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Studies reporting significant associations between maternal prenatal stress and child outcomes are frequently confounded by
correlates of prenatal stress that influence the postnatal rearing environment. The major objective of this study is to identify
whether maternal prenatal stress is associated with variation in human brain functional connectivity prior to birth. We utilized fetal
fMRI in 118 fetuses [48 female; mean age 32.9 weeks (SD= 3.87)] to evaluate this association and further addressed whether fetal
neural differences were related to maternal health behaviors, social support, or birth outcomes. Community detection was used to
empirically define networks and enrichment was used to isolate differential within- or between-network connectivity effects.
Significance for χ2 enrichment was determined by randomly permuting the subject pairing of fetal brain connectivity and maternal
stress values 10,000 times. Mixtures modelling was used to test whether fetal neural differences were related to maternal health
behaviors, social support, or birth outcomes. Increased maternal prenatal negative affect/stress was associated with alterations in
fetal frontoparietal, striatal, and temporoparietal connectivity (β= 0.82, p < 0.001). Follow-up analysis demonstrated that these
associations were stronger in women with better health behaviors, more positive interpersonal support, and lower overall stress
(β= 0.16, p= 0.02). Additionally, magnitude of stress-related differences in neural connectivity was marginally correlated with
younger gestational age at delivery (β=−0.18, p= 0.05). This is the first evidence that negative affect/stress during pregnancy is
reflected in functional network differences in the human brain in utero, and also provides information about how positive
interpersonal and health behaviors could mitigate prenatal brain programming.
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INTRODUCTION
Children born to mothers who endure heightened psychological
or physiological stress during pregnancy may experience negative
consequences as a result of these early programming events.
Injurious effects of prenatal stress can cut across domains,
increasing risk for neuropsychiatric and neurodevelopmental
disorders [1–4], altering hormonal [5–7] and physiological [8–10]
bodily responses, and increasing susceptibility to a range of
disease processes [11–14]. Studies of fetal behavior and physiol-
ogy suggest that maternal prenatal stress may influence fetal
brain development even before birth [15–17]. Furthermore,
negative consequences of early stress exposure appear to be
lasting, affecting even the prevalence of adult neurodegenerative
disorders [18] thus shaping long-term outcomes and potentially
contributing to the transfer of risk to subsequent generations
[19, 20].
A long-standing challenge for this crucial area of research is that

children born to mothers exposed to high levels of prenatal stress
experience more birth complications [21], and are more frequently
reared in high-stress environments [22], confounding our ability to
conclude from postnatal brain measurements that the fetal brain
is altered before birth. Animal studies show that prenatal stress

results in shorter and less complex dendrites, hypomyelination,
and altered synaptogenesis [23–26]. Postnatal studies in neonates
and children corroborate these observations showing that stress
alters newborn functional neural connectivity [27–29] and child
structural brain development [30]. Importantly, differences in child
brain structure have been shown to mediate, in part, the
association between prenatal stress and affective problems in
childhood [31]. While such findings suggest that prenatal stress
alters the fetal brain, examining these outcomes postnatally
represents a major limitation. Prospective evidence that the fetal
brain is altered is needed to provide stronger evidence that
maternal stress during pregnancy impacts the human brain
in utero.
The present study addresses this gap by leveraging emergent

functional magnetic resonance imaging (fMRI) techniques to
evaluate, for the first time, whether and how variation in maternal
stress relates to human fetal brain system organization. Resting-
state functional connectivity (RSFC) fMRI has recently been
adapted to study fetal brain functional network development
[32, 33]. This technique relies on recording spontaneous functional
signals across the whole brain, and then evaluating covariation
and interaction between signals over time. Brain regions that
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demonstrate coordinated activity are considered “functionally
connected”, which has been shown to have an anatomical basis
[34–36]. This technique has borne rapid insight into the global
coordination of fetal brain activity and the wide scale architecture
of brain networks. There is now evidence that RSFC develops
initially in utero [37–41], is altered in fetuses with atypical
neuroanatomy [42], differs between the sexes [43], relates to
infant outcomes [44], and is prospectively diminished in fetuses
born preterm [45].
The primary objective of this study is to establish whether

