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Aggregation is a common problem affecting biopharmaceutical development that can have a significant effect on
the quality of the product, as well as the safety to patients, particularly because of the increased risk of immune
reactions. Here, we describe a new high-throughput screening algorithm developed to classify antibody molecules
based on their propensity to aggregate. The tool, constructed and validated on experimental aggregation data for over
500 antibodies, is able to discern molecules with a high aggregation propensity as defined by experimental criteria
relevant to bioprocessing and manufacturing of these molecules. Furthermore, we show how this tool can be
combined with other computational approaches during early drug development to select molecules with reduced risk
of aggregation and optimal developability properties.

Introduction

The biopharmaceutical industry is currently affected by the
increasing cost of drug development combined with a reduction
in the productivity of research and development. Only a small
fraction of drug candidates that enter development are commer-
cialized. Such high drug attrition is due to many factors, includ-
ing efficacy, pharmacology, safety and costs of manufacturing.
Most biotherapeutic candidates will fail during the pre-clinical
and clinical stages of development, i.e., the so-called translational
gap of pharmaceutical development. New high-throughput de-
risking approaches, which could be applied early in the drug
development cycle, are needed to facilitate early assessment and
identification of potential issues in order to reduce failure in later
stages of development.1

Protein aggregation, commonly encountered problem during
biopharmaceutical development, has the potential to occur at dif-
ferent stages of the manufacturing and development processes,
such as during fermentation, purification, formulation, fill-finish
and storage. Aggregation potentially effects not only the

manufacturing process, but also the target product profile, prod-
uct efficacy, delivery and, critically, patient safety. Protein aggre-
gates have been reported to contribute to cases of immune
reactions in patients.2,3 These aggregates can manifest themselves
as reversible oligomers, subvisible or visible particles, or as precip-
itates. The protein aggregation process is driven by a number of
factors, including amino acid composition and sequence, envi-
ronmental factors such as pH, concentration, buffers/excipients
and shear-forces during processes used for protein production, as
well as final formulation and storage conditions.4

A variety of in silico predictive tools have been developed in
recent years in an attempt to predict the aggregation risks in bio-
pharmaceuticals. Such tools have utilized a number of different
approaches, including semi-empirical methodologies to link the
experimental observation of aggregation to protein physico-
chemical properties, structure-based approaches to try to under-
stand amyloid formation from 3-dimensional structures, or mod-
els based on assumptions of parameters suspected to define
aggregation of proteins. Recent developments in aggregation pre-
dictive tools have been reviewed elsewhere.5,6
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Most of the currently available aggregation prediction tools
have been primarily developed around specific aggregation path-
ways, either b-strand amyloid aggregation or aggregation
through hydrophobic surface patches. While these tools are suit-
able to detect and re-design specific areas in a protein that could
be involved in specific types of aggregation, they are less well
suited to the quantitative or qualitative prediction of an aggrega-
tion risk for complex biopharmaceutical proteins. Aggregation
hot-spot detection for a specific aggregation pathway may be suf-
ficient when comparing and selecting candidates from a pool of
similar proteins that are known to have an aggregation problem;
however, the question remains whether these methods are appli-
cable to rank therapeutically relevant proteins, such as antibodies.
Some aggregation hot-spot methods have been applied specifi-
cally to antibodies,7 most notably the Developability Index (DI)
tool based on the spatial aggregation propensity (SAP) concept,8

which has been used to screen and rank antibodies according to
their aggregation propensity.9 The tool was developed and vali-
dated using long-term stability data of 12 antibodies; however,
the requirement for a protein structure or a structural homology
model for the application of this tool can be a limitation.

The degree of predictability of the tools is linked to the experi-
mental systems and the number of data points utilized for their
development and validation. Many of the existing predictive
computational tools were developed and validated using a very
limited number of experimental measurements.

Here, we present a new in silico tool for the prediction of
aggregation risk for antibodies. The tool was developed and vali-
dated using experimental measurements of aggregation for over
500 antibodies. The emphasis of this tool is on intrinsic aggrega-
tion propensity, and, although aggregation depends both on the
intrinsic aggregation propensity of the protein itself and on sur-
rounding environmental factors, the fundamental reason why
some antibodies aggregate and others do not is ultimately
encoded by the amino acid sequence.

