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Control of complex networks 
requires both structure and 
dynamics
Alexander J. Gates1,2 & Luis M. Rocha1,2,3

The study of network structure has uncovered signatures of the organization of complex systems. 
However, there is also a need to understand how to control them; for example, identifying 
strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two 
recent methodologies suggest that the controllability of complex systems can be predicted solely 
from the graph of interactions between variables, without considering their dynamics: structural 
controllability and minimum dominating sets. We demonstrate that such structure-only methods fail 
to characterize controllability when dynamics are introduced. We study Boolean network ensembles 
of network motifs as well as three models of biochemical regulation: the segment polarity network in 
Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ 
arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot 
and overshoot the number and which sets of critical variables best control the dynamics of these 
models, highlighting the importance of the actual system dynamics in determining control. Our analysis 
further shows that the logic of automata transition functions, namely how canalizing they are, plays an 
important role in the extent to which structure predicts dynamics.

Complex systems are typically understood as large nonlinear systems. Their organization and behavior can be 
modeled by representations such as graphs and collections of automata. Graphs are useful to capture the structure 
of interactions between variables: the static organization of complex systems. However, nodes representing varia-
bles in graphs lack intrinsic dynamics. The simplest way to study nonlinear dynamics is to allow network nodes to 
have discrete states and update them with automata; for instance, Boolean Networks (BNs) are canonical models 
of complex systems which exhibit a wide range of interesting behaviors1.

The study of network structure has uncovered several organizing principles of complex systems — such 
as scale-free networks and community structure — and how they constrain system behavior, without explicit 
dynamical rules for node variables2. There is, however, a need to control complex systems, in addition to charac-
terizing their organization. This is particularly true in systems biology and medicine, where increasingly accurate 
models of biochemical regulation have been produced3–6. More than understanding the organization of bio-
chemical regulation, we need to derive control strategies that allow us, for instance, to revert a mutant cell to a 
wild-type state7, or a mature cell to a pluripotent state8. While the identification of such control strategies occurs 
for a given model, not the real system, predictions from control theory can be used for model verification and 
thus also aid the separate question of the accuracy of that model in predicting the real system.

Network structure has been reported to predict properties of dynamics, such as the synchronization of con-
nected limit-cycle oscillators9, or the likelihood of robust attractors10. On the other hand, there are important 
system attributes which depend on dynamical characteristics of variables and their interactions; e.g. the criti-
cal transition between ordered and chaotic dynamics in BNs depends both on structural (mean connectivity) 
and dynamical properties of nodes (bias and canalization)11–14. Indeed, we already know that such dynamical 
properties strongly impact the stability, robustness, and controllability of existing models of gene regulation and 
biochemical signaling in a number of organisms7,15–18. Therefore, a question of central importance remains: How 
well does network structure predict the dynamics of the underlying complex system, especially from the viewpoint of 
control?
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Recently, two related methodologies were used to predict the controllability of complex networks based solely 
on network structure without consideration of the dynamical properties of variables: structural controllability 
(SC)19,20 and minimum dominating set (MDS)21,22. Both techniques reduce dynamical systems to graphs where 
edges denote an interaction between a pair of variables. Using only graph connectivity, the goal is to identify a 
minimal set of driver variables (a.k.a. driver nodes) which can fully control system dynamics23.

SC assumes that, in the absence of cycles, a variable can control at most one of its neighbors in the structural 
interaction graph19,20. The influence from an intervention on a node then propagates along a backbone of directed 
paths, where the number of necessary paths to cover the network dictates the minimum set of driver variables (see 
Supplemental Material, SM). Cycles are considered to be self-regulatory and do not require an external control 
signal. SC has become an influential method, having been used to suggest that biological systems are harder to 
control and have appreciably different control profiles than social or technological systems24,25. The methodology 
has also been used to identify key banks in interbank lending networks26, and to relate circular network motifs to 
control in transcription regulatory networks27. However, despite its successful characterization of observability  
(a dual notion to controllability) in several nonlinear dynamical systems28, SC’s application to models of biologi-
cal and social systems has been heavily critiqued due to its stringent assumptions29–31.

