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Gate tunable giant anisotropic resistance
in ultra-thin GaTe
Hanwen Wang1,2,13, Mao-Lin Chen1,2,13, Mengjian Zhu3,13, Yaning Wang1,2,13, Baojuan Dong1,2, Xingdan Sun1,2,

Xiaorong Zhang4,5, Shimin Cao6,7, Xiaoxi Li1,2, Jianqi Huang1,2, Lei Zhang1,2, Weilai Liu1,2, Dongming Sun 1,2,

Yu Ye 7,8, Kepeng Song9, Jianjian Wang10, Yu Han 9, Teng Yang 1,2, Huaihong Guo11, Chengbing Qin 4,5,

Liantuan Xiao4,5, Jing Zhang5,12, Jianhao Chen 6,7, Zheng Han 1,2,5 & Zhidong Zhang1,2

Anisotropy in crystals arises from different lattice periodicity along different crystallographic

directions, and is usually more pronounced in two dimensional (2D) materials. Indeed, in the

emerging 2D materials, electrical anisotropy has been one of the recent research focuses.

However, key understandings of the in-plane anisotropic resistance in low-symmetry 2D

materials, as well as demonstrations of model devices taking advantage of it, have proven

difficult. Here, we show that, in few-layered semiconducting GaTe, electrical conductivity

anisotropy between x and y directions of the 2D crystal can be gate tuned from several fold to

over 103. This effect is further demonstrated to yield an anisotropic non-volatile memory

behavior in ultra-thin GaTe, when equipped with an architecture of van der Waals floating

gate. Our findings of gate-tunable giant anisotropic resistance effect pave the way for

potential applications in nanoelectronics such as multifunctional directional memories in the

2D limit.
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It is known that when electrically measuring a bulk material,
the resulted conductivity may manifest strong directional
dependencies1,2. Discrepancy of conductivity along different

in-plane directions in layered bulk crystals can sometimes be
as large as a few hundreds, which, however, often requires
a certain conditions such as the presence of large external
magnetic field3. Recently, low-symmetry 2D materials have
attracted significant attentions because of the potential applica-
tions of in-plane anisotropic nanoelectronics4–11. For example,
ultra-thin black phosphorous flake showed an in-plane aniso-
tropic conductance reaching a ratio σa/σb of ~ 1.5, which
in principle can be a direction-sensitive sensor4. ReS2 was
reported to be another candidate for anisotropic 2D field effect
transistor, which exhibited a σa of almost 10 times the value
of σb9. Recent studies on GeP and GeAs flakes also showed ani-
sotropic behavior with anisotropic factors of 1.5~2 for their
conductance10,11.

To date, in-plane anisotropic factor Γa of electrical conductance
in 2D materials is yet limited within one order of magnitude
under ambient condition. It thus hinders future applications
owing to a weak effective conductance difference between direc-
tions, and a larger anisotropic factor is highly desired. In this
work, we show an observation of giant anisotropic resistance
(GAR) behavior in few-layered p-type semiconducting GaTe.
Among devices measured, the electrical conductivity ratio along x
and y (x and y are defined in Fig. 1) directions of ultra-thin GaTe
reaches an order of 103 at gate voltages close to the valence-band
maximum (VBM), which can be further gate tuned down to < 10,
upon hole doping. We show detailed analysis and physical
understandings on the GAR effect. Based on this, floating gate
anisotropic memory with directional multi-level outputs are
demonstrated. Moreover, when measuring along fixed direction,
the few-layered GaTe floating gate memory (FGM) exhibits
On/Off ratio of 107 and retention time of 105 s, which is by far the
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Fig. 1 Characterizations of ultra-thin GaTe. a Schematics of GaTe crystal structure, with its in-plane unit cell illustrated in b. c AFM image of a typical GaTe
flake of ~ 14 nm in thickness, with its height profile along the green dashed line plotted in d. e Optical image of a typical device (sample S1) made of 14 nm
GaTe flake encapsulated in h-BN. Electrodes are patterned with an angle interval of 20 degree. f Same device in e but patterned into a circular shape. Scale
bars in e and f are 10 μm. g Source-drain current at Vds= 2 V as a function of angle, with Vg=−80 V. The black solid line is an ellipsoidal fit. Error bars in g
are defined as the deviations between experimental data and the fitted line. h Electronic band structure of monolayer GaTe, with the first Brillouin zone
plotted in i. j Same data in g plotted after re-normalization in a polar graph
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best performance among FGMs made of 2D materials. Our
findings open new possibilities toward next generation nanoe-
lectronics, such as artificial neuron network based on anisotropic
memory arrays.

