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ABSTRACT The DNA is the fundamental basis of genetic information, just as bits are for computers.
Whenever computers are used to represent genetic data, the computational encoding must be
efficient to allow the representation of processes driving the inheritance and variability. This is espe-
cially important across simulations in view of the increasing complexity and dimensions brought by
genomics. This paper introduces a new binary representation of genetic information. Algorithms as
bitwise operations that mimic the inheritance of a wide range of polymorphisms are also presented.
Different kinds and mixtures of polymorphisms are discussed and exemplified. Proposed algorithms
and data structures were implemented in C++ programming language and is available to end users in
the R package “isqg” which is available at the R repository (CRAN). Supplementary data are available
online.
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The complexity and organization based on DNA structure were evolu-
tionarily optimized to faithfully store and transfer biological infor-
mation (Bancroft et al. 2001). This complexity requires a proper
computational representation in order to increase storage capacity, re-
duce the memory footprint and the run time of analyses. The funda-
mental unit for computer data are the binary digit (bit), just as the
nucleotides are for DNA. In this regard, each nucleotide may be repre-
sented as binary droplets i.e., mapping {A, C, G, T} to f00; 01; 10; 11g,
respectively. Thus, the bitset 01101100 matches to the DNA sequence
CGTA.

This analogy allows straightforward in silico representation of ge-
netic polymorphisms by bits. On the other hand, a series of experiments
have proved the value of synthetic DNA as an alternative for storage.
However, any DNA-based storage system must own the capacity to re-
trieve the properties of the stored information (Erlich and Zielinski

2017). Computational representation of genetic data must also cater
to depict the processes that drive the inheritance and genetic variabil-
ity. This is especially important whenever computers are used for
simulations.

Simulations are invaluable to the genetic research, in which com-
puterprogramsareused toabstract complexmodels and the replications
of pseudo data incorporate an inherent stochasticity common to genetic
mechanisms (Hoban et al. 2012). Even when numeric or analytical
approaches cannot be accessed, the simulations can be employed for
inference, prediction and evaluation of newmethods (Peng et al. 2015).
To do so, an efficient abstraction of computational representation of
the genetic variability is required.

Genetic information at sequence-level from various platforms is
usually compressed by methods that are strongly linked to binary
representation (Li et al. 2009). Methods for compressing genomic
data into binary encoding are already being used by high-performance
applications (Abecasis et al. 2002; Purcell et al. 2007). These rep-
resentations, however, were designed with analytical purposes
without taking account the DNA structure, i.e., the linkage phase
between strands. It must be noted that simulations of meiosis,
mutation and more recently, gene editing, are dependent on the
strand base structure of the DNA.

This paper introduces a new binary encoding of genome-level
data that preserves the strand-based structure. Generalizations are
provided to support a wide range of known polymorphisms. The
algorithms to simulate the generation of variability are presented
in terms of bitwise operations. The algorithms and data structures
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are available to users as an R package “isqg” which is available at the
official R repository (CRAN).

METHODS
An oligonucleotide is a linear sequence of loci (l), each one indexed by a
genome position (x), which may be associated with a physical or map
coordinates. Thus, a binary representation of a DNA strands consists of a
set of bits (l1; l2; . . . ; li) assigned to genome positions (xl1; xl2; . . . ; xli).
Each bit has only two states, while a collection of n bits expands to 2n

states. In this sense, a locus represented by a single bit is biallelic and
may be seen as single-nucleotide polymorphisms. Therefore, a collec-
tion of bits associated with the same position may represent different
kinds of polymorphisms.