MDS starts from the different assumption that each node can influence all of its neighbors simultaneously, but 
this signal cannot propagate any further. Driver variables are then identified by the minimal set such that every 
variable is separated by at most one interaction21,22. It has been used to identify control variables in protein inter-
action networks32 and characterize how disease genes perturb the Human regulatory network33.

Because both MDS and SC use only the interaction graph of complex systems, unless otherwise specified, we 
use structural control to refer to both methods. Since these methods are increasingly used in a variety of scientific 
domains, it is important to study how much network structure predicts the controllability of realistic, nonlinear 
dynamical systems.

Here, we explore this problem using ensembles of BNs. These canonical models of complex systems are 
defined by a network of interconnected automata (the structure), and exhibit a wide range of dynamical behav-
iors1. They have been used to model biochemical regulation in organisms, where dynamical attractors represent 
cell types, disease and healthy states6,34. It is well known that when the set of system variables is large, enumer-
ation of the state-spaces of BNs becomes difficult, making the control problem for general deterministic BNs 
computationally intractable (NP-hard)35. However, for small systems we can fully enumerate the state-space and 
compute the actual controllability (as measured by three proposed measures of controllability) for parameterized 
ensembles of BNs.

Our analysis is not meant to introduce alternative techniques to uncover control variables in BNs, since 
methods based on system dynamics already exist7,8,36–42. The goal is to quantify the discrepancy between con-
trol as uncovered by approximate methods that use structure alone, from how actual control unfolds in BNs. 
Additionally, we characterize critical variables for the control of three models of biochemical regulation: the 
single-cell segment polarity network in Drosophila melanogaster, the eukaryotic cell cycle of budding yeast 
Saccharomyces cerevisiae, and the floral organ arrangement in the flowering plant Arabidopsis thaliana. Our 
results demonstrate that network structure is not sufficient to characterize the controllability of complex systems; 
predictions based on structural control can both under- and over-estimate the number and set of necessary driver 
variables. Therefore, previous assertions about the controllability of biochemical systems reached from analyses 
based on structural control methods do not offer a realistic portrayal of control24,25.

Quantifying Control in Boolean Networks
Background. Boolean Networks (BNs) are discrete dynamical systems X ≡  {xi} of N Boolean variables 
xi ∈  {0, 1}. Interactions between variables are represented as a directed adjacency graph, the structural network: 
G =  (X, E), where edges eji ∈  E denote that variable xj is an input to variable xi. Furthermore, Xi ≡  {xj ∈  X : eji ∈  E} 
and |Xi| =  ki denote the input set and the in-degree of variable xi, respectively. Here, variables are updated synchro-
nously according to deterministic logical functions: →f : {0, 1} {0, 1}i

ki , such that = ⊆+x f X X( )i
t

i i
t1 , where Xi

t 
denotes the state of the inputs to x_i at time ∈t .

At time t, the network is in a configuration of states Xt, which is a vector of all variable states xi
t at t. The set of 

all possible network configurations is denoted by  ≡ {0, 1}N , where = 2N . The complete dynamical behavior 
of the system for all initial conditions is captured by the state-transition graph (STG): G X T= ( , ), where each 
node is a configuration ∈αX  , and an edge ∈α βT ,  denotes that a system in configuration Xα at time t will be 
in configuration Xβ at time t +  1. Under deterministic dynamics, only a single transition edge Tα,β is allowed out 
of every configuration node Xα. Because  is finite, it contains at least one attractor, as some configuration or cycle 
of configurations must repeat in time43. An exemplar STG is shown in Fig. 1 (top, left).

Control Measures. We study the control exerted on the dynamics of a BN by a subset of driver variables 
D ⊆  X. Here, control interventions are instantaneous bit-flip perturbations to the state of the variables in D44. To 
capture all possible trajectories due to controlled interventions on D, we introduce the controlled state transition 
graph (CSTG): G X T T∪= ( , )D D . The CSTG is an extension of the STG, where a set of additional edges D  
denotes transitions from every configuration to each of its possible 2|D| −  1 perturbed counterparts. In Fig. 1, 
three examples of CSTG are shown with interventions to only one of the three variables: D =  {x1}, {x2}, {x3}.