The challenge of the expression and characterization of such a
large number of antibodies in an efficient manner, with minimal
operational variability and with limited sample consumption,
was addressed by using high-throughput methods for antibody
expression and characterization.10 The Duetz system,11 a minia-
turized platform for the rapid culture and handling of large num-
bers of variants, was used for the transient expression of
antibodies. Transient expression was used to minimize bias
linked to clonal selection or cell survival after stable transfection.
This approach also made it possible to test hundreds of samples
in comparable, standardized conditions.

Protein aggregation was assessed using the Oligomer Detec-
tion Assay (ODA) developed in our laboratory,12 as well as using
standard SE-HPLC methods. The ODA is based on standard
immunoassay technologies and can be utilized to establish a com-
parison between aggregation levels of multiple antibodies in a
high-throughput manner. Furthermore, in our internal assays
ODA has been shown to recognize different aggregate species,
and therefore show reduced ‘structural bias’ compared to other
analytical approaches currently used in the industry. To our
knowledge, this is the first example of an aggregation prediction

tool that has been developed on such a large volume of experi-
mental data collected using the same experimental protocols.

The aggregation model was constructed using statistical
modeling and machine-learning techniques linking the experi-
mental aggregation data with physico-chemical parameters
describing the amino acid sequences of antibodies. The resulting
model provides qualitative prediction of aggregation risk for anti-
bodies (High or Low risk of aggregation) using the primary
sequence of antibodies as input. We demonstrate here the accu-
racy achieved by this model and its excellent performance when
applied to prediction of aggregation risk for antibodies.

This aggregation prediction tool can be used early in the drug
development process to enable ranking and selection of leads
with reduced risk of aggregation. The application of the tool
requires only the antibody amino acid sequence and offers a
high-throughput method for an early aggregation screening
assessment. We present an example of the application of this tool
to the selection of antibody variants during an engineering pro-
gram. In this example, the aggregation prediction is successfully
used in combination with in silico immunogenicity prediction to
screen and select antibody variants with reduced risk of aggrega-
tion and immunogenicity to progress to in vitro expression and
characterization.

Results

Antibody set design
For a computational statistical model to be truly predictive, it

should be trained on a large and diverse dataset. The antibody
sequences used in this study originated from 2 distinct sources.
The first group of antibodies were designed in-house using repre-
sentatives of the 6 most common heavy chain families and mem-
bers of the 8 most common light chain families (k and l), taking
all possible combinations of heavy and light chains. All variable
domain families were engineered with different complementar-
ity-determining regions (CDR3s) varying in amino acid compo-
sition and length to explore the specific effect of this region. We
refer to this group, which consisted of 288 k and 288 l antibod-
ies, as ‘design’ antibodies. The second group contained 376 com-
binations of different light and heavy chains based on 108
unique antibody Fvs, mainly human and humanized, collected
from the Protein Data Bank (PDB)13 and other sources;14 this
group is referred to as ‘PDB’ antibodies. The ‘PDB’ set includes
some commercialized therapeutic antibodies.

A diverse subset of sequences was then selected from these
groups to create a wide domain of applicability for the resulting
model, while reducing oversampling due to sequence redun-
dancy. The selection was performed using a hierarchical cluster-
ing algorithm in the amino acid sequence space. The final set of
selected sequences consisted of 341 antibodies with k light chain
and 131 antibodies with l light chain. In more detail, this set
included 269 ‘PDB’ and 72 ‘design’ k antibodies and 96 ‘PDB’
and 35 ‘design’ l antibodies, respectively. The selected 472 anti-
bodies were then expressed and characterized under the same
experimental conditions. Figure 1 shows counts of
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representatives of heavy and light chain
germline families in the final antibody
set. The diversity of the set is illustrated
by Figure 2, which shows the antibody
sequences in the space of 2 principal
components; the principal component
analysis was performed based on a
sequence distance measure.