Homologous recombination over diploids is a universal mechanism
in which sister chromatids pair with each other and undergo exchange
of their contents. Considering two binary sets (a and b) as both DNA

strands, the mosaic recombination (d) can be obtained by bitwise op-
erations. To do this, another set (g) must be introduced, whichworks as
a bit mask. This mask controls the flow of the content between both
chromatids. It works as a logical conditional statement such as an if-else
block and thus, allow the composition of the mosaic between both
chromatids i.e., an 1 entry in g means the bit is taken from a, while
a 0 implies it is taken from b. As a, b, d and g are binary sets, a single
bitwise statementmust be performed combining the operators AND (&),
OR (j) and NOT (�), that is:

d)ðg&aÞjð� g&bÞ: (1)

In the simplest case, with k biallelic loci, all 2k masks are equally
probable, i.e., the content in d is independently chosen between
a and b with equal probabilities. To contemplate the linkage be-
tween loci close to each other, restrictions on the probabilities of
the masks, conditionally on the coordinates, must be assigned e.g.,
through recombination models (Copennhaver et al. 2002, see refer-
ences therein). Regardless the recombination model, given the posi-
tions where the events occur, binary operations allow building the
corresponding mask. For each event, the locus with the smaller po-
sition, greater than or equal to the chiasma position, is found (upper
bound). The index of this locus is used to right shift (�) a replete

binary set, resulting in the bit mask for that event. A recursive chain
of exclusive or (XOR/∧) assignments over those masks build the mask
merging all events:

Algorithm 1: Build bit masks for homologous recombination
1: procedure RECOMBINATIONMASK(chiasmata, map)
2: mask )zeros ;
3: if sizeðchiasmataÞ. 0 then
4: breaks)0 ;
5: for chiasma in chiasmata do
6: breaks)upperBoundðchiasma  in mapÞ ;
7: event)ones � breaks ;
8: mask)mask  ∧  event ;
9: if getRandomðÞ½0;1� . 0:5 then
10: mask)  � mask ;
11: return mask ;
The independent assortment of chromosomes also contributes to

the generation of variability. Equation 1 considers all loci belonging to
the same linkage group. Therefore, when performing the segregation in
each chromosome, the independence among them is ensured through a
random process that flips the mask (g) beforehand, i.e., ones turn zeros
and vice-versa, which is carried out by the NOT operator (�) (Lines 9-10
of Algorithm 1).

The construction of bitmasks is independent of any genetic content,
using only the positions of the loci and chiasmata as inputs. This feature
allows the individual to be stored only by its DNA strands. As gametes are
requested, the masks are retrieved from the generator, common to all
individuals. In this sense, any recombination models can be employed,
and users are able to define their own model to support e.g., recombi-
nation hotspots (Figure 1).

Species are often defined as a group of organisms in which any pair
of individuals can produce fertile offspring. It can also define specie by
identifying common DNA features such as the karyotype. In this sense,
it is defined as “specie” the generator class of objects which holds the
needed information to link different individuals that share the charac-
teristics at the DNA level and can produce fertile offspring (Figure 1). The
name given for this abstraction adhere to the biological definition and
makes a straightforward relation between real and in silico information.

In addition, as recombination depends only to the loci’s positions,
the linkage among a collection of bits assigned to the same position will

Figure 1 Schematic representation of
the classes’ hierarchy implemented in
“isqg”.
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never break, working as a single loci. This framework also supports a
mixture of different types of polymorphism coexisting together, such as
the one at the sequence-level or those with multiple alleles, which may
unveil other understanding about the association of SNPs (biallelics)
with complex quantitative traits driven by multi-allelic factors.

Mutations and/or gene editing changing the state of locus i from
parent to offspring can also be performed by binary operations. Given
the index of the loci to be changed (edited or mutated), a right shift on
an empty bitset results in a bit mask for this event. Then, an exclusive or
(XOR/∧) operation between the mask and a DNA strand will toggle the
bits where the event occurs. This procedure can be implemented anal-
ogously to Algorithm 1.

Data Availability
Software are released under a public license (GPL-2); source codes and
binary version of the software are available at the official public repos-
itory of R packages (CRAN): https://cran.r-project.org/package=isqg. The
authors affirm that all data necessary for confirming the conclusions of
the article are present within the article, figures, and tables. Supplemen-
tal material available at FigShare: https://doi.org/10.25387/g3.8162051.

