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Abstract

Background: Recent studies on genome assembly from short-read sequencing data reported the limitation of this
technology to reconstruct the entire genome even at very high depth coverage. We investigated the limitation from the
perspective of information theory to evaluate the effect of repeats on short-read genome assembly using idealized (error-
free) reads at different lengths.

Methodology/Principal Findings: We define a metric H(k) to be the entropy of sequencing reads at a read length k and use
the relative loss of entropy DH(k) to measure the impact of repeats for the reconstruction of whole-genome from sequences
of length k. In our experiments, we found that entropy loss correlates well with de-novo assembly coverage of a genome,
and a score of DH(k).1% indicates a severe loss in genome reconstruction fidelity. The minimal read lengths to achieve
DH(k),1% are different for various organisms and are independent of the genome size. For example, in order to meet the
threshold of DH(k),1%, a read length of 60 bp is needed for the sequencing of human genome (3.2 109 bp) and 320 bp for
the sequencing of fruit fly (1.86108 bp). We also calculated the DH(k) scores for 2725 prokaryotic chromosomes and
plasmids at several read lengths. Our results indicate that the levels of repeats in different genomes are diverse and the
entropy of sequencing reads provides a measurement for the repeat structures.

Conclusions/Significance: The proposed entropy-based measurement, which can be calculated in seconds to minutes in
most cases, provides a rapid quantitative evaluation on the limitation of idealized short-read genome sequencing.
Moreover, the calculation can be parallelized to scale up to large euakryotic genomes. This approach may be useful to tune
the sequencing parameters to achieve better genome assemblies when a closely related genome is already available.
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Introduction

The development of the next generation sequencing technolo-

gies (NGS) raised the hope to conduct true haplotype analysis of

human genome [1] and for rapid full genome sequencing and

typing of various organisms. The 1000 Genomes Project, launched

in 2008, began to sequence one thousand human genomes with

SGS platforms [2]. In the first phase of the project, the goal was to

generate low coverage whole genome shotgun sequencing of 185

individuals. These data were produced in order to validate millions

of published genetic variations including single nucleotide

polymorphisms (SNPs), insertions and deletions (indels), and other

structural variants. Soon after the announcement of the project,

another group of scientists started the Genome 10 K project in

2009 which aims to ‘‘assemble a genomic zoo’’ by sequencing the

genomes of vertebrate animals [3]. These studies help us

understand the correlation between genotypes and phenotypes if

large-scale genome shotgun sequencing could be unambiguously

and accurately assembled.

Recently, Alkan et al. published their analysis of the short-read

sequencing data generated from the whole genomes of a Han

Chinese individual and a Yoruban individual [4]. In contrary to

the initial optimistic view of using NGS technologies to re-

constitute the whole genome, it showed a severe deficiency in

disambiguating certain genomic regions with short reads. Com-

pared to reference human genome, more than 400 mega-base-

pairs (Mbps) of common repeats are missing. As a consequence, it

is still a challenge to perform accurate haplotype analysis even

though a massive amount of genome sequencing data from

multiple individuals is currently available. In another study by

Kingsford et al., they explored the effect of repeats in prokaryotic

genome assembly using de Bruijn graphs and derived an upper

bound of contig sizes for a large number of prokaryotic genomes

based on simulated short-reads of different lengths [5]. They
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concluded that while most genes (.98%) can be recovered in

contigs derived from reads as short as 100 bps, even reads as long

as 1000 bps are not sufficient to produce a complete prokaryotic

genome in most cases.

In this paper, we investigated the impact of read length with

a different quantitative analysis. We define the entropy of

nucleotide fragments (H) and use the loss in entropy to measure

the influence of repeats on genome assembly. The repeat problem

has plagued the assembly process since the first generation of

sequencers [6,7]. Regardless of the sequence assembler used, the

de novo assembly of sequencing data will collapse identical repeats

if the length of repeated segments is greater than the read length,

resulting in incomplete genome reconstruction. As a result, with

the read length limitations imposed by sequencing platforms,

repetitive regions will not be reconstructed. In information theory,

the entropy score is an index to measure the disorder in a system.

