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Normally, fish will decrease food intake or even stop feeding during the winter. In previous
studies, two widely cultured gibel carp strains (strain A and strain F) showed differences in
lipid and glucose metabolism. Therefore, we hypothesized that the physiological changes
during the overwintering period would be different between the two strains. Thus, the two
strains were starved for 77 days, after which the levels of glucose and lipid metabolism, ER
stress, autophagy, and apoptosis were determined. The starvation increased hepatic
glycogenolysis and fatty acid b-oxidation but suppressed lipogenesis in both strains
overwintering. Considering the effects of genotype, strain F had higher levels of ER stress
and autophagy but lower levels of apoptosis than strain A, suggesting that strain F might
be more resistant to overwintering starvation. The interactions between strains and
starvation periods were observed in plasma triglyceride contents and the mRNA levels
of pyruvate kinase (pk), sterol regulatory element binding protein 1 (srebp1), activating
transcription factor 4 (atf4), and autophagy protein 12 (atg12). In conclusion, long-term
starvation during winter could induce hepatic glycogenolysis and fatty acid b-oxidation but
suppress lipogenesis, ER stress, autophagy, and apoptosis in gibel carp, and strain F may
be more resistant to starvation during winter. Taken together, these results discovered the
responses to prolonged starvation stress during winter in two strains of gibel carp and
could provide information for genotype selection, especially for selecting strains better
adapted to winter.

Keywords: starvation, cold stress, strain, endoplasmic reticulum stress, autophagy, apoptosis
INTRODUCTION

The fish breeding programs can improve economic efficiency through selection usually based on the
growth performances of fish (1). However, stress resistance is also an important breeding goal in
aquaculture. Determination of genotype differences in stressful environments will provide
information for selecting strains better adapting various environments. Temperature is an
important environmental factor that strongly affects growth, general behavior, reproductive
performance, and immune responses of animals (2). During winter, homeothermic animals
increase food intake to maintain body temperature, but poikilothermic animals such as fish will
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decrease food intake (3, 4) or even stop feeding (5). Effects of
fasting on the chemical composition, morphological parameters,
plasma metabolite contents, and activities and gene expression
levels of key enzymes related to glucose and lipid metabolism
have been extensively researched in fish (6–8). Overwintering
fish may face stress from both starvation and cold. The genetics
of overwintering performances in common carp (Cyprinus
carpio and Cyprinus rubrofuscus) and overwintering energy
mobilization in brook charr (Salvelinus fontinalis) have been
reported (9, 10). However, the physiological responses to
overwintering in different strains of fish are remain unclear.
Chronic mortality of overwintering fish may be caused by
disturbed physiology (11), and this has led to huge economic
losses in aquaculture (12). Therefore, it is vital to investigate the
physiological response to cold stress in fasting farmed fish
especially in different strains of fish during winter.

It has been reported that various stress conditions, including
nutrient deprivation, can lead to endoplasmic reticulum (ER)
dysfunction followed by accumulation of misfolded proteins in
the ER, which then invokes the unfolded protein response (UPR)
(13, 14). The UPR helps to eliminate the misfolded proteins,
thereby protecting cells from stress and maintaining cell
homeostasis (15). The UPR is activated through three ER stress
sensor proteins, inositol requiring enzyme 1 (IRE1), protein
kinase RNA-like ER kinase (PERK), and activating
transcription factor 6 (ATF6), that can sense stress conditions
and then carry the information to the nucleus (16, 17). In
addition, ER stressors can modulate autophagy during
prolonged ER stress to play a vital role in cell survival (15, 18).
Autophagy is a catabolic process in which the macromolecules
and organelles in a cell are degraded via lysosomal action,
thereby providing cells with energy by mobilizing cellular
energy stores such as glucose and lipids during stressed
conditions (19). Autophagosomal-lysosomal pathways play a
vital role in the survival of fasting fish (20). For example,
fasting helps to resist low temperature by regulating lipid
catabolism and autophagy in zebrafish (4). A heightened
degree/duration of ER stress can not only lead to the activation
of autophagy but also cause to cell apoptosis (21). Apoptosis can
be triggered by three main signaling pathways (the death
receptor pathway, the mitochondrial pathway, and the ER
pathway), upstream of caspase activation (22, 23). At present,
the effects of fasting on ER stress, autophagy, and apoptosis of
overwintering fish remain unclear.