From the point of view of control theory19,45, the dynamics of a network of variables X is controllable by inter-
ventions to a subset of driver variables D ⊂  X when every configuration is reachable from every other configura-
tion in D . A configuration Xβ is reachable from Xα if a directed path from Xα to Xβ exists45. For BN this is 
equivalent to requiring that the CSTG D  be strongly connected. To measure how much control D can exert, we 
tally the fraction of configurations that are reachable by interventions to D. Given a configuration Xα, the fraction 
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of reachable configurations αr X( , )D  is the number of other configurations Xβ lying on all directed paths from Xα, 
normalized by the total number of other configurations 2N−1. The mean fraction of reachable configurations:

∑= α
∈α

R r X1
2

( , )
(1)

D N D
X

G
X

measures the proportion of configurations which are on average reachable by controlling the set of driver varia-
bles D. When a network is fully controlled by D, = .R 1 0D , but for partially controlled networks ∈ . .R [0 0, 1 0)D .

Notice that R0 ≥ 0, because the STG  of a network (D ≡ 0) naturally contains transitions between configura-
tions. Therefore, it is useful to measure the control exerted by a set of driver variables D beyond the uncontrolled 
dynamics. To this end, we introduce the mean fraction of controlled configurations:

= −C R R (2)D D 0

It measures the fraction of configurations which are on average reachable by controlling the driver variables D 
that were not already reachable via the natural dynamics. By definition, ≤C RD D for any system and set of driver 
variables.

In practice, only certain subsets of configurations are meaningful. These subsets are typically cast as either 
attractors for the system dynamics or specific trajectories through the state space. Consider the case of BNs as 
models of biochemical regulation; attractors represent different cell types1,29,46, diseased or normal conditions47, 
and wild-type or mutant phenotypes7. In this context, the formal sense of controllability is well beyond what is 
necessary. What is most relevant for some systems is to uncover the driver variables which can steer dynamics 
from attractor to attractor; transient configurations are irrelevant.

To measure this more realistic sense of control, we introduce the controlled attractor graph (CAG): 
C A B= ( , )D D . In this graph, each node ∈κA  represents an attractor. A basin edge ∈κγb D , denotes the 
existence of at least one path from attractor Aκ to attractor Aγ. In Fig. 1 (right-side), three examples of CAGs are 
shown. The mean fraction of reachable attractors is then given by

∑= κ
∈κ

A r A1 ( , )
(3)

D D
AA

C
A

where κ = …1 . It measures the fraction of attractors which are on average reachable by controlling the driver 
variables in D. A network which can be controlled from any of its attractors to any of its attractors must have 

= .A 1 0D ; when ≡D 0, all attractors reside in disconnected basins in the original STG so = .A 0 00 . Naturally, if 
a network is fully controllable by D in the control theory sense = .R( 1 0)D , = .A 1 0D .

Control Portraits of Complex Systems
Boolean Network Ensembles. Given the structural network G =  (X, E) for a BN, many different logical 
functions fi can be assigned to each Boolean variable xi (see Background). An ensemble of BNs is constructed 
by considering all possible logical functions constrained by the fixed structure G48,49 (see SM). However, since 
non-contingent functions (e.g. tautology and contradiction) are not found in most biological models, we divide 

Figure 1. The state transition graph (STG) and the controlled variants (CSTG) for an exemplar Boolean 
Network using the Feed-Forward network structure (Fig. 2A), with the logical transition functions given in 
the upper right. Configurations are shown as green nodes, attractors are highlighted green nodes, and 
transitions are illustrated as solid black arrows. The CSTG D  for the three singleton driver variable sets 
D ≡  {x1}, {x2}, {x3} are shown with controlled transitions denoted by dashed, orange arrows. The controlled 
attractor graphs CAG D  are also depicted for the singleton driver variable sets with the attractors shown as 
purple highlighted nodes and dashed orange arrows denoting the existence of at least one perturbed transition 
between attractor basins (if any exist).
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the full ensemble into contingent and non-contingent subsets as follows: those BNs which only contain contingent 
functions and those BNs which contain at least one non-contingent transition function (NC).

