrenia and cognitive
performance. In contrast, GWAS data from neurological disorders
mapped to fewer cell types and also to cell types that were
distinct from psychiatric and substance use disorders.
Our SNP-h2 and genetic correlation findings confirm that

neurological disorders are genetically distinct from one another
and from psychiatric disorders and SUDs, as well as from
behavioral/quantitative phenotypes, which is in line with previous
evidence [3, 10]. Consistent with these findings, we found that
GWAS findings from psychiatric disorders, SUDs, and brain-related
behavioral/quantitative phenotypes, but not neurological disor-
ders, consistently map to excitatory hippocampal pyramidal
neurons (CA1), excitatory pyramidal neurons (SS) and inhibitory
MSNs, and much less to glial and embryonic cells. This concurs
with previous lines of evidence pointing to neurological disorders
being genetically and functionally distinct from psychiatric
disorders, SUDs, and brain-related behavioral/quantitative pheno-
types [3, 10]. Alzheimer’s disease was the only malady targeted
here that showed evidence of exclusively human glial cells being
implicated, underscoring the importance of key transcriptomic
differences between human and mouse microglial signatures [33].
We confirmed our main findings with multiple external scRNA
datasets using FUMA. This provides further evidence that genetic
underpinnings of neurological disorders are distinct from those of
psychiatric, SUDs, and behavioral/quantitative phenotypes [8, 10].
Our main findings were based on the identification of cell types by
LDSC, DEPICT, and MAGMA top 10% mode. MAGMA linear mode
was omitted because its strength of association estimates were
consistently deviating substantially from LDSC, DEPICT, and
MAGMA top 10% mode. Therefore, it was deemed too lenient
and thus prone to type I error inflation. This concurs with previous
studies reporting that binned MAGMA analyses in linear mode
inflated results since the binned scores can have strong correla-
tions with the average gene expression across cell types [29]. Also
in agreement with previous lines of evidence, we confirm that the
statistical foundation of the SNP-wise mean gene analysis model
MAGMA <1.07 may result in biased associations of cell types [11].
We envision three broad implications for psychiatry as a

medical specialty. First, our results consistently point to specific
neuronal cell types being implicated in several psychiatric
disorders. Therapeutic targeting of those cells could one day
result in innovative treatments. Second, gene sets that are
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specifically enriched in those cells (for instance hippocampal
pyramidal cells) could be used for risk scoring to stratify patients
and tailor therapy. Third, for the disorders with less consistent
results, clinicians and researchers should aim to collect more

samples and thus ensure future studies may shed light on their
implicated cell types.
The discrepancy between the KI- and 10x Genomics-derived cell

types could be a consequence of a lower sequencing depth in the

Fig. 2 Cell type enrichment estimated by DEPICT, LDSC, and MAGMA top 10% mode in selected brain-related phenotypes. Cell type
enrichment results are generated using KI data. Bars represent the mean strength of association (-log10(P)) of LDSC, DEPICT, and MAGMA top
10% mode. The red line indicates the Bonferroni threshold P < 0.05/(24*42). The red line is solid if any of the methods identified any cell type
as significantly associated, and if none of the methods identified any of the cell types as significantly associated, the red line is dashed. A
complete overview of cell type enrichment results using KI data, including MAGMA linear mode is available in the supplementary information
(Fig. S18).

M. Olislagers et al.

952

Molecular Psychiatry (2022) 27:947 – 955



10x Genomics dataset (~18,500 mapped reads per cell) than in the
KI dataset (~1.2 million mapped reads per cell). Notably, the
minimum sequencing depth is generally considered to be
between 25,000 and 50,000 mapped reads per cell [34]. This
suggests that the relatively low sequencing depth of the 10x
Genomics dataset led to overlapping cell clusters. Additionally,
although k-means clustering is commonly used for single-cell
data, selecting the right value of k is challenging [34]. PCA-based
clustering methods would be particularly well-suited for low
sequencing depth [35], and for instance, could be expanded to
initially select significant principal components with PCA and use
these for subsequent clustering [36].
Although we provide new insight with the largest and most

comprehensive study of cell type enrichment in brain-related
disorders, our results should be interpreted in light of inevitable
limitations. First, using MAGMA it is possible to test whether the
genes specific to a phenotype are enriched in genetic associations
of that phenotype while controlling for genetic associations of
another phenotype [10]. However, as our main goal was to identify
enriched cell types, such conditional analyses are beyond the
scope of this study. Second, we found that microglia associated
with age-induced neuroinflammation were exclusively found to
be enriched in Alzheimer’s disease using human scRNA datasets,
whereas no enriched glial cells were identified using mouse scRNA
datasets. Therefore, mouse gene expression data from not only a
spatial, but also a temporal resolution is warranted for future
research to identify cell types implicated in disease during
development. Additionally, improved coverage of brain-related
regions, such as the entire CNS [10], is warranted for future
research. Third, a potential limitation of the FUMA model is that
averaging gene expression disregards that low expression levels