Gibel carp (Carassius gibelio) is one of the most economically
important species in fisheries and aquaculture of China, and its
annual production of 2018 was about 3 million tons (24). The
farmed gibel carp must cope with long-term cold and fasting
during the winter. Two strains of gibel carp reproduced by
unisexual gynogenesis, strain A (CAS III) and strain F (CAS
V), showed differences in lipid metabolism and glucose
metabolism in previous studies. The strain F exhibited better
growth performance, lipid utilization, and glucose homeostasis
ability than the strain A (25, 26). As a warm water fish, gibel carp
stop moving and dramatically decrease feed intake or even stop
feeding during winter. Therefore, we hypothesized that the
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physiological changes during the overwintering period would
differ between the two strains. Thus, to investigate the
physiological responses of the two gibel carp strains to
starvation during winter, strain A and strain F were left unfed
for 77 days, after which glucose and lipid metabolism, ER stress,
autophagy, and apoptosis in the two strains were determined.
MATERIALS AND METHODS

Fish and Trial Management
Two strains of gibel carp (strain A, body weight: 90.39 ± 0.33 g;
strain F, body weight: 110.01 ± 0.19 g) were obtained from the
hatchery of the Institute of Hydrobiology, the Chinese Academy
of Sciences, Wuhan, Hubei, China. This experiment was
performed according to the guiding principles for the care and
use of laboratory animals and was approved by Institute of
Hydrobiology, Chinese Academy of Sciences (Approval ID:
IHB 2013724). Before the experiment, all experimental fish
were reared in the tanks of a recirculation system for 2 weeks
for acclimatization. During the 2 weeks, fish were fed with
extruded feed twice a day. The experimental fish were then
batch-weighed and randomly distributed into three fiberglass
tanks for each strain (25 individuals per tank). After that, all the
fish were starved for 77 days. The water temperatures during the
trial are shown in Figure 1. Water quality was maintained as
follows: dissolved oxygen > 6 mg L−1, total ammonia-nitrogen <
0.1 mg L−1, and residual chloride < 0.01 mg L−1.

Sample Collection
Prior to the experiment, six fish from each strain were sampled at
6 h after the last feeding as a control. Then, the experimental fish
were batch-weighed and two fish from each tank were sampled
when the fish had fasted for 38 days (P1) and 77 days (P2). Fish
were anaesthetized with 60 mg L−1 MS-222 (Sigma-Aldrich,
St. Louis, MO, USA). Blood was quickly obtained from the caudal
vein, and then, the plasma was separated after centrifugation for
analysis. After that, the livers and muscles of fish were quickly
sampled, and the tissue samples were stored at −80°C until analysis.
FIGURE 1 | Changes in the water temperature during the experiment.
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Biochemical Analysis
Biochemical metabolites in plasma were determined using a
biochemical analyzer (Mindray, Shenzhen, China). Glycogen
contents were determined in livers and muscles (n = 6) using
commercial kits (Liver/muscle glycogen kit, Jiancheng
Bioengineering Institute, Nanjing, China). The activity of caspase
3 were determined in livers using commercial kits (Caspase 3
Activity Assay Kit, Beytime Biotechnology, Shanghai, China).

Gene Expression Analysis
Total RNA of liver tissue was extracted using the TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) and then performed the DNAse
treatment. The cDNA was obtained using M-MLV First-Strand
Transcriptase (Invitrogen, Shanghai, China). Quantitative RT-PCR
was performed on a LightCycler 480 System (Roche, Germany) with
SYBR® Green I Master Mix (Roche, Germany). EF1a was used as
housekeeping gene, and PCR were performed using six biological
replicates and two technical replicates along with negative controls
without reverse transcriptase or template. Melting curves were
monitored to confirm the specificity of the amplification reaction.
Amplicon identities were confirmed by sequencing. Table S1 shows
the primers used for quantitative RT-PCR and amplification
efficiencies. The calculation of relative quantification was
performed using the Pfaffl’s mathematical model (27).