Thus we use the definition of k-substring entropy to represent the

expected value of the quantified information contained in the

reads of length k produced by the sequencing procedure. We apply

this measurement to both prokaryotic and eukaryotic genomes,

including the human genome. We demonstrated the usefulness of

the score as a measurement of the repeat structures of the genomes

and proposed how it can be used to aid genome sequencing efforts

from the perspective of read lengths and repetitiveness of target

genomes.

Materials and Methods

An Idealized Model of Short Read Sequencing
In Figure 1, we illustrated a simplified model of the process to

generate high coverage sequence data using a modern sequencing

platform such as the Illumina/Solexa system. We considered fixed

read length systems for this study since such systems currently

provide the cost-effectiveness required for large-scale sequencing

and have wider market adoptions. For our current purpose, we

simplified the sequencing into two major steps. In the first step,

a target DNA sequence is broken into smaller fragments. The

fragments are filtered by size and then form a sequencing library.

The second step is the parallel sequencing of the ends of these

fragments. Current parallelized sequencing technologies are based

on various sequencing-by-synthesis methods which can produce

a massive number of reads with high redundancy. In this model,

we assume that both of the steps are random. That is, the

produced sequencing reads can be from any position in the DNA

sequence with equal probability although various factors can

contribute to sequence sampling bias in real life - resulting in

uneven coverage and gaps in sequence assembly [8]. In addition,

the reads can come from both the forward strand TF and the

reverse strand TR of the target DNA sequence T. For

convenience, we just use T to present both strands TF and TR

in the following sections.

The Computation of k-substring Entropy Loss as
a Quantitative Measurement of Repeats
If we can filter out all sequencing errors, we can see in Figure 1

that the reads generated are substrings of the target DNA

sequence. Let x be a substring of length k from DNA sequence

T= t1t2t3…tm where each tj, 1# j # m, is one of the nucleotides

{A, C, G, T}.

In other words, for short read sequencing with reads of length k,

the reads could be denoted as

xi~tiztiz1 . . . tizk{1 where 1ƒiƒm{kz1: ð1Þ

Let Sk be the collection of all possible substrings xi= ti+1 ti+2 …ti+k
with length k where each tjM{A, C, G, T}.

Define

p(xi)~
c(xi)

m{kz1
ð2Þ

where c(xi) is the number of occurrences of xi in the sequence T.

The Shannon entropy H of S is defined as

H (k)~{
X

xi

p(xi)log10p(xi) ð3Þ

where k is the length of substrings [9].

In particular, if any substring xi = ti+1 ti+2 …ti+k of length k is

unique. Then,

p(xi)~
1

m{kz1
ð4Þ

If any substring of length k is unique, there is no repeat whose

length is greater than or equal to k. In this case, it achieves

a maximum of entropy

I (k)~{
Xm{kz1

i~1

1

m{kz1
log10

1

m{kz1

~log10(m{kz1):

ð5Þ

In almost all of the applications, we have

H(k)
vI (k) for any kw1: ð6Þ

We define the relative entropy loss of length k as

DH(k)~
I (k){H(k)

I (k)
: ð7Þ

If there are a large number of substrings {xi}, we can divide the

substrings into independent sets T1, T2, ..., Tm according their

Figure 1. Model of typical short read sequencing. (a) The target
sequence is randomly broken into fragments and filtered by their
lengths to form a sequencing library. (b) The end or ends of the DNA
fragments are sequenced in parallel to generate a massive set of short
reads. We assumed the sequencing is random so that each position is
more or less covered by equal numbers of fixed-length reads.
doi:10.1371/journal.pone.0059484.g001
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prefixes. Then we can rewrite (3) as

H (k)~{
X

Tj

X

xij

p(xij)log10p(xij) ð8Þ

Equation 8 represents an approach to divide up the input into

smaller sets and to process them in parallel. This tactic allows one

to process a large genome in a timely manner using modest

computing resources.

Results

Deficiency in Sequence Coverage Caused by Sequence
Repeats is Strongly Correlated to Loss in k-substring
Entropy
We investigated the impact of repeat structures on genome

assembly and the correlation of sequence coverage and k-substring

entropy using the SeqEntropy program that we developed by

comparing the sequence coverage results obtained from the

SHARCGS de-novo assembler paper [10] and our entropy

measurements. Table 1 lists the BAC insert sequences derived

from Arabidopsis thaliana and Drosophila melanogaster (fruit fly). The

reconstructed sequence coverage of assembly was quoted from the

original SHARCGS paper. The result showed a strong correlation

between the ratio of reconstructed coverage and entropy loss.