maternal prenatal stress relates to changes in the child’s brain
before birth; the second is to determine whether psychosocial
support and health behaviors affect this association; and the third
is to test whether this neurobiological embedding of stress relates
to how early a child will be born. There is limited data on
normative processes of fetal brain functional network develop-
ment, as such, our hypotheses are focused on regions central to
programming large-scale fetal functional network architecture and
commonly implicated in psychiatric and neurodevelopmental
diseases [39, 46, 47]. Specifically, we hypothesize that maternal
prenatal negative affect/stress (NAS) will be associated with
altered connectivity of high-order association cortices, specifically
prefrontal and parietal regions, and with connectivity of the
insular and temporal regions. In addition, because the effects of
stress vary widely from person to person, we further hypothesized
that higher levels of social support and adaptive health behaviors
would moderate the impact of maternal NAS on child prenatal
brain development. Finally, motivated by prior work that has
linked prenatal stress to premature delivery [48–50], we hypothe-
sized that greater magnitude of association between maternal
NAS and fetal brain connectivity effects would relate to younger
age at delivery.

MATERIALS AND METHODS
Participants
The fetal neuroimaging sample consisted of 118 cases (48 female), with
mother mean age 25.1 years (SD= 4.5). Exclusions for participation
included presence of suspected fetal central nervous system abnormality
as determined by 20-week ultrasound and/or contraindication for MRI (e.g.,
pacemaker, ferromagnetic material in mother’s body, claustrophobia). The
mean age of fetuses at the time of MRI was 32.9 weeks GA (SD= 3.87;
range 26–39 weeks), and mean age at birth was 39.4 weeks GA (SD= 1.1).
One hundred five cases in this sample have been studied in prior
functional connectivity studies [39, 45, 51] and 118 of these cases were
studied in a recent investigation of prenatal sex differences [43].
Ultrasound examination administered by a referring physician was
performed within 1 week of MRI examination to determine fetal GA. All
women provided written informed consent before undergoing MRI
examination. Participation was approved by Human Investigation Com-
mittee of Wayne State University. Study participants were followed
longitudinally to assure that they developed no complications during
pregnancy. Sociodemographic characteristics and birth outcomes in
mother–child dyads (N= 118) are provided in SI Appendix, Table S1 and
a summary table for all case exclusions is provided in SI Appendix,
Table S2.

Definition of maternal prenatal stress
Conceptualization and measurement of stress has changed over time
[52]. Prior studies of the effects of intrauterine stress have used
biological measures such as salivary cortisol and self-report question-
naires of anxiety, depression, and stress [30, 31, 53]. Here, we empirically
derived a single factor representing prenatal Negative Affect and Stress
(NAS) and in supplementary analyses tested the association of this factor
and all subscales with salivary cortisol in a subset of mothers for which
cortisol measurements were available. The primary advantage of this
approach is reducing the number of statistical tests performed across
inherently co-linear measures, while maintaining individual measure
loadings [54]. Maternal stress during pregnancy was assessed using
summary scores from five scales that assessed internalizing problems
and stress: the Center for Epidemiological Studies Depression Scale CES-

D; [55] the State Trait Anxiety Inventory (Trait) STAI-T [56]; the Penn State
Worry Questionnaire PSWQ [57]; the Perceived Stress Scale PSST [58];
and the Satisfaction with Life Scale SWLS [59]. Descriptive statistics for
prenatal affect and stress scales are provided in SI Appendix, Table S3. To
account for variance in stress exposure and negative affect, as well as
minimize the number of models run, we used factor analysis in in Mplus
vs. 7.2 [60] to derive a maternal NAS index. Specifically, in a random
half of the sample, we subjected the five scales to exploratory factor
analysis (EFA) requesting models with one and two factors. EFA
established that these scales loaded best onto a single factor (CFI= .98,
TLI= .96, RMSEA= .08, SRMR= .03; all factor loadings, p < .001). We next
subjected the scales to confirmatory factor analysis (CFA) in the other
random half of the sample to validate the model fit. Again, the five scales
showed high loadings and good fit to a one-factor model (n= 99,
CFI= .98, TLI= .97, RMSEA= .06, SRMR= .03; factor loadings, p < .001).
We thus reran the CFA in the full sample to obtain individual NAS scores
within the full sample. The model showed good fit to the data (χ2=
10.23, p= 0.07, df= 5; CFI= 0.98; TLI= 0.96; RMSEA= 0.07; SRMR=
0.03) with each scale loading significantly on the NAS factor (p < .001).
Individual factor loadings are provided in Fig. 1.

