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Abstract
In order to navigate safely and effectively with humans in close proximity, robots must be capable of predicting the future
motions of humans. This study first consolidates human studies in motion, intention, and preference into a discretized
human model that can readily be used in robotics decision making algorithms. Cooperative Markov Decision Process (Co-
MDP), a novel framework that improves upon Multiagent MDPs, is then proposed for enabling socially aware robot obstacle
avoidance. Utilizing the consolidated and discretized human model, Co-MDP allows the system to (1) approximate rational
human behavior and intention, (2) generate socially-aware robotic obstacle avoidance behavior, and (3) remain robust to
the uncertainty of human intention and motion variance. Simulations of a human-robot co-populated environment verify
Co-MDP as a feasible obstacle avoidance algorithm. In addition, the anthropomorphic behavior of Co-MDPwas assessed and
confirmed with a human-in-the-loop experiment. Results reveal that participants can not directly differentiate agents that were
controlled by human operators fromCo-MDP, and the reported confidences of their choices indicates that the predictions from
participants were backed by behavioral evidence rather than random guesses. Thus the main contributions for this paper are:
consolidating past human studies of rational human behavior and intention into a simple, discretized model; the development
of Co-MDP: a robotic decision framework that can utilize this humanmodel and maximize the joint utility between the human
and robot; and an experimental design for evaluation of the human acceptance of obstacle avoidance algorithms.

Keywords Obstacle avoidance · Human motion modeling · Cooperative markov decision process · Socially aware robot ·
Human robot interaction

1 Introduction

Robots are increasingly utilized alongside humans in both
professional and domestic applications, and it is becoming
important for robots to collaborate safely and effectively
with humans. However, this collaboration is inhibited by
the difficulty for robots and humans to perceive and pre-
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dict the intentions of each other, which could result in
robot actions causing physical harm, near miss, surprise,
or anxiety [1,2]. Ideally, robots shall exhibit anthropomor-
phic cooperative behavior to ensure that their actions are
understandable to humans and persistent towards their goal.
Therefore, a predictive model of rational human physical
movement intentions and cooperative interaction in social

Boyi Hu
boyihu@ise.ufl.edu

Yu Gu
yu.gu@mail.wvu.edu

1 Department of Mechanical and Aerospace Engineering, West
Virginia University, Morgantown, WV, USA

2 Department of Industrial and Systems Engineering,
University of Florida, Gainesville, FL, USA

3 Department of Electrical and Computer Engineering,
University of North Carolina at Charlotte, Charlotte, NC,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-021-00795-5&domain=pdf


International Journal of Social Robotics

contexts needs to be developed and factored in the robot’s
decisions. Furthermore, the robot’s decision-making process
must be robust to the uncertainties of the predictive human
model, such as the motion variance caused by the biome-
chanics and motor control variances, in order to ensure the
safety and cooperation of the agents (humans or robots). In
this context, cooperation is defined as maximizing the joint
utility of all interacting agents, and robustness is defined as
the ability to handle the uncertainty of the intention predic-
tion and motion variance of the agent(s).

This study addresses a gap of the current literature, that is
the lack of a systematicway of incorporating different human
models and motion variances in a real-time robot decision
making algorithm to achieve human-like social interactions.
The proposed overall framework is showing in Fig. 1 and our
main contributions are:

– Consolidating past human studies that approximate ratio-
nal human behavior and intention into a simple, dis-
cretized model with the inclusion of human motion
variance that can be easily consumed by robot decision
making algorithms;

– The development of Cooperative Markov Decision Pro-
cess (Co-MDP), a robot decision framework that can
utilize interchangeable humanmodels andmaximizes the
joint utility between a robot and a human;

– Experimental design for evaluation of the human accep-
tance of socially-aware robot obstacle avoidance algo-
rithms.

To limit the scope of this problem, we assume that two
interacting agents, each being either a robot or a human,
have no direct and explicit communication cues to inform
each other of their intentions; i.e., no direct communication
of an agent’s future plans to other agents. Each agent has to
infer other agent’s intent from their behaviors. The agents
are moving in a 2D environment at typical human walking
speeds. A prior map of the environment is available but may
contain local errors. Further, we assume the robot is holo-
nomic and is capable of fast and accurate pose estimation
and object/human identification, via the use of a well trained
computer vision based object tracking algorithm. The state
of the art algorithms have demonstrated over 99% accuracy
and compute on the order of millisecond [3,4].

The rest of the paper is organized as follows: Sect. 2
reviews previous work done in obstacle avoidance algo-
rithms, human modeling, and Markov Decision Process
formulations for multiple agents. Section 3 presents our
methods for developing discretized, predictive human mod-
els, the formulation of the Co-MDP, and the design of
a human-in-the-loop experiment. Section 4 documents the
results of simulations and the study of the algorithm’s anthro-
pomorphism. Finally, Sects. 5 and 6 concludes the document

and discusses potential avenues for further study, respec-
tively.

2 PreviousWork

The problem of socially-aware navigation often involves
obstacle avoidance research and human behavior model-
ing. The robot must be capable of safely and effectively
navigating while avoiding obstacles and be capable of
understanding, predicting, and emulating human behavior
to operate within social norms. This section presents a brief
review of the existing literature on these two fronts, followed
by a discussion of prior work on Markov decision processes
for multiple agents.

2.1 Robot Obstacle Avoidance Algorithms

Robot obstacle avoidance is a long-studied field with a vari-
ety of approaches proposed for navigating successfully in
complex environments. Searching-based algorithms, such as
A* [5,6] and Nearness Diagrams [7,8], are effective at deter-
mining collision-free paths for robots under deterministic
constraints. However, this class of algorithms scales poorly
when faced with stochastic problems, as they cannot feasi-
bly consider every possible contingency. Algorithms such
as Dynamic Window Approach (DWA) [9,10] and Artificial
Potential Fields (APF) [11–13] are more capable of ensuring
safe obstacle avoidancewithout perfect robot control, but can
not fully leverage histories of prior information to consider
human obstacles. These approaches have been augmented
to allow successful obstacle avoidance in human-populated
environments, and to do so in a socially-aware fashion, in that
they conform to social norms. For example, cost functions for
searching algorithms can bemodified to shape socially-aware
behavior, as in [14,15]. In the case of APF, social interactions
can bemodeled as a social force to shape robot behavior [16].