Most BAC sequences have small deficiency from the reconstructed

sequence coverage except the following three sequences:

AC009243, AC092242 and AC007329 (the bolded rows in

Table 1). These three sequences have significantly incomplete

coverage such that the sequence coverage by SHARCGS

assembled contigs is less than 90%. All of these three sequences

lose more than 1% entropy at read length of 30 bp. Consequently,

we propose that .1% entropy loss results in poor assembly results

using de novo assemblers. For comparison, we also calculated the

percentage of simple repeats in these BACs and showed the results

in the last column of Table 1. The proposed relative entropy loss

scores correlate well with the percentages of repeats. When both

are high, we observed poor coverage of assembly, as shown in the

bolded rows.

Evaluation of the Limitation of Short-read Sequencing for
Animal Genomes
We applied the entropy measurement to analyze the limitation

of short-read sequencing for different organisms. We selected five

model animals (Table 2) with genome sizes ranging from

107,109 bp. In order to calculate the entropy scores for large

eukaryotic genomes on a desktop computer (Intel i7-3820 CPU

and 8G RAM), we applied the principle behind Equation 8 above

and divided up the input sequences into 256 (44) or 1024 (45)

subsets based on the prefix (4mer or 5mer, respectively) of the

sequences. The subsets from each genome are than run

sequentially on the desktop computer. We had to run the

processes sequentially due to memory constraint (only 8 Gb of

RAM was available on the desktop computer) The total run-time

for each organism is reported in Table 2. While large genomes

such as that of human took a long time (295 hours) to complete,

with some modifications to the program, we can run each subset in

parallel on a computing cluster to reduce the run time

significantly.

Figure 2 depicts the relative entropy losses at different read

lengths if idealized sequences are used for the organisms. Human

requires read length of 60 bp and zebra fish requires read length of

100 bp to overcome the 1% entropy loss threshold. The genome

size of zebra fish is less than half of human genome. It indicates

that zebra fish genome is more repetitive than human genome.

Moreover, the nematode, C. elegans, requires very short read (less

than 30 bp) to avoid 1% entropy loss whereas fruit fly (D.

melanogaster) requires more than 320 bp. Our analysis shows that

genome assembly of many other organisms using short reads may

be more challenging than human genome assembly.

The relationship between entropy loss and read length explains

the limitation of short-read sequencing technology illustrated by

Alkan et al. [4]. In the early experiments of the 1000 Genomes

Project (like SRA ID: ERX000020), the read length of sequencing

data is 36 bp and the curve of relative entropy loss for human

genome in Figure 2 indicates more than 2% entropy loss at the

read length of 36 bp. As a result, it is almost impossible to retrieve

a perfect whole genome assembly from those WGS experiments.

On the other hand, Sundquist et al. showed the sequencing of D.

melanogaster still achieved worse genome sequence coverage than

that of human chromosomes at read lengths of 200 bp [11]. Our

proposed quantitative model illustrates the deficiency of sequence

coverage for D. melanogaster comes from the richness of repeats in its

genome.

Evaluation of Bacterial Whole Genome Sequencing at
Different Read Lengths
The Escherichia coli strain MG1655 whole genome shotgun

sequencing datasets SRX000429 and SRX000430 generated using

Illumina Genome Analyzer are commonly used as performance

benchmark of short read sequencing [12]. The complete genome

sequence of the same strain (NCBI REFSEQ ID: NC_000913)

had been well characterized since 1997 [13]. Therefore, we can

compare the result of the de novo assembly using the Illumina

reads to the completed reference genome by mapping the contigs

to the reference genome sequence.