Within the set of contingent functions, there are canalizing functions which depend only on a subset of their 
input variables16,50. These functions are ubiquitous in BN models of gene regulation and contribute with mech-
anisms of functional redundancy and degeneracy7,18. The redundancy of some logical functions means that the 
effective structure of interactions is reduced7,14: some edges of the structural graph G play no role in determining 
the transitions between configurations.

Since control methodologies based on network structure assume that all interactions (edges) in the structural 
network are relevant for system dynamics, we further subdivide the contingent subset into two disjoint subsets: 
BNs which contain fully canalizing functions and thus possess a reduced effective structure (RES), and those with-
out canalizing functions retaining a full effective structure (FES). Naturally, the FES subset is the scenario most 
coherent with the idea of using structure to predict controllability, since all interactions in the underlying struc-
tural graph G are dynamically relevant.

Network Motifs. We first consider the entire ensemble of BNs with simple structural graphs known as net-
work motifs51. These prototype networks have been useful for exploring the relationship between structure and 
dynamics of complex networks52,53. The motifs considered in our analysis are depicted in Fig. 2.

Consider the Feed-Forward network motif of N =  3 variables54 shown in Fig. 2A. In this case, the full ensemble 
consists of 64 distinct BNs of which 36 are NC, 8 have RES, and 20 have FES. Figure 1 depicts the logic of one FES 
network instance for this motif, along with its STG, CSTGs, and CAGs for various driver sets D. The control por-
trait of the full BN ensemble is shown in Fig. 3; control measures RD and CD are shown for all possible driver sets 
of one or two variables.

Using solely this motif ’s interaction network, structural control (both the SC and MDS methods) predicts 
that variable x1 is capable of fully controlling the network. However, our analysis reveals that this driver variable 
can fully control only 8 networks from the ensemble (4 RES and 4 FES), while the other 56 BNs (with the same 
structure) are not fully controlled (Fig. 3). It is noteworthy that even when considering the FES subset — the sce-
nario most coherent with the idea of using structure to predict the controllability of the dynamics — only 4 out of 
20 BNs are fully controlled by interventions on x1. It is clear that even in the case of such a simple motif, structure 
does not predict the control of dynamics. An extended analysis of the controlled Feed-Forward BN ensemble is 
provided in the SM.

Let us now consider the N =  3 variable loop motif with self-interactions (Fig. 2D). The full ensemble of BNs 
constrained by this motif is much larger than the previous example (every variable has ki =  2 inputs); it consists of 
4096 networks of which 1352 are NC, 1744 have RES, and 1000 have FES. Figure 4A shows the control portrait of 
this motif ’s BN ensemble for a single (D ≡  {xi}) or pair (D ≡  {xi, xj}) of driver variables. The control portrait of the 
STG illustrates the difference between the two measures of controllability. While RD varies greatly, =C 0D  for all 
BNs. This means that in some BNs, many configurations can be reached simply because the transient dynamics 
move through many network configurations. Structural control methodologies ignore this natural propensity for 
control (self-organization). Thus we use the measure CD to tally only the proportion of transitions that result from 
control interventions.

The control portraits in Fig. 4 again demonstrate that structure fails to characterize network control. In this 
case, SC predicts that any single variable is sufficient for full controllability, while MDS requires any two varia-
bles to achieve the same. Yet controllability varies greatly for both cases, depending on the particular transition 
functions of each BN in the ensemble. For 77% of the BN in the ensemble a single variable is not capable of fully 
controlling dynamics; even two-variable driver sets fail to control 44% of the BNs.

Figure 2. Directed network structure motifs used in ensemble study: (A) Feed-Forward motif, (B) Chain motif, 
(C) Loop motif, (D) Loop motif with self-interactions, (E) Fan motif, (F) Co-regulated motif, (G) Co-regulating 
motif, (H) BiParallel motif, (I) BiFan motif and (J) Dominated Loop motif.
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Similar results hold for the mean fraction of reachable attractors A( )D  shown in Fig. 4B (middle, right). For 
36% of the BNs in the ensemble, a single variable is not capable of fully controlling the system between attractors; 
even two-variable driver sets fail to control 20% of the BNs, regardless of the dynamical subset. Discounting the 
1868 networks (Fig. 4B, left) with only one attractor (hence =A 1D ) further emphasizes the variation in attractor 
control, increasing the above proportions to 65% and 36% for one and two driver variables, respectively. 
Therefore, even if we analyze controllability from the point of view of attractor control rather than the stringent 
criteria of full controllability, single- and two-variable driver sets fail to achieve controllability of all networks in 
this ensemble.