Results
Characterizations of ultra-thin GaTe. Bulk GaTe single crystals
were prepared via flux method and were confirmed via x-ray
diffraction (see Supplementary Fig. 1). We mechanically exfo-
liated the bulk and deposited ultra-thin GaTe flakes onto 285 nm
silicon oxide grown on heavily doped silicon wafers for optical
and electrical characterizations. It is known that GaTe has a
layered structure with lattice symmetry of group C2h (Fig. 1a),
similar to that of 1 T′-MoTe2. The unit cell for a single layer GaTe
is indicated in Fig. 1b. Monoclinic GaTe crystal is of very low
symmetry, providing an ideal platform to study anisotropy12.
It is also known as a typical p-type semiconductor with a direct
band gap of ~ 1.65 eV13,14, which has many potential applica-
tions, such as photodetectors15, radiation detectors16, as well as
thermophotovoltaic devices17. However, GaTe in air was reported
to be easily oxidized18, leading to band gap restructuring in
air, at the same time, the photoluminescence (PL) signal decreases
and extra Raman peaks associated to oxides become more
pronounced. Atomic Force Microscope (AFM) scan of a typical
GaTe flake (14 nm in thickness) is shown in Fig. 1c, d. First, we
characterized electronic transport of those flakes in air (Supple-
mentary Figs. 2–6). However, without protection from air, the
source-drain currents Ids of devices made by GaTe flakes are
rather low, with maximum current of a few nano amperes, in
agreement with other reported results19. It is found that, without
thermal annealing, few-layered GaTe devices are barely con-
ducting, as shown in Supplementary Fig. 2. In the following, we
will focus on the devices made by ultra-thin GaTe flakes encap-
sulated by hexagonal boron nitride (h-BN) in a glove box,
in order to diminish damages from air. Detailed analysis of
the effect of h-BN protection can be found in Supplementary
Figs. 7–11.

Polarized Raman can be used to determine crystal orientation
in 2D flakes10,12, and also to deliver information of phonon
modes that are related to the lattice symmetry. Supplementary
Fig. 12 shows Raman spectra of a typical GaTe flake, with the
angle-dependent intensity at Raman shift of 271.1 cm−1 plotted
in a polar figure overlaid on the optical image shown in the inset.
A twofold symmetry of the polar figure can be seen, with one of
the polarized axis parallel to the exfoliated straight edge of the
GaTe itself. Such a Raman-active mode is a Ag mode in C2h point
group. From Raman tensor analysis, the direction of maximal
Raman intensity of such Ag mode corresponds to the lattice
direction with short lattice constant, defined as y direction in
Fig. 1a, with x direction perpendicular to it. Raman mode at
164.6 cm−1 is another good reference for determining the
crystalline direction (see Supplementary Fig. 13)12. Such a mode
has a fourfold symmetry (Bg mode) and therefore four-lope
angular dependence, with each lope 45 degrees away from the
polarization axis of the mode at 271.1 cm−1. By comparing
Raman anisotropy with the anisotropy of electrical conductivity
(shown in the next section), it is known that y axis of GaTe
layer corresponds to a maximum conductivity (Supplementary
Figs. 12–13). By this means, one can pattern electrodes for
electrical measurements just with the zero angle defined along
with such straight edges (y direction).