of certain genes can still be relevant to disease. This caveat
illustrates the challenges of accounting for factors potentially
inflating statistical results as well as capturing etiological
mechanisms by examining cell type-specific gene expression
[10]. Finally, to identify enriched cell types, we integrated human
genomic findings with mouse scRNA brain expression data.
Although considerable differences exist between mice and
humans, we believe our choice is justified because mouse scRNA
datasets cover transcripts that are missed in human single-nuclei
sequencing [8]; cover more brain regions that are believed to be
important in neuropsychiatric disorders than in human, such as
the striatum for which no human scRNA expression data is
available; and reveal key findings consistent with human data
[8, 9]. In addition, gene expression data from rodents are often of
higher quality, as fresh tissue can be more readily obtained and
gene expression data cluster by cell type in different species,
rather than by different cell types in the same species [8].
Although we believe that mouse scRNA data are suitable to apply
to human GWAS data, there are limitations, e.g., less conserved
brain regions might contain cell types that express genes
differently; cell types could be specific to certain species (on the
other hand, it has been shown that gene expression in the brain,
including key gene expression patterns, is well conserved across
species [32]); and cell types could have different functions or could
be connected to and active in different brain circuits.
The identification of a specific subset of brain cell types being

implicated in various brain disorders only marks the beginning of
elucidating causal biological pathways. One question future
research should address is what the effects of genetic variants in
the non-coding genome are. One way to address this question is
using an activity-by-contact model [37]. This model allows for the

Fig. 3 Overview of enriched cell types of 42 common-variant psychiatric, neurologic, and behavioral/quantitative GWAS results in the KI
dataset. ADHD; attention deficit hyperactivity disorder, ALS; amyotrophic lateral sclerosis, BMI; body mass index. Analyses from LDSC, DEPICT,
and MAGMA top 10% mode, referred to as “methods” in the graph, show enrichment in MSNs and pyramidal cells (CA1) and pyramidal cells
(SS) across brain-related phenotypes. The largest degree of consistency was found in SCZ and cognitive performance. Phenotypes and cell
types are grouped by hierarchal clustering. Shades of pink are proportional to the mean strength of association (−log10(P)) of all methods. The
color of the frames refers to the number of methods that identified a given cell type as significant in a given phenotype, after Bonferroni
correction (P < 0.05/(24*42)). Gray frames: one method (intelligence, excessive daytime sleepiness, ADHD, drinks per week, ever smoked,
chronotype, overall sleep duration, short sleep duration, MDD). Black frames: two methods (cross-disorders, educational attainment, BIP). Red
frames: all three methods (human height, cognitive performance, SCZ).
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identification of cell type-specific enhancers and their target genes
by leveraging single-cell chromatin accessibility and enhancer
activity data. Additional insight could be obtained by performing
cell prioritization analyses from human post-mortem brain samples
and/or induced pluripotent stem cells from individuals with
relevant genetic backgrounds using LDSC, MAGMA, and DEPICT
to identify genes that are predicted to be functionally similar to
causal genes. Importantly, enriched cell types are not necessarily
causal, but might be part of a neural network. To confirm our
findings and to elucidate causality, selective chemo- and
optogenetic manipulation of identified enriched cell types in
rodents might provide additional insight in the role these cells play
in the neural circuit underlying brain disorders [38]. Additionally,
the recently developed computational toolkit CELL-type Expres-
sion-specific integration for Complex Traits (CELLECT) can provide
additional insight in cell type enrichment [39]. CELLECT builds
upon gene prioritization models, such as LDSC, DEPICT, and
MAGMA and subsequently performs cell type prioritization
analyses using a continuous representation of cell type expression,
rather than binary representation. Finally, statistical power is
currently a major challenge in genetic studies. Future studies might
benefit from multi-trait analysis of GWAS [40], which is a method
for analysis of multiple GWASs, thereby increasing the statistical
power of each trait analyzed to identify genetic associations.
In sum, by incorporating different tools that rely on different

assumptions and algorithms we provide robust evidence for a
subgroup of neuronal cell types consistently implicated in several
brain-related phenotypes. We thus provide a framework that
furthers the understanding of cell types involved in brain-related
phenotypes at a cellular level that can serve as a basis for future,
more hypothesis-driven research.

DATA AVAILABILITY
All scRNA datasets used in this study are publicly available. All summary statistics are
publicly available and the sources are listed in Table S1. We have made our code publicly
available at https://github.com/mitchellolislagers/cell_type_enrichment_pipeline so that
with the advent of new GWASs researchers may readily apply our pipeline to new data.
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