The control portraits of the other network motifs analyzed are presented in the Supplemental Material. Their 
analysis supports the same conclusion: predictions made from structure-only methods are only true for a small 
number of possible BNs. In general, they fail to predict the actual controllability of all the BN dynamics that can 
occur for a given motif structure.

Models of biochemical regulation. To better understand the interplay between structure and dynamics 
in the context of controlling complex systems, we study three BN models from systems biology which are consid-
erably larger than the network motifs of the previous section.

Drosophila melanogaster. During the early ontogenesis of the fruit fly, the specification of adult cell types is 
controlled by a hierarchy of a few genes. The Albert and Othmer segment polarity network (SPN) is a BN model55 
capable of predicting the steady-state patterns experimentally observed in wild-type and mutant embryonic 
development with significant accuracy. Here, we analyze the single-cell SPN consisting of 17 gene and protein 
variables (see SM).

Previous analysis has shown that the SPN model is controlled by the upstream value of the Sloppy Pair Protein 
(SLP) and the extra-cellular signals of the Hedgehog and Wingless proteins from neighboring cells nhh/nHH and 
nWG55. The control portrait of this model also demonstrates that these three variables (driver set 0  in Fig. 5) are 
capable of fully controlling the dynamics from any attractor to any other attractor. This is to be expected in seg-
ment polarity regulation since it is a highly orchestrated developmental process. The attractor control ability of 
individual nodes of the SPN in the inset of Fig. 5 further highlights this behavior, only the 3 chemical species 
mentioned above have a high AD when controlled alone, while all internal variables have negligible influence.

The SC analysis of the SPN’s structural graph identifies 4 subsets of |D| =  4 driver variables, indicated in Fig. 5 
by enlarged red circles and labeled 1 , 2, 3  and 4 (details in SM). 0  is a subset of these 4 variable subsets, so 
naturally they also achieve =A 1D , but they all include an additional variable which is redundant for this pur-
pose. However, none of these subsets are sufficient for fully controlling the BN as predicted by SC, these driver 
sets can control dynamics only to a very small proportion of configurations;  ≈ .≡R 0 071D 4  is the maximum 
value attained. These 4 driver sets also show considerable variation in RD, demonstrating that predictions with 
equivalent support from the point of view of the SC theory, lead to distinct amounts of real controllability. 

Figure 3. Control portrait of the BN ensemble constrained by the Feed-Forward network motif. The mean 
fraction of reachable configurations RD and the mean fraction of controllable configurations CD for the full 
ensemble of 64 BNs with structure given by the Feed-Forward network motif shown in Fig. 2A, as controlled by 
all driver variable sets of one or two variables. The full effective structure (FES) subset is highlighted by red 
circles, the reduced effective structure (RES) subset is shown in blue squares, and the non-contingent subset 
(NC) is shown by green diamonds; the area of the object corresponds to the number of networks at that point.
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Interestingly, there are 5 driver variable sets of size |D| =  4 that lead to greater controllability (with a maximum of 
≈ ≈ .R C 0 124D D ) than predicted by SC. Thus, SC fails to even correctly predict the 4-variable driver sets with 

greatest controllability.
The MDS analysis of the SPN model predicts that |D| =  7 variables are required to fully control the system 

dynamics and uncovers 8 equivalent driver variable sets of this size (see SM). Not surprisingly, all of the MDS 
driver variable sets achieve full attractor control =A( 1)D  since they contain 0; however, none can fully control 
the network dynamics achieving only  a maximum ≈ .R 0 31D . Thus, the driver sets predicted by both SC and 