To explore the reliability of the de novo assembly result, we

computed the entropy at read length of 36 bp for the E. coli

genome sequence NC_000913. We listed the entropy loss of the E.

coli genome sequence along with some other prokaryotic whole

genome sequences in Table 3. It shows that the entropy loss for the

E. coli genome sequenced at read length of 36 bp is 0.22%.

Compared this with the results obtained in Table 1, a relative

entropy loss of 0.22% corresponds to about 2% genome coverage

loss and suggests the difficulty in achieving a perfect genome

coverage. Most of the assembly results without pair information by

publicly available de novo assemblers can only achieve a genome-

wide coverage of around 98% for the E. coli short reads dataset

SRX000429 (https://wiki.nbic.nl/index.php/

Raw_results_of_NGS_de_novo_assembly). With the help of

longer reads or paired-end reads information available since the

two 36 bp E. coli datasets were generated, the de novo assembly

can achieve a better genome coverage than 98%. To approximate

the effects of longer reads and paired-end reads, we calculate the

relative entropy losses at k-substring length of 500 bp and 1000 bp

(Table 3). However, based on the entropy losses, we think it is still

very difficult to develop an automated de novo assembler to reach

lossless assembly using data generated from current sequencing

platforms. Manual inspections and the use of long range mapping

information are necessary in most of the genome assembly. In

general, our analysis indicates that smaller prokaryotic genomes

with fewer repeats have less entropy loss compared to larger

genomes. However, it’s the repeat structure and not the genome

size that plays a determining role in entropy loss. Bacteroides

thetaiotaomicron VPI-5482 has a larger genome but much fewer long

repeats than E. coli. [14]. As a consequence, B. thetaiotaomicron’s

SeqEntropy: Genome-Wide Assessment of Repeats

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e59484



entropy loss at read length 36 bps is more similar to that of a much

smaller prokaryotic genome. Using entropy losses calculated at

various read lengths, we can capture the repeat structure of

a genome.

The third generation sequencing platforms use single-molecule

technologies and other nanotechnologies [15]. The new methods

claim to produce longer reads (.3000 bp). For instance, the reads

for sequencing the E. coli genome could reach an average length of

more than 3000 bps [16]. We showed the entropy loss at read

length of 500 and 1000 bps for a few prokaryotic whole genome

sequences. At the read length of 500 bps, Mycoplasma genitalium, an

obligate parasitic bacterium with a highly reduced genome, has an

insignificant entropy loss (Table 3).

In light of the new and emerging sequencing technologies, we

applied the entropy calculation to 2725 prokaryotic chromosomes

and plasmids which were downloaded from the NCBI FTP site

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/- downloaded June

2012). We computed the relative entropy losses at read lengths

of 125 bp, 500 bp and 3000 bp – roughly correspond to the read

lengths of Illumina, Roche 454 pyrosequencing and PacBio

SMRT platforms, respectively. We showed the distribution of the

relative entropy loss scores in Figure 3. While there are some

replicons, especially certain highly repetitive plasmids, with

entropy loss scores .1.0% (see Table S1), the vast majority

(.99%) of the prokaryotic replicons would lose less than 1.0%

entropy with current sequencing technologies. These results are

Table 1. Comparison of coverage and entropy loss of BAC sequencesa.

Clone (BAC no.)
Sequence
Length(bp)

Sequence
Coverage (%)