As shown in Fig. 1e, nine pairs of electrodes (20° angle between
each two electrodes) were deposited onto the h-BN/GaTe/h-BN
stack sample S1 (see Methods), which is further patterned into
a circular shape in Fig. 1f. As a result, the source-drain current

Ids along each pair of electrodes at gate voltage Vg=−80 V
follows an ellipsoidal dependence of the testing angle, shown in
Fig. 1g. It is rather straight forward that the maximum Ids flows
in 0°, which is parallel to one of the straight edges, i.e., the y axis,
as marked in Fig. 1f. Such twofold ellipsoidal oscillation of in-
plane anisotropic conductivity is also seen in a number of other
2D materials4,5,9–11,20.

To unveil the origin of in-plane electrical conductivity anisotropy
found in ultra-thin GaTe, we performed first-principles electronic
structure and non-equilibrium Green’s functional quantum
transport calculations with a simplified model on GaTe monolayer.
Electronic band structure along high-symmetry lines is shown in
Fig. 1h, with the first Brillouin zone and high-symmetry points
defined in Fig. 1i. A direct band gap of 1.5 eV locates at the X point,
in agreement with PL measurement in Supplementary Fig. 14.
Thanks to the direct band gap, outstanding photo responses
have been reported in GaTe devices15,21. What’s very interesting is
the strongly anisotropic band dispersion obviously seen along two
perpendicular directions (Γ–X and X–K). At the VBM, band
dispersion along Γ–X is much bigger than along X–K, which gives
rise to strong anisotropic effective mass m* at VBM, as shown in
Supplementary Fig. 15. The calculated m* (shown in Supplemen-
tary Fig. 16) along X–K direction is ~ 10 times larger than that
along Γ–X, which seems to lead to a better transport property along
x axis than y axis. However, deformation potential E1 (shown in
Supplementary Fig. 16) due to electron-phonon scattering shows
an opposite trend to m* in both x and y axes, and dominates over
the anisotropy of effective mass to give rise to the anisotropy of
electrical conductivity σ according to the deformation potential
theory (see Methods), σy is about five times as big as σx at low
doping. When plotting experimental data in the renormalized
conductivity polar figure in Fig. 1j, a twofold symmetry of
conductance can be clearly seen.

Gate-tunable GAR in ultra-thin GaTe. The above-mentioned
twofold in-plane symmetry of resistivity can be reproduced in
multiple GaTe devices (Supplementary Figs. 17–18), and we
performed a systematic study on the sample S2. As shown in
Fig. 2a, with the same GaTe flake (optical image of the device
is shown in the inset of Fig. 2a), field–effect curves, measured
at source-drain voltage Vds= 2 V along x and y directions,
exhibit strong anisotropy, indicated by red and blue colors,
respectively. Ids measured along the 12 directions with a fixed
Vds= 5 V are plotted at Vg=−60 V, while an ellipsoidal oscil-
lation at all angles with 2π periodicity can be seen, shown
in Fig. 2b. When the gate voltages were swept from −60 V to
−30 V, the maximum-to-minimum Ids ratio of the ellipsoidal
oscillation at each gate voltage varies largely. Note that similar
gate-tunable anisotropic resistance behavior is also seen in
bare GaTe devices without BN encapsulation (Supplementary
Figs. 19–20).

Taking y (0°) and x (90°) directions for examples, closer look of
I–V output curves in the range of ±5 V is shown in Fig. 2c–d. It
is seen that at high bias voltage, Ids for direction y is varying within
10−7 and 10−5 A, whereas Ids for direction x is varying within
10−11 and 10−6 A. We define the electrical maximum anisotropic
ratio Γa as Iy/Ix for each fixed gate voltage. Strikingly, as extracted
from Fig. 2b, Γa as a function of gate voltage shows a gate-tunability
from less than one order to as large as 103. This gate-tunable GAR
effect was not found in previous studies. We fabricated various
samples in similar configuration of h-BN encapsulated ultra-thin
GaTe devices (Supplementary Figs. 21–23), with their Γa plotted
together in Fig. 2e. In general, anisotropic ratio in those devices
can be gate tuned from a few times, to several hundreds or even
thousands folds, which is much higher than other 2D systems
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reported so far4,5,7,9,22. To push the 2D limit of the GaTe
thicknesses studied in this work, we managed to fabricate sample
of GaTe with ~ 4.8 nm in thickness. And as the inter-layer distance
of GaTe is ~ 0.8 nm21, we can draw the conclusion that, down to
the six-layer limit, the observed GAR prevails, as shown in
Supplementary Fig. 24.