Even with these augmentations, the underlying formula-
tions often lack a consideration of time or dynamism and
are not capable of using prior information and uncertainty in
decision making. Markov decision processes (MDPs) are a
class of problem formulations which can be applied towards
obstacle avoidance with humans, incorporating information
about robots’ actions over time [7,17]. An MDP represents
problems as a tuple < S, A, T , R, γ >, where S is the set
of possible states, A is the set of actions, T is a transition
function detailing probabilities of moving between states, R
is the set of rewards for each state, and γ ∈ [0, 1] is a dis-
count factor which controls for long-term versus short-term
reward priority. This is extended to stochastic observations in
partially-observable Markov decision processes (POMDPs),
which incorporate beliefs, a probability distribution over
states predicting the set of states an agent is plausibly in.
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Fig. 1 Overview of human
models used and the proposed
Co-MDP framework

POMDPs have been proven to be effective in empowering
obstacle avoidance in social environments with uncertainty
[18,19].

However, finding exact solutions to MDPs is computa-
tionally expensive for problems with large state spaces due
to the need to compute over every action at every state
[20,21] . In addition, POMDPs are even more computa-
tionally expensive to solve. Therefore, attempts have been
made to generate approximate solutions with deep reinforce-
ment learning approaches, where neural network models are
trained to solve classes of similar problems [22–25]. Fur-
thermore, the research in [22,26] successfully apply these
approximation techniques to socially-aware obstacle avoid-
ance in cluttered, pedestrian environments. However, deep
reinforcement learning entails a significant training process,
which both requires large and diverse amounts of training
data to begin approximating MDPs or POMDPs. In addi-
tion, the training must be repeated for parameter changes,
such as a change in the reward function. For example in the
case of [22], encouraging agents to perform pass-on-the-left
maneuvers warranted specially-tailored training examples.
Furthermore, if the robot were to change locations to a left-
hand traffic rule country, the neural networks would need
to be completely re-trained. Therefore, these deep reinforce-
ment learning approximations lack flexibility for changes in
social interactions on demand and robustness to untrained
scenarios.

2.2 HumanModels

Avoiding moving obstacles requires robots to be capable of
motion prediction, which becomes very challenging when
moving obstacles are humans. This is due to human percep-
tion and decision making being affected by many implicit
and explicit factors, such as age, gender, health condition
(e.g., Parkinson), mental status, and environment. Therefore,
human behavior varies considerably even in quasi-identical
conditions. For example, previous studies have shown that
crosswalk crossing speeds of pedestrians are higher than the
nominal walking speed, and are significantly different for
varying amounts of traffic and width of the crosswalk [27].
Furthermore, different motion strategies were also observed

to respond to the same scenario [28]. Therefore, proper mod-
els of human intentions and preferences must be developed
to handle these variances to allow one to better understand
and predict rational humans’ behavior and socially accept-
able motion, respectively.

Human Intention Models—In order to operate efficiently
and safely in a human populated environment, robots should
be able to perceive, in real-time, explicit social intentions,
such as walking forward and waiting. However, unlike
quantifiable features like position and velocity that can be
precisely measured, human intention is a semantic challenge
to assess directly. Pedestrian intention is usually estimated
with path prediction [29,30]. In these studies, different
machine learning algorithms were adopted to predict the
pedestrian’s future trajectory. Paulin et al. [2] introduced the
concept of attention field, which describes how the atten-
tional resources are allocated and shared between the salient
elements of the environment. Although the study was limited
by the computational efficiency of dynamic situations with
moving people, it brought a different perspective to estimate
human intention in certain scenarios, such as in museums.
In human social interaction, the Theory of Mind (ToM) is an
essential ability to predict intentions and behaviors of oth-
ers. Previous studies have shown the possibility of equipping
robots with this ability by modeling ToM properly. The-
ory of Mind Network [31] is a neural network composed
of three modules: a character net that learns from the past
trajectories and characterizes the agent, a mental state net
that infers the mental state by parsing current trajectories,
and a prediction net that leverages the character and men-
tal state to predict future trajectories. Simulators have been
developed to empower agents with ToMmodels, such as Psy-
chsim [32], which is a multi-agent social simulation tool.
The simulation is based on a recursive ToM and each agent
could make its own decisions on what actions to take with a
belief space on the intentions and abilities of the other agents.
Furthermore,in [33,34], an intention recognition algorithm
is proposed for flexible, robotized warehouses based on the
ToM [35]. Human intentions were modeled as hidden states
in a hidden Markov model, which were estimated based on
observable human orientation and motions.
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Human Preference Models—To achieve socially-aware
robot navigation, consideration of social rules of human
comfort and preference in environments that require fre-
quent interactions with the surrounding environment must
be implemented. Sisbot et al. [36] developed a motion
planner that takes into account human visibility and acces-
sibility/personal space. However, this motion planner only
treats humans as static objects, and does not consider their
dynamic behaviors. Human Robot Interaction (HRI) trials
have demonstrated that humans prefer a robot tomovewithin
one’s sight [36], however, in the case that a human inter-
acts with another human or object, it is instead preferred
that robots do not enter the field of view [37,38]. Proxemics
[39] offer a framework of study for human ”personal space.”
According to proxemic theory, levels of discomfort and anx-
iety are increased by the invasion of personal space, which
can bemodeled geometrically as an ellipse [38,40], with both
shape and size dependent on a human’s motion. Costmaps
have also been effective in modeling the social norm of pass-
ing on the left or right [40], based on the local traffic rule, by
increasing the cost of passing on one side of the person.

2.3 Markov Decision Processes with Multiple Agents

Multiagent Markov Decision Processes (MMDP) model the
interactions of multiple agents by representing each of the
agents’ individual action spaces together as a single joint
action space of a single entity [41]. The joint state space and
transition models of MMDPs are also built upon the individ-
ual agent’s models [41–43]. A limitation of this framework is
the computation speed due to the exponential increase in the
state-action space. Thus multiple studies of MMDP [41,44]
focus on limiting the size of the state-action space. This is typ-
ically done by breaking down the navigation challenge into
separate tasks. For instance, in [41,42], the MMDP is broken
into a task assignment planner that controls the coordination
of the agents and each agent computes its own MDP plan to
solve its individual task. Additionally, the computation time
for value iteration can be drastically decreased by solving the
MDP through matrix operations, which can be parallelized
to run significantly faster [45]. Furthermore, [46] reduces
the state space by only utilizing k neighboring agents.