Functional data preprocessing
Time frames corresponding to periods of minimal head motion in the fetus
were identified using FSL image viewer [61]. Brainsuite [62] was used to
manually generate 3D masks for single reference images drawn from time
periods, or segments, of fetal movement quiescence. Masks were binarized
and applied only to frames corresponding to their select segment, and
only those data were retained for further analyses. Each segment was
manually reoriented, realigned to the mean BOLD volume, resampled to
2mm isotropic voxels, and normalized to a 32-week fetal brain template
[63] using affine transformation in Statistical Parametric Mapping (SPM8)
[64] software implemented in MATLAB. Motion parameters for each low-
motion segment were checked to ensure only segments that consisted of
at least 20 sec (10 frames) of low motion were retained in subsequent
processing steps. The level of censoring applied, 1 mm mean XYZ and 1.5°
mean PYR, has been reported previously [39, 45, 51]. Application of these
quality assurance steps resulted in elimination of mean= 56% frames per
participant. The resulting sample was 118 cases with an average of 159
frames (SD= 42). Average translational and rotational motion across
subjects ranged from 0.01 to 0.52mm and 0.6° to 1.1°, respectively. In a
final step, to correct for variation in normalization across segments within-
participant, normalized images were concatenated into one run, realigned
to the mean BOLD volume, and smoothed with a 4mm FWHM Gaussian
kernel.

Functional brain segmentation
A spatially constrained group level clustering approach [65] was used
to parcellate the area of a 32-week GA fetal template brain [63] into

Fig. 1 Confirmatory Factor Analytic model showing loadings of
stress and internalizing indicators onto prenatal stress and
negative affect factor, or NAS. All factor loading scores were
significant at <0.001. Model showed excellent fit to the data: χ2=
10.23, p= 0.07, df= 5; CFI= 0.98; TLI= 0.96; RMSEA= 0.07; SRMR=
0.03. Measures included the Center for Epidemiological Studies
Depression Scale (CES-D), the State Trait Anxiety Inventory (STAI),
the Penn State Worry Questionnaire (PSWQ), the Perceived Stress
Scale (PSST), and the Satisfaction with Life Scale (SWLS).
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197 spatially contiguous, similarly sized ROIs (SI Appendix, Fig. S1). This
method utilizes 4D fetal data normalized to 32-week fetal template space
and produces functionally homogenous clusters by assessing voxel
timeseries similarity in a given dataset, using Pearson correlations, then
iteratively merging voxels that showed maximal within-cluster similarity
and minimal between-cluster similarity. Next, it identifies the most
representative clusters of voxels using a normalized cut algorithm [66]
and performs group level clustering. This approach yields ROIs that span
the full extent of cortical, subcortical and cerebellar regions and is
representative of observed functional connectivity patterns in this fetal
sample, after application of motion correction, normalization, and
concatenation steps. This is an established data-driven approach to
parcellation [39, 43, 67, 68], useful in the human fetal brain where priors
are limited and developmental change is exceedingly rapid. ROIs were
then classified by hemisphere, by lobe, and by coordinates corresponding
to center of mass.

Derivation of fetal brain networks
CONN functional connectivity toolbox (v14n) [69] was used to generate
Pearson correlations matrices between these 197 ROIs for each
subject. Processing included linear detrending, nuisance regression

using aCompCor of five principal components extracted from a 32-week
fetal atlas white matter and CSF mask, six head motion parameters, and
band-pass filtering at 0.008–0.09 Hz. To create a subnetwork model of
the fetal brain, the complete set of unique n= 19,306 ROI-pair
functional connectivity (FC) (Fisher-z) values for data from all
participants were averaged, producing a 197 × 197 connectivity matrix
(Fig. 2). The set of averaged correlations across subjects was thresholded
and binarized at multiple Fisher-z values, corresponding to edge density
sparseness thresholds ranging from 1 to 10% of all possible surviving
connections at steps of 0.1%, to generate 91 total adjacency matrices.
Connections between ROI pairs separated by <10 mm were removed to
minimize the effects of blurring in the spatially normalized fMRI data.
The Infomap community detection algorithm [70] was used to assign
ROIs to neural subnetworks based on maximization of within-module
random walks applied to adjacency matrices at each threshold.
Solutions for each threshold were combined using an automated
consensus procedure to provide a single model of the community
structure by maximizing the normalized mutual information of groups
of neighboring solutions and then maximizing modularity [71]. This
network solution enabled network-pair-level analyses for the full group
(Fig. 2) and reduced the overall number of possible comparisons by
more than 150-fold.