Coverage
Deficiency (%) H30 I30 DH30 % of repeat

AC011809 108,767 99.98 0.02 5.335862 5.337411 0.03% 0.46%

AC002328 109,171 99.61 0.39 5.335947 5.339022 0.06% 0.99%

AC064879 109,180 99.68 0.32 5.335971 5.339058 0.06% 0.97%

AC023673 109,367 99.91 0.09 5.338616 5.339801 0.02% 0.38%

AC011713 109,694 98.85 1.15 5.332009 5.341098 0.17% 2.91%

AC009243 110,565 100.00 0.00 5.344373 5.344534 0.00% 0.02%

AC022520 110,611 99.63 0.37 5.341812 5.344714 0.05% 0.92%

AC018460 110,619 66.48 33.52 4.99782 5.344746 6.49% 41.15%

AC007764 111,222 99.84 0.16 5.346664 5.347107 0.01% 0.13%

AC000348 111,566 98.78 1.22 5.339937 5.348449 0.16% 2.81%

AC092191 80919 99.52 0.48 5.205896 5.208925 0.06% 1.01%

AC185533 95808 98.46 1.54 5.271617 5.2823 0.20% 3.41%

AC018485 99441 82.86 17.14 5.094117 5.298469 3.86% 19.86%

AC018478 103809 99.90 0.10 5.315052 5.317144 0.04% 0.56%

AC092242 111023 100.00 0.00 5.346276 5.346329 0.00% 0.01%

AC018482 113821 87.42 12.48 5.261927 5.357142 1.78% 19.27%

AC185534 119461 99.42 0.58 5.37266 5.378151 0.10% 1.75%

AC092399 122013 99.92 0.08 5.386815 5.387333 0.01% 0.17%

AC007837 123647 99.90 0.10 5.391958 5.393112 0.02% 0.28%

AC007329 126140 99.99 0.01 5.401638 5.401783 0.00% 0.05%

Sequence coverage percentages as listed in Dohm et al [10].
aThe programs for the computation are available at: http://sourceforge.net/projects/seqentropy/files/SeqEntropy-demo-20130203.zip.
bThe columns H30, I30,DH30 are computed by our program ‘‘SeqReadEntropy’’ using read length of 30 bp.
cThe column ‘‘% of repeat’’ is computed by our program ‘‘SeqReadRepeat’’ using read length of 30 bp.
doi:10.1371/journal.pone.0059484.t001

Table 2. Five animal genomes for entropy measurement.

Organism Genome size Versiona Computation timeb

Yeast (S. cerevisiae) 1.26107 sacCer3 1.3 minutes

Nematode (C. elegans) 1.06108 ce10 33 minutes

Fruit fly (D. melanogaster) 1.36108 dmel_r5.42 42 minutes

Zebrafish (D. rerio) 1.46109 danRer7 66 hours

Human (H. sapiens) 3.26109 hg19, GRCh37.p5 295 hours

aThe whole genome sequences were downloaded from http://hgdownload.cse.ucsc.edu/for the organisms: S. cerevisiae, C. elegans, D. rerio, and H. sapiens and ftp://ftp.
flybase.net/for D. melanogaster.
bThe computation time of entropy measurement was recorded for read length 100 bp on a PC with Intel i7-3820 CPU and 8G RAM.
doi:10.1371/journal.pone.0059484.t002
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confirmed by the fact that the vast majority of the prokaryotic

genomes can be reasonably reconstructed into long contigs with

current shotgun sequencing technologies. In figure 4, we zoomed

in to show only the results from replicons with entropy loss ,1%

in order to further differentiate the effect of read length. The

entropy loss scores decrease as the read length increases. At read

length of 125 bp, even if the sequencing reads cover the genomes

evenly and completely, de novo assemblers without utilizing pair-

end information would still not be able to fully reconstruct the

genome due to the presence of repeats in ,80% of the cases

(2140/2725 with DH125.0). On the other hand, with read length

of 3000 bp, 58% of the replicons surveyed could be reconstructed

completely (i.e. no loss of entropy due to repeats). We list the top

10 genomes (excluding plasmids) with the largest entropy losses at

read length of 125 bp, 500 bp and 3000 bp in Table 4 and the

complete results of the entropy loss scores are listed in Table S1.
There are 41 chromosomes with DH125.1% and 6 chromosomes

with DH500.1%. Many of these outliers have been noted in the

literature to have highly repetitive genomes due to various

evolutionary forces [17,18,19,20].

Taken together, these observations mean the third generation

sequencing technologies can theoretically provide complete

genome sequences for most prokaryotic organisms if the error

rate is controlled or corrected by other short read sequencing

technologies. On the other hand, bigger eukaryotic genomes,

which are likely to have more complex repeat structure, would

benefit less from the longer reads produced by third generation

sequencing technologies.

Discussion

The evaluation of k-substring entropy shows that the genomes

of different organisms may have distinct repeat structures that

impose limitation on sequencing at a certain read length regardless

of their genome sizes. Using the entropy measurement, we can

estimate an ideal read length for a given genome sequencing

project by trying to minimize the entropy loss. Kingsford et al.