Using these strategies, MMDPs can be more efficiently
solved, allowing for the coordination of multiple agents. In
addition, these implementations have full knowledge of all
agents thus a third person omniscient point of view of all
the agents is taken [41–43]. However, this poses a challenge
for its use in HRI, where it is rarely the case for robots
to know the true intention of humans. Therefore, a first-
person socially predictive implementationmust be developed
to apply MMDP to HRI.

Fig. 2 Example global value and policy results from a MDP path plan-
ning problem, which is used as input to the Co-MDP local planner.
Black denotes static obstacles in the grid world, arrows denote the pol-
icy’s action at each state, and shade corresponds to the state’s value

3 Methods

Building upon the previous work in human modeling and
obstacle avoidance, three human models, intention, transi-
tion, and preference, are developed. Together, these models
are utilized to predict “what” the human is doing, “where” it is
moving to, and “how” it will move, respectively. In addition,
Co-MDP is developed as a socially-aware obstacle avoidance
planner to determine which action the robot should take to
maximize the joint utility between the robot and the human.

MDPwas chosen as the foundation for the obstacle avoid-
ance algorithm for multiple reasons. The first reason is
that there are large variations when predicting the inten-
tions of humans thus the planning algorithm must be able
to inherently handle this uncertainty. Furthermore, deep
reinforcement learning [23] or other deep-learning based
solutions were not selected due to the difficulty of integrat-
ing modifiable human models in the learning process and the
requirement of large training data sets of human motion to
develop anthropomorphic robot obstacle avoidance behavior.

In addition to the human models, the proposed Co-MDP
also receives a local map and a global plan, as input. A tradi-
tional MDP is used to generate this global plan, that includes
a scalar value (VGlobal ) and optimal action or policy(�Global )
for every free cell in themapwithout accounting for dynamic
objects, such as humans, and local errors in the map (shown
in Fig. 2). Co-MDP then serves to make deviations from the
global plan based on social rules and local observations of
a human or new object. Co-MDP’s framework for linking
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Fig. 3 Overall architecture for
Co-MDP formulation. Arrows
represent the transfer of
information between data
structures

data from the environment and the human models to output
a chosen action is shown in Fig. 3, along with a graphical
demonstration of the robot and human being combined into
a single joint entity.

3.1 HumanModels

In this study, the concept of the predictive human models is
to consider several sets of motions that can represent rational
human behaviors and intentions [47], such as walking for-
ward, turning, and standing still. Whereas, motions not yet
incorporated into the models, such as walking backwards,
will be treated as irrational behaviors. This in turnwill trigger
the robot to take more conservative responses, such as stay
further away and slow down the speed. Rational intentions
are predicted to estimate how the human will move and are
discretized to be incorporated into a MDP. The models are
discretized into 1m2 squares, which are displayed in Fig. 6.
The justification for discretizing the grid to 1m2 intervals
is that the average human walking speed is approximately
1.4m/s [27], thus for a step size of one cell, the target com-

putation time is under 1 s. In addition, since variance exists
in human motion due to the spectrum of human biomechan-
ics and motor control, human motion paths do not follow
perfectly straight or circular trajectories. Thus, a socially-
aware control system must consider the uncertainty of this
motion variance. In this work, a matching function is utilized
to compare the observedmotions to the set of intentions. This
matching function is created by adding partial matches, as a
percent of the exact definition of the intentions to identify
similar motions and provide a reasonable prediction on what
the human is intending to do. This approachwill be explained
in more details next.

Human Intention Models—In the current study, six pri-
mary human behaviors are considered to represent rational
human intentions: random motion, walking forward, turning
left, turning right, waiting/standing still, and searching. The
intention models were developed based on the motion vali-
dation method [33,34]; that is, compare the human’s actual
motion with the definitions of the six intentions using a
matching function (M) to calculate the matching percent-
age of the human’s action to each of the intentions. Each
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intention is governed by the transition of the agent, which is
broken down into two components: translation and rotation.
Both of which are represented as a matching percentages
that are based on how closely the perceived action matches
the exact action defined by the intention model. Thus, the
percent match for each intention is the sum of the transla-
tion and rotation matching percentages to the agent’s action
for the given intention, as shown in Eq.1, where M is the
matching percentage of an action given an intention, Mt is
thematching percentage of a translation for a given intention,
and Mr is the matching percentage of a rotation for a given
intention.

Mintention = Mt (translation|intention)

+ Mr (rotation|intention)
(1)

As an example,walking forward is defined as transitioning
to the next state that is in the direction of the agent’s orienta-
tion while maintaining the same orientation. However, due to
human motion variance, the absolute nature of this definition
must also include variance by assigning percentages for how
close the human’s motions match the intention definitions.
Figure 4 displays the intention matching percentages, where
the agent is in the center of the table facing upwards, and
each cell holds the intention matching percentage received,
for the given intention of walking forward and the possi-
ble translations. The lower tables, in this figure, represent
the intention matching percentage, for the given intention of
walking forward and the possible rotations the agent could
have taken.

The intention matching percents were generated based on
how closely the given action matched the definition of walk-
ing forward: (1) translate in the direction of orientation of
the agent (2) maintain the same orientation. Thus, by the
definition, only if the agent translated to the state directly
in front of it (half of the definition), would a 50% match
of the agent intending to walk forward be assigned for the
translation component (Mt ). In addition, only if the agent
maintained the same orientation as before, would an addi-
tional 50% match (Mr ) be added that it is intending to walk
forward as shown in Fig. 4 (left), for a total of 100%match of
walking forward (Mwalking f orward , using Eq. 1). However,
themodelwith variance (Fig. 4 right) allows the agent to have
motion variance while still intending to walk forward since
other transitions also have matching percentages assigned to
them.