Expression and analytical
characterization

Two main challenges were encoun-
tered when designing an experiment to
produce the quantity of results neces-
sary to create an accurate predictive
algorithm, namely high-throughput
(HTP) antibody expression and HTP
aggregation assessment. The miniaturization of culture systems
for the expression of a heterogeneous collection of antibodies
facilitates an increase in sample size of a study while saving a sig-
nificant amount of time.11 Use of the Duetz system for antibody
expression enabled the generation of the large amounts of data
necessary for this study. To evaluate the aggregation of the anti-
bodies in such small volumes of supernatant, an ELISA-based
ODA that has high sensitivity and throughput, and is very simple
to implement, was employed.12 It requires a monoclonal anti-
body recognizing a specific and unique epitope in the molecule
of interest, which could be any biopharmaceutical, including a
therapeutic antibody. This monoclonal antibody is used both for
capturing the biopharmaceutical of interest and, as a labeled ver-
sion, as a detection reagent. Because of the monovalence of the
epitope in the target biopharmaceutical, aggregates made of 2 or
more molecules will likely display epitopes
accessible to the labeled antibody, giving
rise to a detectable signal. The intensity of
the colorimetric reaction is proportional
to the level of aggregates. As an additional
advantage, this assay allows detection of
larger oligomers as well as dimers/trimers.

The 472 antibodies of the final set were
expressed using Lonza’s GSTM Gene
Expression system. Cells were transfected
by electroporation and cultured for 72 h.
The supernatant was collected and anti-
body concentration determined by immu-
noglobulin G (IgG) titer ELISA;
aggregation was measured by ODA. An
assay readout Abs450nm (intensity of color-
imetric reaction) was normalized against
amount of antibody in the supernatant
(mg); therefore, antibody aggregation is
expressed in units Abs450nm /mg. The sec-
ondary antibody used in the assays was
light chain specific.

A comparison of ODA aggregation val-
ues to measurements by SE-HPLC, a

standard method for the assessment of aggregation, was made for
a selection of 71 antibodies (36 k and 35 l) from the ‘design’ set.
To provide sufficient material for the SE-HPLC measurements,
the selected antibodies were transiently expressed in 100 ml
HEK293 cell cultures after 293Fectin transfection. Aggregation
levels for antibodies expressed using CHOK1SV cells and
HEK293 cells had been previously shown to be comparable (data
not shown). The percentage of soluble aggregate was measured
by SE-HPLC post Protein A purification. For k antibodies, the
squared correlation coefficient between 2 aggregation measure-
ments is r2 D 0.64 (after exclusion of outliers). Similarly, for l
antibodies the squared correlation coefficient between 2 aggrega-
tion measurements is r2 D 0.71 (after exclusion of outliers). Con-
version formulae were used to set a threshold to apply to
aggregation measurements in order to classify antibodies into

Figure 2. The antibody sequences are plotted in the space of 2 principal components. The principal
component analysis was performed based on sequence distance measure. Each marker corre-
sponds to an antibody sequence. Crosses denote k ‘design’ subset, squares – k ‘PDB’ subset, black
circles – therapeutic antibodies. Diamonds and pluses denote l ‘design’ and l ‘PDB’ subsets,
respectively.

Figure 1. Counts of representatives of germline families in the antibody set. (A) heavy chain germline
families, (B) k and l light chain germline families.
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those with High or Low aggregation risk. Antibodies with soluble
aggregates below 5% are generally considered to be lower risk
(with respect to successful development and manufacture). In
addition to this consideration, the attempt was made to have a
data set with a balanced number of antibodies in both categories,
High and Low, which is important for a successful predictive
model. For k antibodies, a threshold of 5.5% of total soluble
aggregate (as measured by SE-HPLC) was taken. For l antibod-
ies, a threshold of 6.5% of total soluble aggregate was set.

Physico-chemical sequence descriptors
A sequence alignment of the variable domains of 472 antibod-

ies was performed according to the AHo numbering scheme.15

The structure based AHo scheme yielded 298 input parameters
(149 per chain) through which the structural and positional
aggregation interdependence in the set is accounted for.

Nine amino acid scales were used to describe amino acid
sequences of antibodies. These amino acid scales are obtained by
principal component analysis of physico-chemical properties of
amino acids, such as hydrophobicity, size, polarity, electronic,
steric and hydrogen bond properties. The amino acid scales have
been previously used for quantitative sequence-activity model
(QSAM)/ quantitative structure-activity relationship (QSAR)
modeling of peptide properties.16 For each position in a
sequence, a running sum of each amino acid scale was calculated
across a window of 7 residues centered in the position. To reduce
the influence of artificial alignment gaps, these were not taken
into account when calculating sums. Prior to modeling, the
descriptors were pre-filtered by excluding descriptors with low
occurrence and low variance across the data set and excluding
highly correlated descriptors.