previously introduced a de Bruijn graph method to evaluate the

influence of repeat structure on sequence assembly [21]. However,

their analysis was only applied to prokaryotic genomes which are

relatively small (most ,10 megabases). For the analysis of large

genomes such as the mammalian or plant genomes, which can be

a gigabases long, a program requires huge amount of memory to

record all distinct substrings in the genome. Our algorithm is

designed to handle genomes at any scale. With eq. (8), we can

separate the substrings into different subsets by their prefix of

length m (m=5 for human genome and m=4 for zebra fish

genome) and calculate the entropy measurement of each set

individually. As a result, the proposed program can be run on

a desktop computer (8 Gb of RAM) for genomes of an arbitrary

size at the cost of time. If completely parallelized, the calculation

Figure 2. Entropy losses at different read lengths for different organisms. In the five organisms, the genomes of zebra fish (D. rerio) and
fruit fly (D. melanogaster) will lose more entropy regardless of any read length used for sequencing. In particular, the fruit fly loses .2% of entropy
loss even with read length of 120 bp. It will be ,1% of entropy loss at read length of 230 bp. On the other hand, the genomes of Yeast (S. cerevisiae)
and Nematode (C. elegans) have minor entropy loss even with very short reads. The detail results of entropy measurements are listed in Table 5.
doi:10.1371/journal.pone.0059484.g002

Table 3. Entropy loss of selected prokaryotic whole genomes
with reads of lengths 36, 500 and 1000 bps.

Seq. no Organism
Sequence
Length(bp) DH36 DH500 DH1000

NC_000913 E. coli K-12 4,639,675 0.22% 0.09% 0.04%

NC_004663 B. thet VPI-5482 6,260,361 0.15% 0.09% 0.05%

NC_008525 P.pent ATCC
25745

1,832,387 0.16% 0.11% 0.08%

NC_000908 M.geni G37 580,076 0.11% 0.00% 0.00%

doi:10.1371/journal.pone.0059484.t003

SeqEntropy: Genome-Wide Assessment of Repeats
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can be done on a large cluster to reduce the run time significantly.

For a typical prokaryotic genome, it takes a few seconds to a few

minutes to calculate the entropy loss at a given read length. The

processing time is read length dependent and for read length

,1000 bp, the calculation takes ,1 min using a single CPU core.

This length should be sufficient for most of the sequencing

technologies in the near future with a few exceptions (e.g. Pacific

Biosciences SMRT platform). For read length of 3000 bp, it takes

about 20 min to calculate the entropy for one bacterial genome.

This task of entropy measurement can be performed on

a preliminary assembly or on a reference genome from a closely

related organism. Since read length depends on the sequencing

platforms and the protocols used, it is often not possible to alter.

Experimentally, it is easier to construct paired-end libraries with

different insert sizes. We can use pair-end libraries of different

Figure 3. Histograms and quartile box plot of relative entropy losses in 2725 prokaryotic replicons. The x-axis shows the number of
replicons in each bin while the y-axis shows the % entropy loss (DH). The quartile box plot displays the mean (diamond shape), the medium (50%) the
first (25%) and the third (75%) quartiles (the boxes), and the entire range (the whiskers). The vast majority of the replicons lost ,1% entropy
regardless of the read length.
doi:10.1371/journal.pone.0059484.g003

Figure 4. Histograms and quartile box plot of entropy losses in 2725 prokaryotic replicons truncated at 1% entropy loss in order to
see the finer breakdown. The x-axis shows the number of replicons in each bin while the y-axis shows the % entropy loss (DH). The quartile box
plot displays the mean (diamond shape), the medium (50%) the first (25%) and the third (75%) quartiles (the boxes), and the entire range (the
whiskers). It is clear that as read length increases, the entropy loss decreases. As a result, a higher number of replicons have DH ,1.0%.
doi:10.1371/journal.pone.0059484.g004

SeqEntropy: Genome-Wide Assessment of Repeats
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insert sizes to mimic the effect of longer reads. Wetzel et al.

recently demonstrated that the assembly outcome can be

improved drastically by tuning mate-pair sizes (i.e. adjusting the

average insert size of the pair-end library) to match the dominant

repeat types [22]. Furthermore, they showed that ‘‘short’’ inserts

that are between 4 to 6 times the actual read lengths perform

better than long inserts that are a few kilobases long. This is

because short inserts that barely span the repeats are more

effective at resolving local ambiguities than long inserts. Their

work is based on idealized de Bruijn graph reconstruction of

a genome (see Kingsford et al 2010 for the method). This process is

computationally and memory intensive. As a result, it is not easily

scaled up to handle large eukaryotic genomes. On the contrary,

our method can estimate the ideal read length and is fast and

highly scalable as we have demonstrated in the previous sections.