RESULTS
A detailed description of “isqg” can be found in its documentation.
Below we present two case studies to highlight the “isqg” features. First,
it is presented how users can define their own recombination process to
be used over simulations. After, a more realistic quantitative genetic
simulation is performed.

Custom Recombination
Example 1 show a situation where after the package is loaded, the
example data (ToyMap) is loaded and an specie is started. Then, two
completely contrasting individuals are initialized and the F1, F2 as
well as recombinant inbred lines (double-haploids) are generated
from the F1. Genotypic data from the simulated individuals are then
retrieved as numeric or keeping the phase information.

Example 1: Simple simulation of crosses and double-haploids with
“isqg”

. library(isqg)

. data(ToyMap)

. ## start specie given the map

. spp ,- set_specie(ToyMap)

. ## start some ”founders” individuals from specie

. AA,- spp$founder(code = ”AA”)

. aa,- spp$founder(code = ”aa”)

. ## making some crosses (cross, selfcross and dh)

. ## are accessible by standalone function and R6 methods

. F1,-cross(n = 1, AA, aa) # the hybrid

. F2,-F1$selfcross(n=1E3)#segregatingpopulation

. RILs,- F1$dh(n = 1E3) # inbreeds

. ## retrieving the genotypic data

. M ,- genotype(RILs) # as numeric

. N,-F1$genotype(phase=TRUE)#ascharacter(phased)

By default, instances of the species are started giving as input the map
with the genomic positions in Morgans (M) and the meiosis recombina-
tion is performed through a count location process (Karlin and Liberman
1978). However, other recombinationmodels can be employed thus, users
can extend “isqg” capabilities. To do so, when initializing species as in
Example 1, a function implementing the recombination process must be
provided. As an example the authors share as a supplemental material a
couple of commented C++ implementations for recombination process-
es in which markers segregate independently regardless of their position
in the map as well as where recombinations happen in hotspots.

Having the extension code as a file e.g., “Independent.cpp”, it can
be seamlessly compiled and linked to R through the Rcpp package
(Eddelbuettel and François 2011). Thus, users can simulated data
according to any recombination model. Example 2 shows how users
can check the behavior of the custom independent segregation in
comparison with the standard count location process.

Example 2: Including and using extension for custom user-defined
recombination process

. library(isqg)

. data(ToyMap)

. ## standard specie as in Example 1

. standard ,- set_specie(ToyMap)

. ## sample 100 gametes from standard process

. standard$gamete(100)

. ## require Rcpp package

. library(Rcpp)

. ## compile and link Example 2 at file Independent.cpp

. sourceCpp(file = ”Independent.cpp”, rebuild = TRUE)

. ## specie with custom recombination

. custom,- set_specie(ToyMap, meiosis = indepp())

. ## sample 100 gametes from custom process

. custom$gamete(100)

Quantitative Genetics Simulation
Considering a breeding scenario where F2:3 progenies are generated
from two contrasting parents. One question that may arise is how
different are the predictions of the breeding values when it is used
the realized genomic kinship (matrix G), taking account the Men-
delian samplig, or the resemblance between individuals (matrix A)
i.e., the coefficient of identity by descent. To do so, a specie is
initialized with a genetic map having fives chromosomes each one with
1000 equally spaced biallelic loci and a quantitative trait is defined
with zero mean and additive effect of one for all loci. From this
settings, two contrasting individuals and the F1 are also initialized
(Example 3).