Fig. 2 Examination of stress-related variation in fetal brain functional connectivity. Community detection analysis generated a 16
functional network consensus model from a matrix of 197 functionally defined regions. Enrichment was performed to assess the degree to
which NAS correlated edges (Pearson p < 0.05) in a network pair were overrepresented, tested using a permutation-based estimated false
positive rate (FPR). The result was six network pairs with differences in connectivity related to maternal prenatal NAS (A–F). Within and
between-network pairs enriched with significant ROI–ROI resting-state functional connectivity (RSFC) are displayed in the bottom panel,
displayed on a 32-week human fetal brain cortical surface. PFC prefrontal cortex, SFG superior frontal gyrus, SMA somatomotor area, aINS
anterior insula, IFG inferior frontal gyrus, VIS Visual, PAR parietal, PCC posterior cingulate cortex, CB cerebellum, inf TEMP inferior temporal,
pINS posterior insula, TPJ temporoparietal junction, SC subcortical gray matter.
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Examination of NAS-related differences in fetal functional
connectivity
Exploratory and confirmatory factor analyses were used to generate a
single multi-measure factor assessing maternal prenatal negative affect/
stress (NAS). Analyses and factor loadings are provided in the Supplemental
Material. The resulting NAS score was adjusted for gestational age at scan
by computing residual values using the regression NAS–GA+ error and
used for all subsequent analyses. Enrichment analyses were performed to
identify within- or between- network pairs with a significant clustering of
strong RSFC-NAS correlations. This enrichment approach has recently been
applied to functional neuroimaging studies of fetuses and infants
[43, 68, 71, 72], and is an adaptation of methods used in large-scale
genome association studies [73–75]. The approach applies a p-threshold of
0.05 to all ROI-pair correlations in the group Fisher-z-transformed FC matrix
then uses a Chi-square test to assess the level clustering of strong FC-NAS
correlations for within- and between-network ROI pairs. Significance for χ2

enrichment is determined by randomly permuting the subject pairing of
FC and NAS values 10,000 times [71, 73]. Only networks that were
significantly enriched for FC-NAS (χ2, df= 1, p < 0.05) were treated as
significant findings.

Mixtures-modeling of brain-stress relationships
To explore whether the associations between maternal NAS scores and
fetal brain connectivity were buffered by the effects of social support or
adaptive health behaviors, we first used exploratory factor analyses to
reduce dimensionality across ten measures of social environment and
health behavior. Analysis of scree plots with actual and resampled data
and Bartlett’s test for sphericity both confirmed that these variables
were best summarized as three factors, one linked to health (“Health
Engagement”; HE), one to family conflict/cohesion (“Family Systems”; FS)
and a third that was a mixture of sleep, medical adherence, substance use,
and ECR-R interpersonal avoidance (“Health and Adult Relationship”; HAR)
(SI Appendix, Fig. S2). Next, to further reduce dimensionality, we applied a
mixtures-based modeling strategy, weighted quantile sum (WQS) regres-
sion [76, 77], to construct a single empirically-estimated connectivity index
(i.e., WQS stress-connectivity index), summarizing the overall magnitude of
RSFC effects in a given fetal brain. In a third step, initial univariate models
were constructed to evaluate relationships between the WQS stress-
connectivity index and maternal NAS scores without additional health and
social support factors. Finally, the models were rerun adding the health
and social support factors to examine both effect modification and to test
for interaction effects. In all models, a robust cross-validation strategy was
applied, such that the data were divided into training (40% of data) and
validation (60%) sets, with model weights estimated in the training set
before application to the validation set, both to avoid over-fitting and
ensure the generalizability of results. Additional information about WQS
model estimation is provided in Supplemental Material.