Western Blot
Liver tissues were cell lysed by RIPA lysis buffer (Beyotime
Biotechnology, China) containing protease inhibitor cocktail
and phosphatase inhibitor cocktail (Roche, Basel, Switzerland).
Proteins (40 mg) were separated on SDS-PAGE gels and then
transferred to PVDF membranes. The membranes were blocked
for 1 h by using 5% skimmed milk in TBST buffer (20 mM Tris-
HCl, 150 mM sodium chloride, 0.1% Tween 20, pH 7.5), and
then were incubated overnight at 4°C by using the following
specific primary antibodies: BiP/GRP78 Antibody (1:1,000,
#3177; Cell Signaling Technology, Danvers, MA, USA) or
LC3A/B Antibody (1:1,000, #4108; Cell Signaling Technology,
Danvers, MA, USA). After washing, membranes were incubated
with secondary antibody: Goat Anti-Rabbit IgG H&L (HRP)
(1:2000, ab205718; Abcam). The bands were acquired by
ImageQuant LAS 4000mini (GE Healthcare Life Sciences) and
quantified using Image J software (National Institutes of Health).

Statistical Analysis
All data are presented as mean ± standard error (n = 6), and a two-
way analysis of variance (ANOVA) was used to detect the
significance of differences between strains, periods, and
interactions. The significant difference level was considered P < 0.05.
RESULTS

Body Weight Change
The body weight of both two strains starved for 38 days (P1) and
77 days (P2) was significantly decreased compared with the
initial body weight (P < 0.05) (Figure 2).
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Glucose Metabolism
Plasma glucose levels increased in both strains (P < 0.05) (Figure
3A). Strain F had higher plasma glucose levels than strain A (P <
0.05). Liver glycogen contents decreased in both strains (P <
0.05), and strain A had higher contents than strain F (P < 0.05).
No significant changes were found in muscle glycogen contents
(P > 0.05).

The expression levels of genes involved in glucose metabolism
are shown in Figure 3B. Regarding glycolysis, both strains exhibited
a significant decrease in the mRNA levels of glucokinase (gk) at P1.
A significant decrease in the mRNA levels of pyruvate kinase (pk)
was only found in strain F (P < 0.05), while in strain A, expression
levels of pk were only increased at P2 (P < 0.05). There were no
significant differences in gene expression levels of 6-
phosphofructokinase (6pfk) between strains or time points (P >
0.05). No changes were detected in mRNA levels of glucose-6-
phosphatase (g6pase) irrespective of strains or time points (P >
0.05). The gene expression levels of fructose-1,6-bisphosphatase
(fbpase) were significantly increased in both strains at P2 (P <
0.05), while gene expression levels of phosphoenolpyruvate
carboxykinase (pepck) were significantly decreased at P2 (P <
0.05). Higher fbpase and pepck expression levels were found in
strain A compared to strain F (P < 0.05).

Lipid Metabolism
An interaction was found between strain and starvation period
in plasma triglyceride levels; this decreased afterward in strain A
(P < 0.05), while increasing in strain F (P < 0.05) (Figure 4A).

Gene expression levels of key enzymes involved in lipid
metabolism are presented in Figure 4B. An interaction between
strain and time was found in the mRNA levels of sterol regulatory
element binding protein 1 (srebp1), which was only decreased in
strain A at P1 (P < 0.05), while there was no corresponding
significant change in strain F. The transcript levels of ATP citrate
lyase (acly) and fatty acid synthase (fas) were significantly decreased
at P1 and P2 (P < 0.05). Acetyl-CoA carboxylase (acc) transcript
levels were decreased in both strains only at P2 (P < 0.05), while the
FIGURE 2 | Body weight of two strains of gibel carp starved for 0 days (C,
white bars), 38 days (P1, gray bars), and 77 days (P2, black bars) during
winter.
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inverse change was found in acyl-CoA oxidase 3 (aco3) (P < 0.05).
The expression levels of carnitine palmitoyl transferase 1 isoform a
(cpt1a) were higher in strain A than in strain F (P < 0.05), and the
mRNA levels were significantly increased in both strains only at P2
(P < 0.05).