In addition, the intentions of turning left or right are
defined as moving forward or diagonally from the current
position and rotating ± 45◦ from the current orientation. As
with walking forward, this exact definition of turning needs
to accommodate for human motion variance. Waiting and
searching intentions are very similar in that the agent is
maintaining the same location. Waiting entails that a human

Fig. 4 Intention models for example behavior of walking forward, with
thematching percentage definition of walking forward (left) andmatch-
ing percentages accounting for variance in human motion (right). Note
that empty cells have a zero percent match

maintains their orientation, while searching models humans
looking around by changing orientation. All six intention
matching functions (Mintention) are displayed in Table 1,
where the agent is in the center of eachmatrix facingupwards,
and the value is the matching percentage assigned for that
translation, given the intention. In addition, the lower tables
represent the matching percentage for each of the eight dis-
cretized rotation directions, given the intention. An example
for determining the matching of the human’s motion to each
intention is shown in Eq. 2 for the observed human transi-
tion of not translating and rotating left 45 deg. This was done
by reading the matching percentage values for not translat-
ing and rotating left from Table 1 given each intention. Then
summing the rotation and translation components of the cor-
responding intentions (Mr and Mt , respectively) following
Eq. 1 as shown in Eq. 2. Thus resulting in a column vector
housing the percentage of how closely the human’s transition
matched the definition of each intention.

⎡
⎢⎢⎢⎢⎢⎢⎣

Mrandom

Mwalking f orward

Mturningright

Mturningle f t

Mstandingstill

Msearching

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

11%
0%
0%
0%
50%
50%

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

12.5%
12.5%
0%
50%
25%
50%

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

23.5%
12.5%
0%
50%
75%
100%

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

Furthermore, since the intention of searchingwas the clos-
est match to the human’s transition, at 100%, the predicted
intention of the agent will be ”searching”.

Transition Models—In addition to predicting where the
human will go with the intention models, it is also necessary
to determine where the human will plausibly move to in the
immediate next step based on its intention. Thus the transi-
tion models were developed based on the intention models
as the probability of taking the corresponding action to trans-
late and/or rotate to the next state. The joint probability of
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Table 1 Discretized intention matching percentage models with the agent in the center and facing upwards

Random Walking forward Turning right Turning left Standing still Searching

Intention matching percentage models: translation

11% 11% 11% 25% 50% 25% 25% 50% 50% 50% 50% 25%

11% 11% 11% 12.5% 12.5% 25% 25% 50% 50%

11% 11% 11% 12.5% 12.5%

Intention matching percentage models: rotation

12.5% 12.5% 12.5% 12.5% 50% 12.5% 25% 50% 50% 25% 25% 50% 25% 50% 25% 50%

12.5% N/A 12.5% N/A N/A 25% 25% N/A N/A 50% N/A 50%

12.5% 12.5% 12.5% 12.5% 12.5% 50% 50% 50%

Empty cells have a zero percent match to the intention

Table 2 Discretized transition probability models with the agent in the center and facing upwards

Random Walking forward Turning right Turning left Standing still Searching

Transition probability models: translation

0.11 0.11 0.11 0.1 0.69 0.1 0.1 0.4 0.4 0.4 0.4 0.1 0.02 0.14 0.02 0.04 0.28 0.04

0.11 0.11 0.11 0.05 0.01 0.05 0.05 0.01 0.05 0.05 0.01 0.05 0.01 0.8 0.01 0.02 0.6 0.02

0.11 0.11 0.11

Transition probability models: rotation

0.33 0.33 0.33 0.125 0.75 0.125 0.15 0.25 0.6 0.6 0.25 0.15 0.125 0.75 0.125 0.4 0.2 0.4

Empty cells have zero probability of transition

transition P , for the given intention is displayed in Eq. 3.

Ptransi tion = P(T ranslation | intention)

× P(Rotation | intention)
(3)

The transition models were empirically derived as a proof-
of-concept model with large variances to allow the Co-MDP
algorithms to consider most probable actions the human can
take in its decisions. All six translationmodels for each inten-
tion are displayed in Table 2, where the agent is in the center
of eachmatrix facing upwards and the value is the probability
of transitioning to that adjacent cell. In addition, the lower
tables represent the probabilities of turning left, maintaining
orientation, or turning right 45◦ respectively.

Human Preference Models—From the previous work,
four primary spatial cost models, or preference models, are
identified in determining the cost of being near humans: per-
sonal space [36,38,40], moving space [38,40,48], back space
[38,40,49], and pass on the left [40,49].

Personal space consists of the region directly surround-
ing the human that is preferred to be unoccupied as much as
possible. Assume the human is standing at the origin and fac-
ing the positive y-axis, a Bivariate Gaussian distribution with
σx = σy = 0.61 was used to represent the cost distribution
in personal space so that the shape and size of the personal
space match the Personal Zone defined in [39].

Moving space refers to the area directly in front of the
human that is preferred to be empty so humans can continue
to walk in that direction. This space’s cost function is also
a Bivariate Gaussian distribution with σx = √

3v and σy =√
4.5v, where v is the relative velocity between the human

and the robot. The values are chosen based on the study by
Kirby et al. [40].

Back space reflects the discomfort humans experience
when other agents are directly behind them, outside of their
field of view. Thus, a higher cost is assigned to reduce such
discomfort of humans when interacting with robots. The cost
function of this space is also aBivariateGaussian distribution
where σx = σy = √

3v [40].
To take the right-hand traffic custom common in countries

such as the US into account, a higher cost is added to the right
side of the agents to enforce the robot to follow the social
norm and pass from the human’s left. The cost function takes
the shape of a bivariate Gaussian distribution with σx = √

4v
and σy = √

v [40]. Furthermore, if the robot moves to a
country where traffic stays to the left, this cost distribution
would be mirrored to the left side.

For the purpose of simplification, relativemoving velocity
between the robot and human, v, was set to be 1.5m/s in our
implementation. Each cost distribution was then discretized
into a 5 × 5 grid and normalized. The values in the 2-D grid
were chosen to represent the 3-D geometric shape of the cost
distribution as shown in Fig. 5 . Subsequently, the grids of
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Fig. 5 Combined cost distribution of moving space, back space, and
pass on the left. Units of x and y axes are in meter. The costs were
normalized so that they integrate to one

Fig. 6 Cost function surrounding a moving human at the center. Blue,
green, red, and black blocks represent personal space, moving space,
pass of the left, and back space, respectively

four cost distributions were added together, normalized, and
the resultant discretized grid is displayed in Fig. 6. The grid
was limited to a 5m x 5m area given the fact that the cost
approaches zero at further distances.

3.2 Human Goal Prediction

With the human models defined, the next step is to predict
the three-step future goal location of the human to provide
a short term estimation of where the human might be going.
The justification for the three step prediction is, three steps
outward results in a 7× 7gridmap (49m2) as shown inFig. 7.
This sized local map provides adequate detection space for
the intention and transition models and can fully encompass
the preferencemodelwith a ring of surrounding empty space.
A 7 × 7 grid is also at the current computational limit of the
Co-MDP formulation as described in the next section. The

three-step human goal prediction algorithm is documented
in Algorithm 1.