As Γa in ultra-thin GaTe is rather weak at relatively higher hole
doping (say, in the Vg=−60 V limit), and becomes significantly
enhanced close to the VBM in the vicinity of Vg=−30 V, it more
or less shows a better electron collimation at higher Γa values, i.e.,
electrons tend to flow preferably along a certain direction at those
conditions. Considering the deformation potential theory only
applied to the band edge (VBM or CBM) and its inability to
take care the gate-tunability on electronic transport23,24, we
calculate I–V curves and their gate dependence by combining
density functional theory (DFT) calculation with the non-
equilibrium Green’s function (NEGF) method25 (see Methods),

and show calculated field effect I-V data at Vds= 0.5 V along two
perpendicular crystalline directions in Supplementary Fig. 25. To
avoid possible contact Schottky barrier, we use p-type heavily
doped GaTe as source and drain. I–V curves along both x and y
directions show a similar behavior to the experimental ones
as given in Fig. 2a. Iy,ds at Vds= 0.5 V increases from 1.39 μA at
Vg=−9.1 V to 12.52 μA at Vg=−82 V. More strikingly is the
gate dependence of Ix,ds, which changes by two orders of
magnitude, from 4.63 × 10−3 μA at Vg=−9.1 V to 0.19 μA at
Vg=−82 V. The calculated Iy/Ix ratio, given in filled red squares
in Fig. 2e, decreases with increasing gate voltage, from ≈ 300 at
−9.1 V to ≈60 at −82 V, agreeing qualitatively with the
experimental ratio but in a milder way than the experimental
data. The discrepancy can be ascribed to that extrinsic effect in
experiment such as nonlinear contact resistivity is not taken into
account in the simulated device. Nevertheless, the gate-tunable
GAR can still be intrinsically analyzed from the calculated
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transmission coefficient, as shown in Supplementary Fig. 26. At
low gate voltage (− 9.1 V), there is almost no x direction
transmission channels in the scattering region between source
energy level EL and drain energy level ER, whereas a sizeable y
direction transmission is observed, giving rise to a large
anisotropic ratio Γa at low gate voltages. In contrast, at high gate
voltage (− 82 V), non-zero transmission coefficient in channel
material appears with comparable total transmission in both x
and y directions, greatly suppressing GAR in GaTe.

Ultra-thin GaTe anisotropic floating gate memory. It is of
great importance to demonstrate conceptual devices taking
advantage of the GAR effect in ultra-thin GaTe. In the following,
we will discuss a prototype anisotropic memory based on
ultra-thin GaTe. Using the vdW assembly method (see Methods),
a few-layered graphene was equipped in addition to the h-BN/
GaTe/h-BN sandwich, forming an architecture of FGM.
Optical image and art view of such typical devices are shown in
Fig. 3a, b.

Interestingly, when sweeping within the same gate window, the
hysteresis memory curves along y and x directions vary largely,
with a clear discrepancy of memory window size, shown in
Fig. 3c, d. This result is more pronounced in a log scale when
plotted together in Fig. 3e. One can see that after an operation
of erasing (sweep the Vg from 0 V to −20 V, and back to 0 V),
the device stays in an “Off” state in both directions. While
an program operation (sweep the Vg from 0 V to 20 V, and back
to 0 V), the device stays in two different “On” states in y and x
directions, as indicated by colored circles in Fig. 3e, and their
corresponding retention in Fig. 3f. It thus makes the device an
anisotropic memory, i.e., one single operation of programming-
erasing will generate two sets of data in the two directions,
making the device conceptually compatible with direction-
sensitive data storage.