ER Stress, Autophagy, and Apoptosis
We analyzed the protein levels of 78-kDa glucose-regulated protein
(GRP78) and LC3B (Microtubule-associated protein 1 light chain-
3B) and the expression levels of genes involved in ER stress. The
protein levels of GRP78 were increased at P1 (P < 0.05), then
decreased at P2 in both strains (P < 0.05), and strain F showed
higher levels than strain A, irrespective of time points (P < 0.05)
(Figure 5A). As shown in Figure 5B, the mRNA levels of X-box-
binding protein 1 (xbp1), eukaryotic translation initiation factor 2A
(eif2a) and ER oxidoreductase 1 alpha (ero1a) were significantly
decreased at P2 in both strains, but there were no changes in the
levels of atf6, perk, ire1 or DNA damage-inducible transcript 3
protein (chop) related to starvation period (P > 0.05). Strain F
showed the higher expression level of activating transcription factor
4 (atf4) at P2, but no differences were observed in strain A. Strain A
showed lower levels of atf6 and higher levels of perk than strain F.

We analyzed the protein levels of LC3B (Microtubule-
associated protein 1 light chain-3B). As presented in Figure
6A, strain F showed higher protein levels of LC3B than that of
strain A (P < 0.05). The activities of caspase 3 were significantly
Frontiers in Endocrinology | www.frontiersin.org 4
higher in strain A than that in strain F (P < 0.05) (Figure 6B).
The expression levels of genes involved in autophagy and
apoptosis are shown in Figure 6C. No differences were found
in gene expression levels of beclin1 or microtubule-associated
proteins 1A/1B light chain 3B (map1lc3b), regardless of time
point (P > 0.05). The mRNA levels of map1lc3b in strain F was
significantly higher compared to strain A (P < 0.05). The mRNA
levels of autophagy protein 5 (atg5) were decreased at P2 in both
strains (P < 0.05), and autophagy protein 12 (atg12) levels were
decreased at P1 in strain A but increased at P2 in strain F (P <
0.05). Strain A had higher levels of beclin1 and atg5 than strain F
(P < 0.05). Higher apoptosis regulator Bcl-2 (bcl2) and lower bcl2
associated X, apoptosis regulator (bax), and caspase 3 (casp3)
mRNA levels were found in both fish at P2 (P < 0.05). Unaltered
mRNA levels of caspase 9 (casp9) were found irrespective of
strain and time point (P > 0.05). Strain A exhibited higher
mRNA levels of bcl2 and casp3 than strain F (P < 0.05).
DISCUSSION

Physiological Responses to Overwinter
Starvation
Significantly increased plasma glucose levels were observed in
fish starved for 77 days during winter in the present study. The
different changes in plasma glucose levels might be related to the
A

B

FIGURE 3 | Plasma glucose levels, tissue glycogen contents (A) and expression of genes related to glucose metabolism in the livers (B) of two strains of gibel carp
starved for 0 days (C, white bars), 38 days (P1, gray bars), and 77 days (P2, black bars) during winter. Data were presented as mean ± SE (n = 6), and the
differences were evaluated by two-way ANOVA (P < 0.05). When interactions were identified, different lowercase letters represented the significant differences among
all groups (P < 0.05). Glu, glucose; gk, glucokinase; g6pase, glucose-6-phosphatase; 6pfk, 6-phosphofructokinase; fbpase, fructose-1,6-bisphosphatase; pk,
pyruvate kinase; pepck, phosphoenolpyruvate carboxykinase.
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different durations of fasting, as suggested by the results of a
study on gilthead sea bream (Sparus aurata) (5). In the present
study, glycogenolysis in the liver might be activated to provide
energy under starvation, as indicated by the liver glycogen
content being decreased in fish starved for 77 days (8).

Glucokinase (gk) is the first key enzyme involved in
glycolysis, and it has been shown that liver gk mRNA levels
were suppressed in 14-day starved rainbow trout (28). In the
present study, the mRNA abundance of gk in the liver was
dramatically decreased at P1, but mRNA levels of gk were
surprisingly increased at P2, which might be associated with
Frontiers in Endocrinology | www.frontiersin.org 5
the duration of starvation (29). It has been reported that
gluconeogenesis genes (pepck, fbpase, and g6pase) can be
induced in starved fish (8, 30). Indeed, an increase in the
expression of fbpase was observed in fish starved for 77 days.
However, g6pase mRNA levels showed no changes in the present
study, which was similar to the study in Siberian sturgeon
(Acipenser baerii) (31). In addition, our data showed that lower
pepck mRNA levels were found in fish starved for 77 days, in line
with the results in Siberian sturgeon starved for 21 days (31). It
seems that glucose metabolism can be influenced by fasting
during winter.
A