Algorithm 1: Process to predict three-step goal of
human agents.
input : localPath, objectMap
output : The human’s third predicted location
for t = 1 to 3 do

intention = getMostProbableIntention(localPath);
transition = getTransitionModel(intention);
action = maxProbability(transition);
position = localPath.end();
newPosition = position + action;
/* Validate that action does not cause

collision */
while objectMap(newPosition).isOccupied() do

action = maxProbability(transition - action);
newPosition = position + action;

end
localPath.append(newPosition);

end
return newPosition;

3.3 Co-MDP Formulation

Co-MDP considers the movement of two agents, one human
and one robot, together as one entity with a shared state
and action space. This combination into one entity explic-
itly allows both agents to be aware of the optimal choice
of the other and find the maximum joint utility for both of
them. Themerging of the human and robot into a single entity
comes at the cost of larger state and action spaces.

Since the robot cannot explicitly measure the intention of
the human, Co-MDP uses the developed humanmodel with a
predicted intention to simulate the human agent. This causes
an imbalance of knowledge about the agents in Co-MDP
since the intentions are fully known for the robot while the
human’s are only predicted. Thus, Co-MDP shifts the view-
point of MDPs from third person omniscient (as in MMDP)
to the first person viewpoint of the robot, as shown in Fig. 7,
to prioritize known information. This shift in view is fur-
ther justified due to this being the primary viewpoint of the
robot in the real-world. Figure 8 displays an overview of the
Co-MDP algorithm.

Just like in MMDP, the State (S) and Action (A) spaces of
the Co-MDP are built upon the individual state and action
spaces of the agents [41–43]. Each agent has a sub-state
space of dimensions < x, y, θ > representing all possi-
ble discretized 2D positions (x, y) and orientations θ of
the agent. In addition, each agent has a sub-action space of
< dx, dy, dθ > where each change can take the value of
[−1, 0, 1] allowing the agent to translate to any adjacent cell
or stay in the same cell, and rotate clockwise 45◦, not rotate,
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Fig. 7 An example local world centered around the robot with a human
(top left) in view. Black denotes static obstacles, and white denotes free
space

Fig. 8 Flowchart for Co-MDP algorithm, which in this application
takes global planning and the human’s path as input and outputs an
action for the robot

or rotate counterclockwise 45◦. By combining both agents’
action and state spaces together, their representations become
independent dimensions of a unified entity. Eqs. 4 and 4 dis-
play the state and action vectors, respectively.

S = < x1, y1, θ1, x2, y2, θ2 > (4)

A = < dx1, dy1, dθ1, dx2, dy2, dθ2 > (5)

In addition, Eqs. 6 and 7 describe the number of states and
actions in a square world with n agents and a side length, L ,
whichmust be an odd integer so the robot can be in the center
of the local world.

number of states = L2n ∗ 8n (6)

number of actions = 33n (7)

Evaluating these equations with two agents and a 7x7 grid
word (n = 2, L =7) results in a large but feasible state space
size of 153,664 states with 729 actions.

Since the behavior of a MDP is largely shaped by its
reward function, special care must be taken in designing Co-
MDP’s reward functions to ensure socially-aware, safe, and
effective deviations from the global plan. For each Reward
providing component such as the Global Policy, Global Val-
ues, and the other agent, a constant weight ”w” is assigned.
Each weight is assigned based off the percentage normalized
by the highest value of the Global Policy in view, so that it
is easily tuned to expresses the appropriate social behaviors.
The Reward function is described by Eq. 8 where s is the
given state, Rposition is the reward for being in a particular
location on the map and Rheading , is the reward for having
a particular heading direction. In addition, RPmodel, human

and RPmodel, robot are the rewards for the preference model
of the human and robot respectively. Furthermore, Robstacle,
REmpty , and Rhuman_goal are the rewards for an collisionwith
an obstacle, for the empty space in the map, and if the human
is in its predicted goal location, respectively.

R(s) = wposi tion Rposi tion(s) + wheading Rheading(s)

−wPmodel(RPmodel, human(s) + RPmodel, robot (s))

−wobstacle RObstacle(s) − wEmpty REmpty(s)

+whuman_goal RHuman_goal(s) (8)

Typically, withMMDP, each agent is assigned a goal posi-
tion [43] that is given a high reward and the agents head
towards their respective goals accordingly. However, since
Co-MDP is a local planner that does not see the entire envi-
ronment, a local goal must be selected, e.g., the highest value
from the global policy in sight. This approach limitsCo-MDP
to only make slight deviations from the global path since the
robot must reach the specified local goal, causing difficulties
when the previously planned path is newly blocked. Figure 9
demonstrates this failure in Fig. 9a and c, where the robot
follows the global path of Fig. 9a in c despite the path being
blocked by the human. Instead, the robot could have avoided
the human by going down the other hallway as shown in
Fig. 9b.
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Fig. 9 The initial global plan
(a), the “would be” global plan
if the human was known (b), the
local plan with explicit goal (c),
and local plan without explicit
goal (d). Blue/red denote
low/high value, respectively

To increase the effectiveness of the path deviations, the
local section of the provided global policy (�Local , which is
the global optimal action direction) and global values (Vlocal )
are assigned as the foundation of Co-MDP’s reward function,
where the policy direction dot multiplied by the state orien-
tation determines the heading reward of the robot. This is
shown in Eq. 10 where ŝ is the orientation of the individual
state, s and �Local is the optimal action direction from the
local subset of the global policy (�Global ), as shown in Eq. 9.

�Local ⊂ �Global (9)

Rheading(s) = �Local(s) · ŝ (10)

The global value (VGlobal ) determines the position reward
(Eq. 12) of the robot. By doing this the robot has no explicit
goal position that it must reach and therefore its “goal”
becomes the highest valued state. This allows Co-MDP to
make large deviations from the planned path when necessary
that are influenced by global policy and the local observation.
This process is demonstrated in Fig. 9.dwhere the robot devi-
ated from the global path of Fig. 9.a to go up the left hallway,
due to the human blocking the right hallway.