Evaluation of prenatal NAS, fetal brain FC, and gestational age
at delivery
We evaluated relationships between maternal prenatal NAS, fetal brain,
and age at delivery. Standard linear models were used to evaluate these
relationships, using either maternal stress, individual between-network
connectivity values, or the stress-connectivity WQS mixture, derived as
above-described, as predictors.

RESULTS
Fetal brain targets of maternal NAS
Community detection analysis generated a 16 functional network
consensus model (Fig. 2) that became the basis for isolating
significant relationships between maternal prenatal NAS and
between and within network RSFC. Results of enrichment analysis
demonstrated that effects of maternal prenatal NAS were evident
in six fetal network pairings. Specifically, maternal prenatal NAS
factor scores were related to variation in FC values between the (i)
superior frontal and sensorimotor networks (SFG–SMA), (ii) a left
posterior insula/temporoparietal junction and a right superior
parietal network (pINS/TPJ–PAR), (iii) superior frontal and parietal
networks (SFG–PAR), and (iv) prefrontal and parietal networks
(PFC–PAR). In addition, maternal prenatal NAS scores were related
to FC within the (v) subcortical striatal network (SC–SC), and the

(vi) superior frontal gyrus network (SFG–SFG). Significant between
and within network effects were confirmed with χ2 tests for
independence. A summary of connections comprising significant
enrichment results is provided in Table 1 and between-network
positive and negative significant connections are visually repre-
sented in Fig. 3.

Moderation of effects by social support and health behaviors
We further evaluated relationships between fetal connectivity and
maternal stress in a mixtures-based strategy. A weighted quantile
sum (WQS) model replicated findings from enrichment and χ2

tests, showing that NAS and connectivity across the 6 networks
was significant as a mixture (β= 0.82, p < 0.001) and highlighting
that the strongest associations were in connectivity of SFG–SMA,
pINS/TPJ-PC, and SFG–PAR network pairs (SI Appendix, Fig. S3).
Next, we tested for moderation by examining potential interac-
tions in WQS models that included health and social support
factors. We found no significant associations between NAS and
factors corresponding to diet, exercise (factor HE), and family
conflict/cohesion (factor FS), but found that a factor comprising
sleep, medical adherence, substance avoidance, and low inter-
personal avoidance (factor HAR), significantly moderated (β= 0.16,
p= 0.02) the relationship between the maternal prenatal NAS and
the WQS stress-connectivity index. The effect was such that
participants with lower HAR scores had weaker associations with
the stress-connectivity index, but higher stress overall. In the
context of this interaction, connectivity between PFC–PAR and
SFG–SMA networks were most significantly related to HAR (p <
0.000; SI Appendix, Table S4).

Maternal NAS-related brain FC relates to gestational age at
delivery
Maternal NAS scores were associated with younger gestational
age at delivery (β=−0.36, p= 0.003), in agreement with prior
literature [48, 50]. Here, we extended our analysis of stress-
connectivity indices to consider potential associations between
stress correlates in the fetal brain and fetal gestational age at birth.
Our findings indicated a marginally significant negative associa-
tion (β=−0.18, p= 0.05) between the omnibus WQS stress-
connectivity index and gestational age at delivery. That is, a single
measure reflecting the effect of stress on neural connectivity in
each fetus was associated with how early that fetus was born (see
Fig. 4). Given the marginal significance of this relationship, we
pursued follow-up analyses with traditional linear models to
investigate the association between NAS and length of gestation
in each network pair. Applying Holm–Bonferroni correction to six
tests of connectivity to gestational age at birth, we observed
significant associations between gestational age at delivery and
connectivity between SFG–PAR (β=−2.46, p= 0.008), pINS/
TPJ–PAR (β=−2.68, p= 0.007), and SFG–SMA (β=−3.52, p=
0.016) network pairs (Table 2).

Table 1. Enriched networks based on relationship between NAS and
fetal RSFC.