B

FIGURE 4 | Plasma triacylglycerol levels (A) and expression of genes related to lipid metabolism in the livers (B) of two strains of gibel carp starved for 0 days (C,
white bars), 38 days (P1, gray bars), and 77 days (P2, black bars) during winter. Data are presented as mean ± SE (n = 6), and the differences were evaluated by
two-way ANOVA (P < 0.05). When interactions were identified, different lowercase letters represented the significant differences among all groups (P < 0.05). TG,
triacylglycerol; srebp1, sterol regulatory element binding protein 1; acly, ATP citrate lyase; acc, acetyl-CoA carboxylase; fas, fatty acid synthase; cpt1a, carnitine
palmitoyl transferase 1 isoform a; aco3, acyl-CoA oxidase 3.
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In the present results, srebp1 (a key regulator of lipid
biosynthetic genes) and acly, acc, and fas, which are involved
in lipogenesis, exhibited lower mRNA levels in starved fish.
Similar results were also observed in rainbow trout, gibel carp,
and zebrafish (4, 8, 32). Furthermore, our data showed that
fatty acid oxidation was enhanced, as reflected by higher aco3
mRNA levels in fish starved for 77 days. It has been suggested
that during starvation, fatty acids would be mobilized as a
source of energy in fish (4, 8). Thus, our data confirmed that
starvation and low temperature could mobilize lipids as energy
sources by suppressing lipogenesis and inducing fatty acid
b-oxidation.

Nutrient deficiencies and low temperature have been
reported to cause ER stress (33, 34). GRP78 is an important
protective molecular chaperone which involved in stress-
induced autophagy regulation (17). In our results, GRP78
protein levels were dramatically increased at P1, indicating
that ER stress was induced. Moreover, the expression of ER-
related genes was decreased in zebrafish starved for 72 h under
cold stress, indicating that starvation could be a protective
strategy for fish to survive low temperatures (4). However,
lower GRP78 protein levels were observed in the fish at P2,
where there was no difference with that of the control group,
Frontiers in Endocrinology | www.frontiersin.org 6
suggesting that ER stress was alleviated at P2. Accordingly, our
data showed that the mRNA levels of xbp1 and eif1a were
significantly decreased in fish starved for 77 days, whereas
there were no changes in mRNA levels of atf6, perk, or ire1.
Generally, the UPR is activated through the three ER stress
sensor proteins ire1, perk and atf6 (17). Ire1 dimerizes and
splices the mRNA of xbp1, and perk is activated to
phosphorylate eif2a, which helps to recover ER homeostasis
during ER stress (35–37). Furthermore, the mRNA levels of chop
also showed no changes in the present study. Chop could be
increased by ire1, perk and atf6-dependent transcriptional
induction in response to ER stress, and the activation of atf4
induced by eif2a showed a dominant effect on the induction of
chop (38). Although chop mRNA levels were stable, fish starved
for 77 days had lower mRNA levels of ero1a, which is targeted
by chop to hyperoxidize the lumen of the ER (39). Thus, our data
suggested that the ER stress might have been induced at P1, but
ER homeostasis may have recovered at P2.

Autophagy is regarded as a vital protein degradation pathway
during starvation or stress (19), and it plays a significant role in
cell survival after ER stress (18). Our data showed significantly
reduced mRNA levels of atg5 in fish at P2. The autophagy-
related 12 (atg12)-atg5 and microtubule-associated protein 1
A