VLocal ⊂ VGlobal (11)

Rposition(s) = VLocal(s) (12)

This approach is only applied to the robot agent’s portion
of the shared state space since only the global plan of the robot
is known as the human agent is only a prediction of what
the human may do. However, this does not limit Co-MDP
because the humanwill handle its own independent long term
and local path plan. Therefore, the human agent’s specific
goal can be assigned as the explicit goal provided by the
intention model, with a high positive reward (RHuman goal ).

The reward function is also augmented by applying large
negative rewards to static objects (RObstacle) and the prefer-
encemodel surrounding both the agents (RPmodel ) to prevent
collisions with static objects and the agents. In addition, a
small negative reward is given to empty space (REmpty) to
have the agentsmove towards their highest value states faster.

In addition to the reward function, the transition func-
tion (T ) also heavily governs MDP behavior, because it is
the probability of transitioning to the next joint state (s′)
given a joint state-action pair (s, a). In addition, the transi-
tion function can be described as the joint probability of each
agent taking its corresponding sub-action< dx, dy, dθ > as
shown in Eq. 13. The probabilities of each agent taking each
sub-action are provided by each agent’s intention specific
socially-aware transition model (P), which is displayed in
Table 2.
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T (s′|s, a) = P(subActionrobot ∩ subActionhuman) (13)

Furthermore, due to the nature of the transition mod-
els existing as an integration or “build-up” approach to
predicting the movements of the human, the uncertainty
from the models grows exponentially with increasing time
steps. Therefore, to mitigate this issue, a receding horizons
approach with a three time step horizon, to match the three
step intention prediction, is utilized as shown in Fig. 10. Co-
MDP is re-run after every time step that another robot or
human is within view. This allows the intention, predicted
actions, and goals of the other agents to be updated. This
reduces the long term uncertainty of the human changing
intentions. Furthermore, it aids in retaining robustness for
unmodeled scenarioswhere a human acts erratically and con-
stantly changes intentions.

To reduce the computation time, a matrix implementation
for value iteration [45] that takes advantage of linear algebra
to parallelize the processes of Co-MDP is utilized. R and V
are the reward and value functions expressed as vectors. N S,

Fig. 10 Receding horizons in waypoint navigation example with Co-
MDP

T , and Q are the next state, transition, and state-action-value
matrices that hold the index of the next state, transition prob-
ability, and value of the next state, respectively, when given
the current state and action. The discount factor γ remains a
scalar value. These vectors and matrices are connected using
the Bellman Equation (Eq. 14) as shown in Fig. 8

V (s) = max(R(s, a) + γ
∑

P(s, a, s′)V (s′)) (14)

3.4 Experiment Design with Human -in-the-Loop
Assessment

Due to the subjective nature of social interaction rules, it is
difficult to extend the verification of following these rules
past direct observation. Therefore, to verify the performance
and the anthropomorphic obstacle avoidance behavior of Co-
MDP, a human-in-the-loop approach was designed to test if
the trajectories generated from the proposed algorithm or
from the human operators can be distinguished by human
observers. The proposed algorithm is evaluated by the per-
centage of human observers that identify the algorithm as
a human and the confidence of their answer. A simulated
supermarket scenario was used to demonstrate the obstacle
avoidance behavior of two agents (human or robot). There
were two phases of the experiment: (1) data generation, and
(2) socially-aware obstacle avoidance behavior verification.

Phase I, Data Generation—for this portion of the exper-
iment, four experienced robotics developers with no prior
knowledge of the proposed algorithm were recruited as the
human operators to generate the simulated human trajec-
tories, their mean±std age was 28.0 ± 2.2. By selecting
roboticists for this task, it was hoped that participants would
be able to emulate behaviors as close to their innate nav-
igational behaviors as possible. Lay participants would be
presented with multiple distractions not present in a motion
capture setting: understanding an occupancy grid, perceiving
an abstract agent as one’s ”self” and using a keyboard to nav-
igate accurately. As a result, their navigation in this test may
not be representative of their behavior in a real-world envi-
ronment. Roboticists are more likely to be comfortable with
the side-effects of the testing environment, and thus may be
better able to performnaturally on the navigation task. Before
the experiment, adequate training and time were given to the
operators before they felt comfortable to generate data. Once
the experiment commenced, the instructions provided to the
operators was,

You are to behave as if you are walking and picking four
items in a supermarket. While staying as close to the pre-
defined path for each segment as possible without colliding
with the other agent, which could be either a human or a
robot.
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Fig. 11 The final image from one of the experiment videos with the
suggested and actual paths taken by both agents

The predefined path was the shortest path towards the next
item and served as a reference so that the operators could
focus on the obstacle avoidance rather than the path plan-
ning. Each operator was asked to accomplish five trials with
four goals in each. During each trial, the trajectory gener-
ated by the operator, the trajectory of the other agent, and the
predefined shortest paths of the two agents were recorded.
An example of this experiment is shown in Fig. 11, which
displays all the suggested predefined paths to all the goals
and actual paths taken by the agents.

Phase II, Socially-Aware Obstacle Avoidance Behavior
Verification—21 participants,10 males and 11 females, were
recruited to conduct the second phase of the experiment,
their mean±std age was 33.3 ± 12.9. Seventeen partici-
pants reported to have no experience with robot obstacle
avoidance algorithms and four participants reported to have
1–2years of experience. In each experimental trial, partic-
ipants were asked to watch a video showing the obstacle
avoidance behavior of two agents interacting in the same
scene and then identify which agent(s) were controlled by
humans. Each participant watched eight videos (2 modes of
agent A (human or Co-MDP operated)× 2 modes of agent B
× 2 repetitions). In addition, participants were asked about
their confidence in the predictions after each trial from 1 to
5, and the confidence level was normalized to 20–100%. The
six exact questions are:

– In this video, do you think the YELLOW block was a
Robot or Human?
A: yes / no

– Please rate your confidence in your answer to the previous
question.
A: (I’m not sure) 1–5 (I’m very confident)

– In this video, do you think theGREENblockwas a Robot
or Human?
A: yes / no

– Please rate your confidence in your answer to the previous
question.
A: (I’m not sure) 1–5 (I’m very confident)

– How well did the blocks avoid each other?
A: (poorly (collided together, took significantly more
steps than the path, etc.)) 1–5 (excellent (effortlessly,
human-like, etc.))