Discussion
To verify the performance of ultra-thin GaTe FGM with graphite
floating gate along fixed direction, we recorded polarization
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gate voltages for different ranges from ±20 V to ±80 V in direc-
tion y, shown in Fig. 4a (see also Supplementary Figs. 27–28). It
can be seen that the GaTe memory shows rather stable erased
state in all gate ranges. Once fed with the stimulation of pulsed Vg

of ±40 V, the device can be readily erased and programmed as
illustrated in Fig. 4b.

In the following, we compare the GaTe FGM with the state-of-
the-art FGMs fabricated from other 2D materials26–36. Given that
retention of the erased and/or programmed states is one of the
most important parameter of such FGM, we recorded along
direction y the on state (by a positive gate pulse), and the off state
(by a negative gate pulse), respectively. Among GaTe FGM
devices tested, the best performance (measured from sample
S4 as shown in Fig. 4c) exhibits an on/off ratio exceeding 107

and the attenuation of the on/off ratio is < 5% in a retention time
of 105 s (detailed memory characterizations of sample S4 are
shown in Supplementary Fig. 29). By summarizing the state-of-
the-art performance of FGM based on 2D materials, it is found
that, our h-BN/GaTe/h-BN with graphite floating gate memory
shows up to now the record on/off ratio and retention time, as
shown in Fig. 4d. We attribute the observed high on/off ratio in
the h-BN encapsulated devices to the better preserved band gap in

the pristine GaTe. When the Fermi level is tuned to be inside
the band gap (no electron density of state available), the off-
state current is at the order of pA, whereas the on-state current
reaches a few μA. To illustrate the working principle of the
GaTe floating gate memory devices, we show, according to
previous studies26,27,29,33, simplified band diagram in Supple-
mentary Fig. 30.

In conclusion, we have discovered that ultra-thin GaTe
encapsulated by h-BN devices show a twofold symmetry electrical
conductance oscillations along different in-plane directions, with
their maximum anisotropic ratios Iy/Ix gate-tunable in the range
from < 10 to a few thousands. This GAR arises from the in-plane
anisotropic transmission coefficients, and the anisotropic ratio
can be changed by several orders of magnitude mainly owing to
the sensitivity of x direction conduction channel to gating. Based
on this GAR effect, we devised an anisotropic GaTe memory with
a vdW assembled graphite floating gate. The prototype memory
devices show direction-sensitive multiple-level output non-
volatile memory behavior when measured from different direc-
tions. Moreover, fixed direction measurements suggest that the
GaTe FGMs show record performances in terms of both on/off
ratio and retention time among the state-of-the-art FGM based

c d

10–16

10–12

10–8

10–4

105

Retention time (s)

O
n/

O
ff 

ra
tio

103 104

This work

BP/MoS2

AuNPs/WS2

MoS2/graphene

Graphene/MoS2

MoS2/graphene

MoS2/P3HT

AuNPs/graphene

GO/graphene

Graphene/MoS2

Metal nanocrystal/MoS2

Graphene QDs/pentacene

a b
350

300

250

200

150

100

50

0

–100 –50 0 50 100
Gate voltage (V)

± 80
± 70
± 60
± 50
± 40
± 30
± 20

Window (V)

10–14

10–12

10–10

10–8

10–6

2151651156515
Time (s)

–40

0

40

Erased

Programmed

[36]

[28]

[33]

[27]

[32]
[29]

[26]

[31]

[34][35]

[30]

I d
s 

(n
A

)

V
g 

(V
)

I d
s 

(A
)

I d
s 

(A
)

On/off ratio 
> 107

102 103 104

107

106

105

104

103

102

101

100

Retention time (s)

105102
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on 2D materials. Using this unit cell of GaTe anisotropic field
effect transistor as a building block, it can be further expanded
into many possible applications such as neural computation with
GaTe FGM neural network arrays.