B

FIGURE 5 | Protein levels of GRP78 (A) and expression levels of genes related to ER stress (B) in the livers of two strains of gibel carp starved for 0 days (C, white
bars), 38 days (P1, gray bars), and 77 days (P2, black bars) during winter. Data were presented as mean ± SE (n = 6), and the differences were evaluated by two-
way ANOVA (P < 0.05). When interactions were identified, different lowercase letters represented the significant differences among all groups (P < 0.05). GRP78, 78-
kDa glucose-regulated protein; atf6, activating transcription factor 6; ire1, inositol-requiring protein-1a; xbp1, X-box-binding protein 1; perk, eukaryotic translation
initiation factor 2-alpha kinase 3; eif2a, eukaryotic translation initiation factor 2A; atf4, activating transcription factor 4; chop, DNA damage-inducible transcript 3
protein; ero1a, endoplasmic reticulum oxidoreductase 1 alpha.
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light chain 3 (map1lc3, namely lc3) phosphatidylethanolamine
conjugation systems are necessary in the expansion stage of
autophagosome formation (19). It has been reported that 72 h
starvation can induce autophagy in zebrafish under low
temperature (4), but this was not found in our data, possibly
related to the long-term starvation in our study. Therefore, our
data indicated that the autophagy would be suppressed in fish
at P2.

It has been reported that starvation can induce apoptosis,
and that prolonged ER stress might result in apoptosis (40, 41).
Bcl2 can promote cell proliferation and suppress apoptosis, and
bax can accelerate cell apoptosis (42). In the present study, the
mRNA levels of bcl2 were increased in fish at P2, while bax
mRNA levels showed no changes. However, feed restriction was
reported to alleviate transcription and translation levels of bcl2
but to enhance that of bax in granulosa cells (43). The mRNA
levels of bax were significantly induced in myocardium of mice
under 2-week cold exposure, while expression of mRNA in bcl2
decreased (44). Considering that chop was reported as a
multifunctional transcription factor involved in ER stress-
induced apoptosis (45), regulation of bcl2 and bax is
considered to contribute to the apoptosis mediated by chop
(46, 47). It has been suggested that the unaltered mRNA levels
of bax might be related to the unchanged expression levels of
chop. The induced mRNA levels of bcl2 and decreased mRNA
Frontiers in Endocrinology | www.frontiersin.org 7
levels of casp3 indicated that apoptosis might be suppressed in
fish starved for 77 days, in line with the alleviated ER stress at
P2 as discussed above. Compared to the water temperature in
the natural situation, the temperature in experimental system
was a bit higher, though the temperature trend was quite
similar (48). Thus, physiological responses of fish induced by
starvation might be stronger in outdoor aquaculture.

Different Physiological Responses to
Fasting in Overwintering Strains
Strain A had lower plasma glucose levels but higher liver
glycogen contents and higher mRNA levels of fbpase and
pepck than strain F. The previous results showed that these
two strains had no significant differences in mRNA of fbpase or
pepck when fed different diets (25, 26). Therefore, we suggested
that strain A and strain F might have different responses in
glucose metabolism to starvation and low temperature. As
gluconeogenesis can be induced by starvation (8, 30), this
indicated that strain A would have a stronger response in
gluconeogenesis than strain F. These two strains have been
reported to have no significant differences in mRNA levels of
acc, fas, or cpt1a when fed diets containing different lipid or
glucose levels, but there were differences when the fish were fed
different protein sources (25, 26, 49). Moreover, our data showed
that strain A exhibited higher mRNA levels of acc, fas, and cpt1a
A

B

C

FIGURE 6 | Protein levels of LC3B (A), caspase 3 activity (B) and expression levels of genes related to autophagy and apoptosis (C) in the livers of two strains
of gibel carp starved for 0 days (C, white bars), 38 days (P1, gray bars), and 77 days (P2, black bars) during winter. Data are presented as mean ± SE (n = 6),
and the differences were evaluated by two-way ANOVA (P < 0.05). When interactions were identified, different lowercase letters represented the significant
differences among all groups (P < 0.05). LC3B, Microtubule-associated protein 1 light chain-3B; map1lc3b, microtubule-associated proteins 1A/1B light chain
3B; atg5, autophagy protein 5; atg12, autophagy protein 12; bcl2, apoptosis regulator Bcl-2; bax, BCL2 associated X, apoptosis regulator; casp3, caspase 3;
casp9, caspase 9.
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than strain F. Fasting would induce fatty acid oxidation but
decrease lipogenesis in fish (4, 8), suggesting that strain A
exhibited higher levels of lipid metabolism to cope with the
overwintering starvation compared to strain F.