We propose that SeqEntropy can be run with different read

length parameters to detect the minimum entropy loss. Based on

the work of Wetzel et al, we propose that the mate-pair sizes of the

sequence library be slightly longer than the theoretical ideal read

length detected by SeqEntropy. While the insert size is tuned, the

actual read length is still based on available funding and

sequencing platforms, allowing minimal interruption to existing

and on-going sequencing projects. As more genomes are being

sequenced in an automated fashion, the ability to tune the

sequencing parameters to achieve better assemblies is highly

desirable. We propose that entropy loss can be used to provide an

accurate and objective estimate for the optimal sequence length.

Table 4. Prokaryotic chromosomes with largest entropy losses at read lengths of 125, 500 and 3000 bp.

Genome ID DH125 Genome ID DH500 Genome ID DH3000

Bordetella pertussis Tohama I 1.79136% Bordetella pertussis Tohama I 0.898868% Mycoplasma agalactiae 0.367427%

Xanthomonas oryzae pv. oryzae
PXO99A

1.82280% Mycoplasma fermentans M64
chromosome

0.934389% Dehalococcoides ethenogenes
195

0.394745%

Wolbachia sp. wRi 1.98404% Acinetobacter baumannii SDF 0.934389% Mycoplasma fermentans M64 0.415779%

Aliivibrio salmonicida LFI1238
chrom 1

2.04042% Mycoplasma mycoides subsp.
mycoides SC str. PG1

0.940714% Orientia tsutsugamushi Boryong 0.416469%

Shigella boydii CDC 3083-94 2.09366% Wolbachia endosymbiont of
Culex quinquefasciatus Pel

1.028366% Methylobacillus flagellatus KT 0.42687%

Shigella dysenteriae Sd197 2.40508% Aliivibrio salmonicida LFI1238
chrom 1

1.153796% Wolbachia sp. wRi 0.43966%

Acinetobacter baumannii SDF 2.64465% Wolbachia sp. wRi 1.285340% Alteromonas macleodi 0.465815%

Orientia tsutsugamushi str. Iked 2.67584% Aliivibrio salmonicida LFI1238
chrom 2

1.334486% Bartonella tribocorum CIP
105476

0.484289%

Mycoplasma mycoides subsp.
mycoides SC str. PG1

2.75548% Orientia tsutsugamushi str. Ikeda 1.570541% Streptococcus agalactiae
NEM316

0.49117%

Orientia tsutsugamushi Boryong 4.62902% Orientia tsutsugamushi Boryong 2.753110% Candidatus Phytoplasma mali 0.693043%

aThe complete entropy computations of 2725 prokaryotic replicons are listed in Table S1.
doi:10.1371/journal.pone.0059484.t004

Table 5. The relative entropy losses of five animal genomes at different read lengths.

ReadLen k DHk of Yeast DHk of Nematode DHk of Fruit fly DHk of Zebrafish DHk of Human

20 0.831217% 1.397796% 5.627856% 7.44469% 5.406936%

30 0.736196% 0.844718% 4.852753% 4.461654% 2.858026%

40 0.683882% 0.642178% 4.337883% 3.11601% 1.684438%

50 0.644228% 0.522634% 3.932514% 2.363446% 1.072922%

60 0.611417% 0.440682% 3.599801% 1.886473% 0.655126%

70 0.582789% 0.380003% 3.319438% 1.556083% 0.482622%

80 0.557695% 0.332944% 3.078671% 1.315029% 0.379953%

90 0.536264% 0.295774% 2.868949% 1.134327% 0.313174%

100 0.517069% 0.265546% 2.684404% 0.996147% 0.2661318%

110 0.499602% 0.240705% 2.520669% 0.887384% 0.2306789%

120 0.483514% 0.219947% 2.374214% 0.799316% 0.2028979%

320 _ _ 1.007846% _ _

330 _ _ 0.973252% _ _

aThe bold numbers show the relative entropy loss values and the corresponding minimal read lengths at which the relative entropy losses are below 1% for different
animal genomes.
doi:10.1371/journal.pone.0059484.t005
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Availability
The source programs of this work are available from the Web

site http://sourceforge.net/projects/seqentropy/.

Supporting Information

Table S1 List of 2725 Prokaryotic chromosomes. The

detail computations of entropy losses at read lengths of 125, 500

and 3000 bp for all 2725 Prokaryotic chromosomes.

(XLS)
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