Example 3: Initializing structures and data for a simulation with
“isqg”

. ## generatingmap: 5 chromosomes and 1000 ”genes” per chromosome

. map ,- expand.grid(chr = 1:5, pos = seq(0, 2, length.out = 1000))

. map$snp,- paste0(”s”, 1:(5 � 1000))

. ## initializing ”specie” and ”infinitesimal” quantitative trait

. spp ,- set_specie(map)

. trait ,- set_infty(spp, m = 0, a = 1, d = 0)

. ## initializing two contrasting parents and the F1

. P1,- spp$founder(code = ”AA”)

. P2,- P$mirror()

. F1,- cross(n = 1, P1, P2)

After that, one may define an R function to simulated the above
mentioned breeding scenario:

i. generating inbreeding generations i.e., F2 population with N
individuals as well as F2:3 progenies with P individuals each;

ii. getting the true breeding values regarding the defined quantitative
trait and simulating phenotypes adding random deviates accoring
to the a desired heritability (h2);

iii. genotyping the individuals and obtaining the realized kinship
matrix;

iv. fitting the mixed models with both kinds of information (realized
kinship and identity by descent); and

v. collecting and delivering the estimated additive and residual
variances.
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Replications of the simulated scenario are thenobtained inwhich the
collected statistics can be further analyzed (Example 4). Consider to
load the package rrBLUP beforehand as its functions are used over the
simulation (Endelman 2011).

Example 4: Defining and simulating breeding schemes with “isqg”
. simulation,- function(zzz) {

+ ## (i) inbreeding generations:
+ F2,- F1$selfcross(n = N)

+ F2_3,- unlist(lapply(F2, function(x) x$selfcross(n = P)),

+ recursive = TRUE)

+ ## (ii) true breeding values ��standardized�� and phenotypes:
+ alphas ,- scale(sapply(F2_3, function(x) x$alpha(trait)))

+ phens ,- rnorm(n = N � P, mean = alphas, sd = sqrt((1 - h2) / h2))

+ ## (iii) VanRaden realized relationship matrix:
+ G ,- A.mat(t(genotype(F2_3)))

+ ## (iv) fitting the mixed models with A and G:
+ X ,- rep(1, N � P)

+ Z ,- diag(N � P)

+ mP,- mixed.solve(y = phens, X = X, Z = Z, K = A)

+ mG,- mixed.solve(y = phens, X = X, Z = Z, K = G)

+ ## (v) collecting and delivering statistics:
+ vgs ,- c(vAP = mP$Vu, vAG = mG$Vu) # additive variance

+ ves ,- c(vEP = mP$Ve, vEG = mG$Ve) # residuals variance

+ return(c(VG = vgs, Ve = ves))

+ }

. ## repeating 100 times the simulation

. output,- sapply(1:100, simulation)

This is a simple but realistic simulation that can be performed with
“isqg”, trying to highlight how the simulation can be integrated with
third part packages to analyze the simulated data such as rrBlup
(Endelman 2011). To reinforce the capabilities of the binary frame-
work, we have found that with a population size of 100 and progeny
size of 20 i.e., 2000 simulated individuals, occupy less than one
mega byte of memory and 100 replicates of the simulations using
only one CPU in a standard laptop spent around 10min which includes
the times to fit the models.

DISCUSSION
Bitsets are implemented with a limit in size of ð232 2 1Þ, which is the
upper bound of unsigned long integer numbers in 64 bits architectures.
Nevertheless, the variability found within the humans, crop and live-
stock species e.g., wheat and bovine can be fully represented (Bovine
Genome Sequencing and Analysis Consortium 2009; 1000 Genomes
Project Consortium et al. 2012; InternationalWheat Genome Sequence
Consortium 2018). Taking the largest chromosome of the human ge-
nome (248,956,422 BP) with two bits for each base to allow the four
possible nucleotides, it is needed 497,912,844 bits which is smaller than
the stated limit. In contrast to the representation of biallelic polymor-
phism by ASCII characters (1 byte) or integer numbers (4 bytes) as found
in alternative softwares, bits are at least 4 times smaller in modern
computing. Moreover, bitwise operations act on chunks of 64 bits that
are faster than loops over arrays.

The presented framework was implemented in C++ with an R
interface. Access to bitsets is provided by the Boost library, and bit
manipulations are carried out by functions in the standard template

library. The package is available under a public license (GPL-2). Its low-
and high-level interfaces provide great flexibility for users. A sample
script showing a basic pipeline with other features is shared as a
complementing material simulating a comparison of a few different
recombination models.
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