Model construction and validation
Separate models were constructed on k data and on combined

k and l data. In each case, the dataset was divided into training
(75%) and test (25%) subsets using hierarchical clustering in the
space of descriptors. In the case of combined k and l data, the
continuous ODA aggregation measures could not be used due to
different ranges of normalized ODA values observed for k and l
antibodies. The values in the 2 subsets were categorized separately
as High or Low, according to the defined thresholds set against
SE-HPLC data and then joined. The combined set and model
trained on it are referred to as the ‘k and l’ set and model,
respectively.

Various modeling techniques for classification and regression
were evaluated on both the continuous k data and the categorical
data for the ‘k and l’ set including Partial Least Squares regres-
sion (PLS), Random Forests for classification and regression,
Gaussian Processes regression and classification trees ensemble
boosting.17-20 The models were built on the training sets and val-
idated on the test sets. The best model for each data set was
selected based on the performance on the test sets. In addition,
the models were validated by cross-validation with Monte Carlo
(MC) simulations of training/test set split. The regression algo-
rithms did not produce models of appropriate quality for use.
The Adaptive Boosting (AdaBoost) algorithm for building
ensembles of classification trees20 was the best performer, and
final models for both k antibody set and ‘k and l’ set were built
using this technique.

Performance of predictive models
The aggregation model for k antibodies was built on a train-

ing set of Ntr D 256 antibodies and validated on the test set of
Nte D 85 antibodies, including 49 antibodies with observed Low
aggregation and 36 antibodies with High aggregation. The vali-
dation results are summarized in Table 1. On the test set, the
model achieved an accuracy of 78% in class Low and 75% in
class High. On the test set, the model shows 81% specificity in
class Low and 71% specificity in class High. Specificity in class
Low means the percentage of correctly predicted antibodies
among those predicted to be Low. Specificity in class High means
the percentage of correctly predicted antibodies among those pre-
dicted to be High. The area under the receiver-operating curve
(AUROC) was 0.76 on the test set. In addition, validation by
MC simulations of the training/test set split was performed using
the whole k antibody set. The performance evaluated by MC val-
idation is slightly lower, but close to the test set performance.

The ‘k and l’ model was built on a training set of Ntr D 355
k and l antibodies. One additional descriptor was added to the
set specifying the type of light chain. The model was validated on
the test set of Nte D 117 antibodies, including 64 antibodies with
observed Low aggregation and 53 antibodies with High aggrega-
tion. In addition, the MC validation of the algorithm was per-
formed on the whole antibody set. The results are summarized in
Table 1. On the test set, the model achieved an overall accuracy
of 70%, with 75% in class Low and 64% in class High. The
model shows 72% specificity in class Low and 68% specificity in

Table 1. Performance statistics of aggregation models on training and test sets and by Monte-Carlo simulations

Set/method of validation Number of antibodies Overall accuracy Accuracy in Low Accuracy in High Specificity in Low Specificity in High

The kmodel
training set 256 92% 89% 95% 95% 88%
MC-whole set 341 72% 75% 68% 75% 69%
test set 85 76% 78% 75% 81% 71%

The ‘k and l’model
training set 355 91% 88% 95% 96% 84%
MC-whole set 472 68% 67% 71% 76% 60%
test set 117 70% 75% 64% 72% 68%
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class High. The test set was found to
have an AUROC value of 0.70 on the
test set.

Physico-chemical properties
important for aggregation prediction

Machine learning algorithms, such
as the classification tree ensemble
method used here, are often described
as ‘black boxes’ because they do not
provide clear guidance as to which
descriptor features contribute to an
increase or decrease in a modeled prop-
erty. Nevertheless, the importance of
each descriptor in the model can be
estimated. Here, the descriptor impor-
tance is calculated based on a number
of trees in the classification ensemble
using the descriptor and also on weights
assigned to the descriptor.