– How predictable were the movements of the blocks?
A: (not predictable at all) 1–5 (fully predictable)

By the end of the experiment, they were also given the oppor-
tunity to share what agent motion features they leveraged for
their decisionmaking process. To further diversify the testing
dataset for better generalizability of the results, we prepared
four different sets and randomly assigned one to each partic-
ipant.

After data collection, the participant’s responses were
compared to the truth. Furthermore, the confidence of the
participants for each prediction was also compared and
analyzed. Statistical analysis was conducted with statistical
significance achieved when p < 0.05. Due to the effects of
COVID-19, all experiments were conducted online without
face-to-face contact. The experiment protocol was approved
by the University of Florida Institutional Review Board
(IRB202003142).

4 Results and Discussion

For the proposed algorithm, using the human motion models
with Co-MDP, the simulated robots were observed to fol-
low the provided social norms, and exhibit socially-aware
behavior. These behaviors were verified through simulation
testing and human participant evaluation of the anthropomor-
phic behavior.

The first simulation testing was computation time. Imple-
menting Co-MDP as a matrix had the effect of reducing the
rate of computation by approximately nine times the rate of
standard value iteration (VI) for our used number of states
153,664, as shown in Fig. 12.

The rate of collision for Co-MDP was assessed using the
human-in-the-loop data. Throughout each of the four goals of
the twenty videos (eighty trials) used in the humanparticipant
experiment, only one collision, where both agents occupied
the same grid cell, occurred between a human operator and
the robot. This occurredwhen the robotwas against awall and
the human operator violated expected personal space norms,
coming very close to the robot. Thus the collision rate for
this algorithm is 1.25% and it shows the feasibility of using
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Fig. 12 Rate of computation
comparing matrix implemented
Co-MDP with standard value
iteration (MDP-VI). Where the
solid dots are the raw
experimental results, and the
dotted line is an exponential fit
line

Co-MDPas an obstacle avoidance algorithm in environments
with a human, with room for future improvements.

Another simulation test that validates amultitude of social
interactions such as passing on the left, providing adequate
personal space, and cooperation is the traditional hallway test
[7]. The hallway test (shown in Fig. 13) consists of two agents
one controlled by Co-MDP (green) and the other controlled
by ahuman (yellow), that are to reach apredefineddestination
at the other end of the hallway by passing each other on the
left (for right hand traffic countries) with adequate personal
space.Co-MDPrepeatedly expresses both of these behaviors.

In addition to the hallway scenario, the supermarket sce-
nario used by the human participants also exhibits socially-
aware behavior. For example, as shown by the paths in
Fig. 11, the robot deviated from its suggested shortest
path to ensure adequate personal space around the human
throughout the entire experiment, except when prevented by
environmental factors such as tight hallways. In addition, the
robustness of the algorithm to find a new path to maximize
social utility is shown by the robot traversing around the aisle
to provide adequate personal space despite the center hallway
being a shorter path.

From the human participant verification of the algorithm,
a confusion matrix demonstrating how participants classi-
fied agents in different cases, along with the confidence of
the participants’ answers are shown in Table 3 and Fig. 14.
Identification results of 21 participants are shown in Table 3.
As shown in the confusion matrix, among 168 observations
that the agent was robot, 90 of them (53.57%) were labeled
as human agents by participants; while among 168 obser-
vations that the agent was human, only 69 (41.07%) were
labeled as humans. One-tailed two-proportion z-test revealed
that the percentage of labeling a true robot agent as a human
(53.57%) is significantly higher than labeling a true human

Table 3 Confusion matrix of participants’ identification results

Prediction
Robot Human

Truth Robot 78 90 168

Human 99 69 168

177 159

Truth denotes which agent type was observed, robot or human, and
Prediction denotes which type the participant identified it as

agent as a human (41.07%), with the z-value = 2.29 and p =
0.01 < 0.05.

Collectively, these results indicated that the socially-aware
Co-MDP we proposed achieved the expected performance
in the simulated testing environment, and showed substan-
tial human-like behavior. However, these results should not
be overstated. At face value, the Co-MDP agents even out-
performed human agents in the test (21 more observations
were labeled as humans). There are many factors that may
have contributed to this outcome: (1) although operators we
recruited were all seasoned robotics developers with at least
3 years experience, and adequate training sessions were pro-
vided for them to learn how to operate the agent, it is possible
that their operation did not fully represent their intention and
their performance deteriorated, and (2) the testing environ-
ment was a simplification of the real-world scenario, which
made the environment perception more challenging on the
human side than the algorithm side. In terms of the con-
fidence of identification, as shown in Fig. 14, the average
confidence of the correct identification (73.5%) is higher
than the false identification (69.0%). More specifically, the
average confidence of identifying a robot agent correctly
(75.7%) was higher than a false recognition (67.8%); sim-
ilarly, the average confidence of successfully identifying a
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Fig. 13 Human–robot
interaction example in a hallway
environment. The human
(yellow) and robot (green) pass
in opposite directions, with
frames taken at the beginning
(a) middle (b) and end (c) of the
task. Light blue denotes static
obstacles, dark blue denotes free
space

human agent (70.5%) was higher than a false recognition
(69.7%). The higher level of confidence of correct identifi-
cation indicated that the predictions from participants were
backed by different evidence rather than random guesses.
Overall, the results from this human-in-the-loop experiment
were promising, which provide further support for the fea-
sibility of our proposed approach. Follow up assessments
with physical human–robot interaction will be necessary to
evaluate the algorithm at a higher fidelity level.

From the descriptions of the criteria the participants used
to identify the agents as humans or robots an unprompted
dichotomous viewpoint emerged. A majority of the par-
ticipants (14 of 21) had the viewpoint that humans would
be more passive by taking longer paths to avoid the
robot, while the robot would follow its path more directly.
Six other participants believed the opposite to be true.
This is further supported by Fig. 14 where the average
confidence of the participants for identifying the robot
as either human or a robot was high at approximately
70%. This finding illustrates that a universal socially-
aware robot behavior algorithm is challenging to develop
and this direction of research merits further investiga-
tion.

Another interesting observation is that the participants
identified the human agents as robots more often than
as humans. This result may be due to the human oper-
ators potentially viewing the scenario as a game, where
they have to minimize their path as much as possible
and since it is in simulation, they can be more direct or
“robotic-like” according to our human participants than if
they were in the real-world with the robot reacting nat-
urally without explicitly thinking about their actions. In
addition, since the selected human operators were expe-
rienced robotics developers they may be biased towards
behaving more robotic-like (i.e., taking action to maximize
utility).