Figure 4. Control portrait of the BN ensemble constrained by the Loop network motif with self-
interactions. (A) The mean fraction of reachable configurations RD and the mean fraction of controllable 
configurations CD for the full ensemble of 4096 BNs with structure given by the Loop network motif with self-
interactions shown in Fig. 1D, as controlled by the driver variable sets ≡D 0 (STG), D ≡  {xi} and D ≡  {xi, xj} 
(due to the symmetry of the network, all sets of size one are equivalent, likewise those of size two). The full 
effective structure (FES) subset is shown by red circles, the reduced effective structure (RES) subset is shown in 
blue squares, and the non-contingent (NC) subset is shown by green diamonds; the area of the object 
corresponds to the number of networks at that point. (B) (left) The number of attractors for each network in the 
full ensemble spans from 1–8, the area of each pie chart scales logarithmically with the number of attractors, 
from 1868 to 1; the colored slices delineate the subset decompositions for NC, RES, and FES. (middle and right) 
Box plots for the distribution of the mean fraction of reachable attractors AD for D ≡  {xi}, {xi, xj} for the full 
ensemble (purple), NC, RES, and FES subsets. In each case, the box shows the interquartile range, the median is 
given by the solid vertical line, the mean is given by the black circle, and the whiskers show the support of the 
distribution.
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MDS are not sufficient to control dynamics in the control theory sense, and predict more variables than necessary 
to achieve attractor control.

Saccharomyces cerevisiae. The eukaryotic cell cycle process of the budding yeast Saccharomyces cerevisiae 
reflects the cyclical gene expression activity that leads to cell division. Here, we use the 12 variable simplified 
Boolean model of the yeast Cell-Cycle Network (CCN) derived by Li et al.17. The SC analysis of the CCN interac-
tion graph identifies only one driver variable  = CellSize( 0 { }) to be sufficient for fully controlling the BN’s 
dynamics. Yet, as demonstrated in Fig. 6A, it only achieves negligible configuration control ( ≈ .R 0 0210 ) and 
very weak attractor control (A_y0 = 0.19). Similarly, MDS analysis identifies 8 driver variable sets of size |D| =  4 
( 1  to 8 ), none of which achieve full control. It is particularly interesting that the driver sets predicted by MDS 
lead to values of both AD and RD that are essentially random, demonstrating once again that predictions with 
equivalent support from the point of view of the structure-only theories lead to widely different amounts of real 
controllability. Our analysis finds 3 driver sets of |D| =  4 variables that achieve full attractor control (highlighted 
in yellow in Fig. 6A and detailed in SM). Neither SC nor MDS predict those specific driver sets, which ultimately 
provide the most useful form of control in such systems. Unlike the SPN, there are no “chief controller” variables 
in this network, as most variables achieve a similar value of AD when controlled alone (see inset in Fig. 6A).

The CCN was designed such that there is a large attractor basin towards a wild-type attractor which is robust 
to perturbation17,44. However, our analysis illuminates the tradeoff between robustness and flexibility in relation 
to system controllability. While a large basin of attraction facilitates controlling the system towards the wild-type 
behavior (high wild-type robustness), it also reduces the ability to control the system to other smaller basins of 
attraction (mutant phenotypic behavior), reflecting a tradeoff between wild-type robustness and low flexibility for 
potential evolvability (a property that was not initially designed into the model to begin with). This tradeoff is fur-
ther elaborated by the CAGs for all single-variable driver sets, shown in Fig. 6B. Some variables have a propensity 
to control the system towards the wild-type attractor (green node) or allow the system to remain there (e.g. Cln3, 
Clb5,6, Clb1,2, Mcm1/SFF, Cdc20/14), while only a few can control the system out of this attractor (e.g. CellSize, 
SBF, Cln1,2). See SM for more details. 

A third model of biochemical regulation in the floral organ arrangement in the flowering plant Arabidopsis 
thaliana was analyzed, leading to a similar failure to predict actual control (see SM for details).