In the present study, strain A had lower protein levels of GRP78
than strain F, which indicated that strain F might have a better
ability to alleviate the stress of fasting over winter. Our data showed
that strain A had lower mRNA levels of atf6 but higher mRNA
levels of perk than strain F. Thus, it seemed that ER stress was
mainly mediated through atf6 rather than perk and ire1 in strain F
compared to strain A. In the present study, higher gene expression
levels of atg5 but lower mRNA levels of map1lc3b were observed in
strain A compared to strain F. Considering that atg5 and map1lc3b
are involved in the expansion stage of autophagosome formation
(19), this result indicated that strain A and strain F showed different
responses to the starvation during winter regarding autophagosome
expansion. Beclin1 has been reported to induce autophagy (50). In
the present study, the mRNA levels of beclin1 were higher in strain
A than in strain F. Actually, the regulation of beclin 1 on autophagy
was affected by post-translational modifications (51). Strain F
showed higher protein levels of LC3B than that of strain A,
indicating that higher levels of autophagy in strain F than in
strain A, in lines with previous results (52). Our data showed that
strain A exhibited higher mRNA levels of bcl2 and casp3. Similarly,
caspase 3 activities were also higher in strain A. These results
indicated that stronger cell apoptosis was induced in strain A, in
agreement with results in the previous study (52). It has been
reported that fasting and low temperature could induce apoptosis in
fish (41). Thus, strain A exhibited higher expression levels of genes
related to apoptosis, and thus might be more susceptible to the
effects of starvation during winter. Therefore, the results suggested
that the two strains showed different responses in autophagy and
apoptosis to the fasting during winter, and strain F had higher levels
of autophagy but lower levels of apoptosis than strain A.
Interactions Between Strain and
Starvation Period
An interaction for pkmRNA levels between genotypes and starvation
periods was found in the present study. It has been reported that the
mRNA levels of pk were not affected by starvation, except in strain A
of gibel carp starved for 21 days (8). Indeed, higher levels of pk
mRNA were observed in stain A starved for 77 days. However, strain
F starved for 38 and 77 days exhibited lower expression levels.
Previous results showed that strain A had higher gene expression
levels of pk than strain F when the fish were fed diets containing
different levels of carbohydrate or lipid (25, 26). In the present study,
strain A still presented higher pk mRNA levels than strain F under
starvation during winter. Regarding lipid metabolism, interactions
were found in the plasma triglyceride contents and srebp1 mRNA
levels. Our data showed that plasma triglyceride contents of strain A
decreased over time, while those in strain F increased. Triglycerides
are considered as the most accessible form of lipid storage during
lipolysis induced by starvation (53). Moreover, a study in trout
indicated that fish exported lipids from the liver as lipoproteins to
adapt to the low temperature, and that this might cause persistent
hypertriglyceridemia (54). The lowest mRNA levels of srebp1 were
Frontiers in Endocrinology | www.frontiersin.org 8
found in strain A starved for 38 days but in strain F starved for 77
days. It was obvious that the change trends of srebp1 mRNA levels in
strain F were in line with those of lipogenesis genes. Thus, we
speculated that the lipid metabolism of strain A might have been
disrupted during the starvation period, as was also reported in the
gilthead sea bream (12). The mRNA levels of atf4 and atg12, which
are involved in ER-stress and autophagy, showed significant
interaction between strains and starvation period. The expression
levels of atf4 exhibited no change in strain A but showed higher levels
in strain F starved for 77 days. The induction of PERK would
suppress general protein translation, and then the open reading
frame ATF4 would be encoded to activate downstream UPR target
genes (36, 55). Although strain F had lower expression levels of perk,
it seems that the downstream genes could be induced in strain F to
maintain cellular environmental homeostasis. Atf4 was reported to
induce autophagy by regulating mRNA levels of atg genes (56).
Indeed, the mRNA levels of atg12 were decreased in strain A at P1
and P2 but were increased in strain F at P2, in line with the expression
levels of atf4.
CONCLUSIONS

In summary, we found that long-term starvation during winter
could induce hepatic glycogenesis and fatty acid b-oxidation but
suppress lipogenesis, ER stress, autophagy, and apoptosis in both
strains of gibel carp. Moreover, strain F had higher levels of ER
stress and autophagy but lower levels of apoptosis than strain A,
possibly indicating that strain F may be more resistant to starvation
during winter. The present study can provide information for
exploring physiological responses of overwintering fish and for
selecting new strains better adapted to winter.
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