Methods
Single crystal GaTe was prepared via the self-flux method. Raw bulk materials with
stoichiometric ratio of Ga (purity 99.999%): Te (purity 99.9%)= 48.67:51.33 were
mixed and kept at 880 °C for 5 h. The mixture was then cooled at the rate of 1.5 °C
h−1, followed by a natural cooling process. The h-BN (crystals from HQ Graphene)
encapsulated GaTe devices were fabricated using the dry-transfer methods (Sup-
plementary Fig. 31)37, and then annealed in Ar:H2 (10:1) mixture at 320 °C for 30
mins before electrical measurements.

The h-BN-encapsulated GaTe heterostructures were fabricated in an mBraun-
universe glove box. A Bruker Dimension Icon AFM was used for thicknesses and
morphology tests. Raman measurements were performed by an HR 800 JobinYvon
Horiba polarized Raman spectroscopy. The electrical performances of the devices
were measured using a semiconductor analyzer (Agilent B1500A) and a probe
station (Cascade Microtech Inc. EPS150) under ambient conditions.

The electronic band structure in this work was calculated by using the first-
principles density functional theory as implemented in the VASP code38. Projector
augmented wave pseudopotentials39 and the Perdew-Burke-Ernzerhof40 functional
were, respectively, used to describe electron–ion interaction and electronic
exchange-correlation interaction. We adopted 500 eV as the electronic kinetic
energy cutoff for the plane-wave basis and 10−6 eV as the criterion for reaching
self-consistency. The Brillouin zone (BZ) of the primitive unit cell (12 atoms per
cell) was sampled by 20 × 20 × 1 k-points41. Rectangle supercell (24 atoms per cell)
was used to calculate anisotropic electrical conductivity and the BZ was sampled by
2 × 6 × 1 k-points.

The electrical conductivity σ was evaluated based on σ= neμ, in which carrier
mobility μ was calculated based upon the deformation potential theory with
formula23,24

μ ¼ e�h3C2D

kBTm�mdE
2
1
; ð1Þ

where ℏ is the reduced Planck constant, C2D is the elastic modulus derived from (E
− E0)/A0= Cε2/2 (E, E0, A0, C, and ε denote, respectively, the total energy, the total
energy at equilibrium, the area of the 2D unit cell at equilibrium, elastic constant,
and the lattice strain), kB is the Boltzmann constant, T is temperature, m* is the
effective mass in the transport direction, md is the averaged effective mass defined
by md ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m�
xm

�
y

p

and E1 is the deformation potential constant of the VBM along
the transport direction. E1 defined by E1= ΔV/ε with ΔV as the energy change of
the VBM under small strain ε.

I–V curve of the GaTe transistor was simulated using the DFT coupled with the
NEGF method25, as implemented in the ATK package42. The structure of GaTe
transistor is shown in Supplementary Fig. 25(a). We employed the Dirichlet
boundary condition to ensure the charge neutrality in the source and the drain
region. The temperature was set to 300 K. The density mesh cutoff was set to 80
Hartrees. The Monkhorst-Pack k-point meshes for device along the x and y
direction were sampled with 40 × 6 × 1 and 114 × 6 × 1, respectively. Electron–ion
interaction was treated by SG15 Optimized Norm-Conserving Vanderbilt (ONCV)
pseudopotentials43,44. The transmission coefficient at energy E was averaged over
31 k-points perpendicular to the transport direction. The generalized gradient
approximation was adopted for the electronic exchange-correction functional. The
length of scattering region is 9.530 nm and 9.676 nm for transistor along x and y
directions, respectively, both of which are sufficiently large to avoid interaction
between source and drain. The code of VASP (www.vasp.at) and QuantumATK
(https://docs.quantumwise.com/guides/guides.html) are commercially available
from their official websites.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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