Figure 5. Control of the single-cell segment polarity network (SPN) of gene and protein regulation in 
Drosophila melanogaster for all driver variable subsets of size |D| = 1, |D| = 2, |D| = 3 and |D| = 4. (inset) The 
mean fraction of reachable attractors AD for each singleton driver variable set. The driver subsets predicted by 
structural controllability (SC) to fully control the network are highlighted in red and labeled 1, 2, 3  and 4. 
The three variable driver subset with full attractor control is highlighted in yellow and labeled 0  (see SM for 
further details).
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Canalization and Controllability. When fully canalizing functions are present in a BN, not all of the 
edges in the structural graph contribute to the collective dynamics; there exists a subgraph that fully captures 
the dynamically relevant interactions (an effective structural graph)7,14. Moreover, most Boolean functions are 
partially canalizing7,50 whereby in some input conditions a subset of inputs is redundant, but in other conditions 

Figure 6. (A) Control of the eukaryotic cell cycle of budding yeast Saccharomyces cerevisiae (CCN) for all 
driver variable subsets of size |D| =  1, |D| =  2, |D| =  3 and |D| =  4. (inset) The mean fraction of reachable 
attractors AD for each singleton driver variable set. The subset predicted to fully control the network are 
highlighted in red and labeled 0  for structural controllability (SC), while those predicted by minimum 
dominating sets (MDS) are labeled  −1 8. The driver variable subsets with full attractor control are 
highlighted in yellow (see SM for further details). (B) Controlled Attractor Graphs (CAGs) for each singleton 
driver variable set. The wild-type attractor is highlighted in green, all other attractors are in purple.
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it is not. This means that most edges in the underlying structural graph of a random BN are either entirely or 
partially redundant.

Since structural controllability methods assume that every edge of the underlying structure fully contributes 
to the dynamics, it is reasonable to suspect that the larger the mismatch between the structural graph and the 
effective structural graph, the more the predictions from SC and MDS will fail. To study this hypothesis, we con-
structed several ensembles of BNs where there is a perfect match between the structural graph and the effective 
structure graph.

First consider the ensemble of BNs with the structural graph of the CCN, but with transition functions cho-
sen from the set of two non-canalizing functions that exist for each variable’s in-degree. This constitutes a Full 
Effective Connectivity (FEC) ensemble of BNs whose effective structure perfectly matches the original structural 
graph of the CCN — there is no canalization in the dynamics of these networks.

Even though both SC and MDS fail to predict controllability correctly for a sample of 50 networks from the 
FEC ensemble, our analysis reveals that they are more easily controlled by smaller driver sets than the original 
CCN model. Specifically, RD and AD averaged over all driver variable sets is larger for every FEC sample than for 
the original CCN model (details in SM). Many networks in the FEC ensemble were fully controllable by 2 driver 
variables and all networks could be fully controlled by 3 driver variables—whereas the original CCN requires 4 
variables for full attractor control.

Interestingly, canalization can also be used to improve controllability if selected appropriately. To see how, we 
compare BN ensembles with no canalization whatsoever to those with only fully canalizing functions for each 
motif (see SM for details). This uncovers the cases where canalization actually improves BN controllability, even 
beyond the controllability attained by networks with no canalization. In all such cases, the resulting effective 
structure reduces the original structural graph to simpler linear chain motifs (Fig. S36 in SM). This way, canali-
zation of the individual variable transition functions is orchestrated to obtain pathways that channel the collec-
tive dynamics towards greater control (macro-level canalization7). Because these linear chain effective structures 
match the assumptions of structure-only methods more accurately, their predictions are correct in such cases. 
Thus, canalization can enhance the accuracy of structure-only control methodologies if transition functions are 
appropriately selected to reduce the effective structure to a linear chain. Naturally, when the size of the network 
increases from simple motifs to realistic networks, BNs with such precise effective structure become extremely 
rare in the ensembles.

Discussion
We studied the interplay between structure and dynamics in the control of complex systems using ensembles of 
BNs and existing models of biochemical regulation. The analysis of the BN ensembles constrained by network 
motifs demonstrates that structure-only methods fail to properly characterize control; there is a large variation of 
possible dynamics that can occur for even the simplest network. The situation only gets worse for structure-only 
methods when we scale up to real models of biochemical regulation. Our analysis demonstrates that structural 
control predictions can both underestimate or overestimate the number of driver variables in these systems. These 
approaches also fail to predict which sets of variables best control dynamics as evaluated by: how much of the total 
configuration space is accessible R( )D , how much of the configuration space is accessible beyond the natural sys-
tem dynamics C( )D , and the ability to transition between attractors A( )D . Often, arguments made about how easy 
it is to control network types (e.g. biological vs. social24) hinge on how many driver variables are predicted by 
structural control theories. Yet, our analysis reveals that much variation in real control occurs for the same struc-
ture and number of driver variables.