Network pair WQS Weight Enrichment c2 Enrichment p-val

SFG–SMA 0.43 8.55 0.01

SC–SC 0.29 4.66 0.05

pINS/TPJ–PAR 0.13 10.73 0.004

SFG–PAR 0.08 4.59 0.05

SFG–SFG 0.04 10.05 0.007

PFC–PAR 0.04 4.88 0.05

The number of significant connections within each network pair varies
from region to region. Enrichment c2 statistics and p-values describe the
degree to which the number of significant ROI–ROI pairs within each
network pair was greater than could be expected by chance.
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Evaluation of potential confounds
Tests of associations between maternal demographics, data quality
control (QC) parameters, and maternal NAS residuals used in the
enrichment analysis were largely not significant, suggesting that
several factors with potential to confound observed stress-brain

mixtures do not appear to have influenced analyses performed in
this dataset. Maternal NAS residual scores were not related to
maternal age (r= 0.018, p= .85), gross income (r=−0.061, p=
0.55), average translational motion (r=−0.109, p= 0.24), or frame
count (r= 0.123, p= 0.18). However, maternal NAS residual scores

Fig. 3 RSFC across and within large-scale fetal brain networks is bidirectionally linked to variation in a factor representing cumulative
maternal prenatal negative affect and stress (NASF). Connections that are stronger in fetuses of mothers with higher NASF are plotted in
red, and the reverse is plotted in blue. Boxplots denote global mean centered r-values for the top and bottom NASF quartiles, averaged across
positive or negative network edges within each network pair. SFG superior frontal gyrus, SMA somatomotor network, SC subcortical gray
matter, pINS/TPJ posterior insula/ temporoparietal junction, PAR parietal, PFC prefrontal cortex.

Fig. 4 Effects of maternal stress in the fetal brain relate to gestational age at delivery. The left panel depicts the negative association (β=
−0.18, p= 0.05) between the WQS stress-connectivity index and gestational age at delivery. Thus, stress-related changes in fetal connectivity
are significantly associated with shorter gestational periods. The right panels depict average connectivity across network edges significantly
associated with maternal stress for each subject for each of the six significant network pairs (FC(z)). Significant associations between strength
of stress-connectivity effect and gestational age at delivery was observed in the SFG–PAR (β=−2.46, p= 0.008), pINS/TPJ–PAR (β=−2.68, p=
0.007), and SFG–SMA (β=−3.52, p= 0.016) network pairs.
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were significantly related to average rotational motion (r=−0.185,
p= 0.045). Consequently, we performed additional analyses testing
the relationship between motion and significant between-network
connectivity effects across subjects. Connectivity values were not
related to motion for the majority of network pairs, but a correlation
was observed between rotational motion and SFG–SMA connectiv-
ity (r=−0.24, p= 0.009). This correlation does not surpass
Bonferroni correction for multiple tests, but is nonetheless high-
lighted and reported in Appendix, Table S5. As an additional step,
we confirmed that motion measures and the overall WQS
connectivity index were not significantly related, WQS and XYZ
motion, r= 0.008, p= .951, and WQS and PYR motion, r=−0.165,
p= .203. Additional contextual variables of interest in our analyses,
specifically social support and health behaviors, did have the
expected relationship with maternal NAS: NAS scores were
negatively correlated with prenatal ECR-R avoidance (r=−0.46,
p < 0.001), diet (r=−0.23, p= 0.016), medical adherence (r=
−0.29, p= 0.001), and sleep (r=−0.34, p < 0.001), and positively
associated with substance abuse (r= 0.41, p < 0.001). Maternal NAS
was not related to other social support and health behaviors
subscales: ECR-R anxiety, FES-R cohesion, FES-R expressiveness, FES-
R conflict, exercise.

DISCUSSION
From a developmental origins of health and disease (DOHaD)
perspective, this research provides a framework to evaluate the
very early embedding of biological risk in social and behavioral
contexts [78, 79]. Research in neonates and young children has
suggested that prenatal stress hormones act on various signaling
receptors that interact with genetic/epigenetic factors and
additional environmental input to influence brain development
prior to birth [80]. Animal models of early life stress have bolstered
this view, providing evidence that mouse pups stressed in the first
weeks of life (equivalent to human third trimester) show shorter
and less complex dendrites, hypomyelination, and altered
synaptogenesis [23–26]. However, whether or not neurodevelop-
mental trajectories begin to be altered in the womb has remained
a long-standing question in the field of human prenatal stress
programming. This study provides evidence that maternal
prenatal stress and negative affect are associated with alterations
in human brain networks before birth. We report differences in
fetal system-level dynamics (i.e., functional connectivity) thus
extending models of biological embedding of stress by propelling
us back to the most delicate time in human brain maturation,
where change is more rapid than at any other time in the life
course.
Alterations in fetal functional connectivity were apparent