During the experiment, participants were asked to rate
the collective obstacle avoidance performance after each
video on a 5-point Likert-scale from 1-poorly to 5-excellent.
Results of participants’ subjective rating are shown in the

Table 4 Participants’ ratings of the subjective performanceof collective
obstacle avoidance, grouped by the type of interaction observed

Interaction Mean (std) performance

Robot–robot (RR) 3.83 (0.82)

Human–human (HH) 3.67 (0.79)

Human–robot (HR) 3.29 (1.16)

Table 4 , where the condition refers to the ground truth
labels of the agents in the videos. Results from Kruskal–
Wallis H Test revealed that there was a significant difference
between the participants’ rating of the three conditions from
(H-value = 7.083, p=0.029).Mann–WhitneyUTest revealed
that the average rating of RRwas significantly different from
the average rating of HR (p = 0.015). No significant differ-
encewas observed betweenRR–HH (p= 0.413), andHR-HH
(p = 0.088).

In the simulation study the case where both agents were
robots can be considered an socially aware MMDP com-
parison of the agents. This is because both robots predict
not only the intention of the other robots, but also what the
other robot would think its intention is. The reason for this
is in order to act humanly, the robots must move in ways
that others expect it to move, so each robot uses the tran-
sition model that the other agent thinks it has. Therefore,
since both agents are robots and they use the intention model
that the other agent thinks it has, both agent’s predictions
of the other’s intention are true. Thus each robot knows
the true intention of the other, and they would behave the
same as if they were in a direct MMDP algorithm.However
there is a deviation from standard MMDP, since both robot’s
local worlds are egocentric, their shared state-spaces are
slightly different. Based on Table 4 it is shown that the
two robots interaction performed only slightly higher than
the other cases. The higher performance may be attributed
to this advantage that each robotic agent shares the same
models and can perfectly predict the true intention of the
other agent, which is not possible in the human interaction
cases.
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Fig. 14 Participants’
confidences in their
identifications

5 Conclusion

This paper presents an interdisciplinary effort combining
human studies, robotics, and machine learning knowledge in
developing a socially-aware obstacle avoidance algorithm.

The first contribution of this work is the consolidation and
development of discretized probabilistic short-term human
motion models that can be easily implemented into robotic
algorithms. The result of these models allows the improve-
ment of predictive socially acceptable cooperative obstacle
avoidance between groups of humans and robots in the form
of Co-MDP. In addition, a verification procedure of the
anthropomorphic behavior of Co-MDPwas developed, using
a novel experimental design with human-in-the-loop simula-
tions and human participant observation verification through
statistical study.

6 Limitations and FutureWork

The main limitation of Co-MDP, like MMDP, is the expo-
nential growth in state space with an increase in the number
of agents or size of the local map. For instance, using Eq. 6
with two agents results in 153,664 states.However,with three
agents, it scales to over 60 million states. Additionally, the
verification process of this algorithm was limited to simula-
tions in a simplified grid world with only two active agents.
Another limitation was that the numeric values in the human
intention model and transition model were empirically
selected in this study to represent a proof of concept. Human
studies towards a better understanding of the uncertainty of
human intention and motion variance are needed to make

the human models more representative of rational human
behaviors.

Future work would include alleviating the computational
limitations of the Co-MDP, while also maintaining the tar-
get computation rate of 1 Hz. One alleviating method would
be approximating the very large Q-matrix with the deep
reinforcement learning techniques as demonstrated by [22–
25]. This could be further improved by pruning the possible
actions that the agent cannot take based on the Human Tran-
sition Models, from the action space. This would reduce
the size of the T and Q matrices by 1/3, if the intention
is not ”Random” which would decrease the computation
time [50]. Another future direction is to expand this frame-
work to more agents, based on the principle of fast decaying
interaction effects with distance [46], by only considering k
neighbors.

To further improve the simulated testingmotion capture of
humans and robots interacting will be done to generate real-
world data that captures the implicit actions of humans. In
addition, a physical experiment will be conducted by having
a mobile robot navigate in a room with humans and observ-
ing not only the robot’s behavior but the humans’ behavior as
well, to verify the social-awareness of Co-MDP at a higher
fidelity level.

This testing would also provide better understanding
of human intention and motion variance, by having the
robot learn the human transition and intention models
using a model free Q-learning approach similar to learned
approaches in [51]. Thus, improving the fidelity of the
motion models. Furthermore, an analytical study of the
reward weighing parameters similar to [52] would increase
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the fidelity of the empirically Co-MDP reward derived
weights.

In addition, the intention selection method could be
improved with a Bayesian approach as [53] uses to pre-
dict what object a human is intending to pick up. The
reason why a Bayesian approach was not initially included
was due to the absence of a model of how human inten-
tions change over time. Thus investigations on the change
of human intentions over time will be pursued in future
studies.

The outcomes of the human-in-the-loop experiment also
suggest additional research directions in understanding how
people perceive a robot’s behavior as socially acceptable
and how improvements in robot’s decision making capa-
bilities affect human behaviors around these robots. In the
current implementation of the human models, more specifi-
cally, the cost functions used in the humanpreferencemodels,
the only variable being considered to represent the cost
changes caused by human motions was the relative mov-
ing velocity between the human and the robot v, and it’s
value was set to be constant for simplification. In addi-
tion to the velocity the emotional state of the human would
change the cost distribution surrounding it, due to the change
in behavior. Studies have been conducted by [54] on how
robots can convey and perceive social queues to determine
the emotional state of the human, and how their behavior
changes. As for the next step, the real-time changes of the
preference model will be included, based on the current
relative velocity and the emotional state of the human.In
addition, it would be interesting to investigate if the robot
can benefit from assigning different cost functions (e.g.
shape, size, and cost values) around the human based on
his/her intentions and motions and generate more socially
aware obstacle avoidance behaviors. Furthermore, [55] pro-
vides a compilation of eight areas of social cognition some
of which were addressed in this paper, such as ”leverage
simulation-based top-down perceptual biasing”, which allow
for extrapolation of the current state into predicted future
states(Algorithm 1 ). This is in addition to other areas of
social cognition that were not included such as ”provide
motor and perceptual resonance mechanisms” that allow for
continued learning of HRI, to be included into the future
work.
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