Our approach also lays the groundwork for understanding which restrictions must be enforced on the transi-
tion functions of BNs such that structure may suffice for predicting controllability or at least improve the accuracy 
of structure-only methods in predicting control. In our experiments with ensembles of network motifs, canalizing 
transition functions generally rendered structure-only methods less effective at predicting the control of dynam-
ics. Given the generality of motifs as network building blocks, this suggests our results will generalize to larger 
systems, as already observed in the three larger gene-regulation models considered here. On the other hand, we 
showed that it is possible to orchestrate canalization such that the effective structure matches the assumptions of 
structure-only methods, leading to more accurate predictions about control. This effect was identifiable in small 
networks, where it is easy to find the necessary effective structures, however, such structures are rare in the space 
of all possible dynamics for larger networks. Nonetheless, in principle, evolution or human design could select 
for such networks.

Crucially, without more information about variable dynamics, we certainly cannot assume that a given 
multi-variate dynamical system meets the assumptions of structure-only methods. For instance, the CCN model 
uses canalization to make controllability harder than predicted by structure-only methods, while the SPN model 
uses canalization to control dynamics to the wild-type attractor more easily than suggested by the same methods. 
All this suggests that canalization plays an important, nontrivial role in determining structure-dynamic relation-
ships. Further research can explore this interplay in greater detail. But our current analysis suggests that, without 
more information about variable dynamics, structure-only methods cannot be accepted as even an approximation 
of how control occurs in complex systems.

The control measures we introduced here for BNs provide a complementary viewpoint to those developed to 
study system robustness44,56. Both concepts are based on the response of the system to perturbations. However, 
robustness focuses on the quantity of perturbations to which the system’s dynamics is invariant, whereas control 
tracks the perturbations which alter the system’s dynamics. Future research will also explore other characteristics 
of the controlled state transition graph and controlled attractor graph so that the relationship between robustness 
and control can be better studied.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:24456 | DOI: 10.1038/srep24456

Boolean Networks are ideal, parsimonious systems for our study since they are defined by both a clear inter-
action structure and rich nonlinear dynamics using only binary variables. However, our conclusions are not 
necessarily limited to this type of network. The control measures used in our study are formulated with respect 
to a state transition graph, and are therefore applicable to any discrete, deterministic dynamical system. Our 
conclusions are thus likely to extend to other classes of complex systems. Indeed, several recent papers have also 
questioned the validity of structure-only arguments for control of other non-linear systems42. These arguments 
are grounded in the treatment of finite time constants and self-interactions30, the numerical limitations of nonlo-
cal controlled trajectories31, or the role of symmetry in the non-linear dynamics57. Understanding the discrepancy 
between network structure and control is also important for specific applications where methods which construct 
a specific controller (i.e. an algorithm that identifies a specific sequence of controlled interventions given a set 
of constraints) are desired. Structure-only predictions do not aim to predict controllers, rather they focus on the 
mere identification of driver variables. The identification of controllers is the subject of much research in systems 
biology and complex systems; in this case, a greater disparity between structure-only predictions and actual con-
trol is expected42.

Ultimately, methodologies that can help us predict control in complex networks while avoiding computa-
tional complexity should be developed, but they must combine characteristics of both the structural and dynam-
ical properties of the system. Promising methods are already being developed which include both structure and 
dynamics, such as monotone control systems58, master stability functions59, schema redescription7, and stabili-
zation subgraphs60. Understanding how such simplifications scale-up while providing a reasonable account of 
how control operates is very important, especially in real-world systems. This can be accomplished via the type of 
study we undertook here to analyze the effectiveness of structure-only methods in predicting the controllability 
of complex systems.
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