between superior frontal and motor regions and in cross-
hemispheric connectivity of posterior insula and temporoparietal
brain regions (pINS/TPJ–PAR). These observations are of interest
given that connectivity between these regions increases with

advancing fetal age [40, 81], and abnormal connectivity in these
regions has been reported among fetuses and neonates born
preterm [45, 82, 83]. Such studies confirm the importance of
connectional processes taking place between these regions
during the fetal period and lead to suggestion that changes to
these processes may have long-ranging effects. Interestingly,
temporo-insular regions have also been implicated in the
generation of spontaneous functional activity during late stages
of fetal development [46, 47], leading to suggestions that these
spontaneous functional bursts of activity may be foundational to
establishing the organizational properties of the human functional
connectome architecture [46].
We also observed significant differences in RSFC between

anterior and posterior frontal and parietal regions (SFG–PAR;
PFC–PAR) and connectivity within the superior frontal gyrus
(SFG–SFG) in fetuses exposed to greater stress in utero. Research
in neonates and infants confirms that these networks are evident
early in human life [84], and research in adults suggests a potential
transdiagnostic role of disrupted frontoparietal network connec-
tivity in human affective, psychiatric, and neurological disease [85].
Further, alterations in frontoparietal networks have been shown to
be experientially dependent, as evidenced in longitudinal studies
of acute psychosocial stress exposure [86] and cross-sectional
investigations of RSFC among individuals with childhood trauma
exposure [87]. We also observed right laterality in our stress-
related frontoparietal RSFC differences. While few, if any, studies of
emotional psychopathology have specifically addressed laterality
of frontoparietal RSFC disruptions, the important role of the right
hemisphere in processing emotions is widely studied [88]. Further,
animal models of induced depression have reported laterality in
differential gene expression in frontoparietal regions, specifically,
right lateralized effects in animals that show reduced resilience to
stress exposure [89]. Convergence of our human fetal results with
these known priors suggests that further examination of both
early childhood onset of affect-related frontoparietal disturbance,
including examinations of laterality, are warranted.
In addition, we observed prenatal maternal stress-related

differences in RSFC within a fetal subnetwork encompassing areas
of the striatum. The effect of stress on the striatum has been
shown to relate to neuronal microstructure [90], gene and
neurochemical expression [91], and connectivity [92–94]. Studies
both in humans and in animals confirm that restructuring of the
striatum following stress has behavioral relevance, most strongly
impacting domains of social behavior, decision-making, affective
valuation, and risk for internalizing illness [90–93]. It is possible
that prenatal variation in striatal subnetwork functional connec-
tivity predisposes individuals to long-term processing differences
across these and other related behavioral domains. Our study
provides evidence to support this claim, and suggests that
combined changes in the striatum, insulo-temporal and fronto-
parietal brain systems may underlie long-term stress-related
behavioral effects. It is noteworthy that across network pairs the
observed relationships between maternal NAS and fetal functional
connectivity were comprised of a mix of both positive and
negative associations, without clear directionality. That is, both
augmented and diminished network connectivity was observed.
This finding is not unexpected when studying subnetworks
comprised of numerous nodes that are separated in space and/
or expansive. This approach has the advantage of enabling
examination of whole-brain connectivity, which is particularly
favorable in the fetal brain where priors are presently rather
limited. However, a natural next step will be to address
directionality within specific circuits and at finer resolution.
Individual responses to stress vary widely. A question we sought

to address after confirming the existence of prenatal alterations in
human brain RSFC was whether specific protective variables
explained variation in maternal NAS-related brain differences. The
unique sample recruited for this study was predominately low-

Table 2. Regression of NAS and RSFC on infant birth age.

Predictor β SE B p-value

NAS −0.36 0.12 −3.04 0.003

PFC–PAR −1.90 1.15 −1.66 0.099

SFG–SFG −1.67 1.07 −1.56 0.120

SFG–SMA −3.52 1.44 −2.45 0.016

SFG–PAR −2.46 0.92 −2.68 0.008

pINS/TPJ–PAR −2.68 0.97 −2.76 0.007

SC–SC −0.39 0.75 −0.52 0.607

Regression of stress-related RSFC and age at delivery are provided for each
network. Regression was performed in the full sample of 118.
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income, unpartnered, minority women drawn from a community
with elevated levels of stress and violence. This is an important
population to work with both because this is a population with
considerable need, and because meta-analysis indicates associa-
tions between maternal prenatal stress and child outcomes are
strongest in high-risk groups [95]. It is known that there are
specific traits, such as internal locus of control, social skills,
exercise, maternal mindfulness, optimism, and ego development
that predict more resilient outcomes [96–99]. For example,
Christianson and colleagues showed that exercise mitigates the
expression of stressor-induced anxiety; [100] Young and collea-
gues showed that responses to stress are attenuated by strong
male bonds in wild macaques; [101] and Wellman and colleagues
showed individual differences in the effects of stress on REM in
Wistar rats and suggest that sleep may be an important biomarker
of stress resilience and vulnerability [102]. We found that a latent
factor comprising social support and health, specifically, sleep,
medical adherence, avoiding alcohol and cigarettes, and romantic
closeness, was a significant modifier of the association between
maternal stress and fetal functional connectivity (SI Appendix,
Fig. S4), such that stress had reduced impact in fetuses of less
healthy mothers. Although seemingly counterintuitive, these
findings are consistent with evidence that attenuated stress,
physiological, and immune responses occur under conditions of
chronic stress [103, 104]. That is, when prenatal conditions are
more challenging, it may adaptive for the fetus to be less sensitive
to potential modifiers, such as stress. In contrast, under less
challenging prenatal conditions, stress may have potential to have
greater effect. From a public health standpoint, the main effects of
NAS on the fetal brain continue to point to specific interventional
targets for reducing the effects of prenatal stress programming,
including sleep and relationship support, ease of access to medical
care, and resources targeting reduced substance use. One caveat
of the current study is narrow focus on high-risk women; it will
be important for future research to evaluate replication of
these observations in samples with varied sociodemographic
composition.
Finally, we discovered that a greater overall magnitude in the

association between maternal NAS and fetal functional brain
alteration was associated with a shorter gestational course. Prior
studies have reported a negative association between maternal
stress and fetal age at delivery, but to our knowledge this is the
first study to report that the magnitude of response to stress in
the fetal brain may additionally explain variability in birth
outcomes. Importantly, these data alone do not suggest that
changes in the fetal brain mediate early delivery. Instead, the
relative magnitude of the association between maternal prenatal
stress on fetal neurobiology is likely reflective of unobserved
factors that impact delivery timing, including broader stress-
related alterations in perinatal biology and physiology. Here, these
associations were observed in the 3 weeks prior to delivery. It will
be important for future work to test whether interactions between
stress, timing of delivery and fetal brain FC extends to fetuses
subsequently born preterm.
In research that considers offspring correlates of maternal

stress, negative outcomes are frequently emphasized. However, in
the original Barker hypothesis [105] in utero adaptations are
oriented around promoting fetal/offspring survival. Within that
context, fetal brain differences reported here may reflect
adaptations of the fetus to best meet the challenges of the harsh
environment contributing to maternal stress. The present study
does not include assessment of child outcomes, which limits
ability to address the relevance of fetal brain adaptations to future
child well-being. Furthermore, maternal stress is not easily
decoupled from confounding contextual and health factors. As
an example, we did not gather information about illicit and
prescription drug use and are thus unable to evaluate potential
contribution of those factors to observed effects. An additional

consideration in studies that examine offspring correlates of
maternal prenatal stress is that mother and fetus share genetic
liability that is important in the patterning of neural circuitry.
Overall, in studies such as this, attribution about causality and
directionality are not warranted, and much remains to be done to
understand how the specific intrauterine signaling factors
promote or hinder optimal welfare of the future child.
Overall, our data suggest that widespread differences in the

fetal brain are related to maternal self-reported stress and
negative affect during pregnancy. The findings advance prior
human studies that have demonstrated associations between
prospective measures of psychological and biological indices of
stress and brain structure and function [27–31, 106]. Empirical
evidence presented here, along with data presented in those
influential prior studies, support the notion that excess stress in
utero has the potential to affect neural development with
implications for future health across the lifespan.
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