The importance of physico-chemical
sequence features was calculated for
both of the predictive models. Figure 3
shows the normalized descriptor
importance for the 50 most important
descriptors of the k model. The impor-
tance was estimated from the model
and using data from the MC validation.
For the latter, the importance measure
is a sum of weights from all models
using that descriptor. Among the 50
most important descriptors, 20 descrip-
tors refer to sequence features of the
light chain, with 12 descriptors based
on central residues located in CDRs
and 8 descriptors based on residues
located in the framework region. For
the heavy chain features, 30 descriptors
are among the top 50 descriptors, with
9 features centered on CDR residues
and 21 features centered on framework
residues. All amino acid scales are rep-
resented among the 50 features describ-
ing electronic properties (z3, D1 and electronic charge index
(ECI)), size (z2), steric properties (D2), hydrophobicity (z1 and
D3), hydrogen bond properties (D4) and solvent accessibility
(isotropic surface area (ISA); see Materials and Methods for
details of the amino acid scales.)

Model validation on external data
Predictive models for k and l light chain antibodies were fur-

ther validated on antibodies from in-house engineering case stud-
ies. Re-engineered variants were transiently expressed in GS
CHOK1SV cell cultures and their binding affinity, titer and
aggregation were measured. The percentage of total soluble

Figure 3. Descriptor importance for the most important 50 descriptors for the kmodel. Solid bars indi-
cate descriptor importance estimated from the model, hashed bars indicate descriptor importance
estimated using MC validation. Both descriptor importance measures were normalized to fit the same
axis range. The descriptor name indicates an AHo position of the central residue for this descriptor and
an amino acid scale name (in parenthesis), the first character signifies location of the central residue, f
is for frameworks and c is for CDRs. (A) Light chain variable region descriptors. (B) Heavy chain variable
region descriptors.

Table 2. Accuracy of predictive models evaluated on 49 antibody variants from ‘external’ data set

Aggregation class Number of antibodies Number of correctly predicted antibodies Accuracy

Low 43 (42 k C 1 l) 36 84%
High 6 (4 k C 2 l) 5 83%
Overall 49 (46 k C 3 l) 41 84%

356 Volume 7 Issue 2mAbs



aggregate was measured by SE-HPLC post Protein A purifica-
tion. This set, referred to as ‘external’, consists of a range of engi-
neered antibody variants, including engineered HyHel-10,21

D1.322 and antibodies that have also been deimmunized via the
removal of T cell epitopes. Overall, the ‘external’ set contains 46
k and 3 l light chain IgG antibodies.

The antibody variants were classified into 2 classes – Low and
High aggregation, by applying thresholds of 5.5% for kappa anti-
bodies and 6.5% for lambda antibodies to the measured percent-
age of soluble aggregate. The k and ‘k and l’ models were used
to make a prediction of aggregation risk for k light chain anti-
bodies and l light chain antibodies, respectively. Validation
results are summarized in Table 2. The model had an overall
accuracy of 84% with regard to prediction of aggregation risk;
accuracy in class Low is 84% and accuracy in class High is 83%.

Figure 4 shows a bar chart of measured aggregation values for
wild type (WT) and engineered variants of antibody D1.3.22 The
model correctly predicted aggregation risk for 8 of 9 antibodies.

Application of aggregation tool for selection of antibody
variants

The aggregation prediction tool was used in an engineering
project to screen a number of antibody variants targeting inter-
feron gamma (IFNg) to further validate the tool and its applica-
tion in combination with other in silico tools and in vitro assays.
We will refer to the parental chimeric antibody and a variant
designed by Fan and co-workers23 as the WT and the reference
(REF), respectively.

Table 3. Predicted aggregation risk for the wild type, the reference and the
7 variants of the anti-IFNg antibody

Variant Predicted aggregation risk

WT High
REF High
#1–5 Low
#6–7 High

Figure 4. Percentage of soluble aggregate measured by SE-HPLC for re-
engineered variants of antibody D1.3. WT is parental antibody. Hashed
bars indicate antibodies with predicted Low aggregation risk, the solid
bar indicates antibody with predicted High aggregation risk.

Figure 5. DRB1 scores for the engineered anti-IFNg antibody variants.
Solid, hashed and dotted bars indicate the DRB1 scores for the whole
antibodies, heavy variable chains and light variable chains, respectively.
80% of marketed therapeutic humanized antibodies have DRB1 scores
not exceeding 1400 (data not shown).

Figure 6. In vitro characterization of engineered anti-IFNg antibody var-
iants – (A) product titer measured post Protein A purification (in mg/ml),
(B) percentage of monomer, (C) binding affinity log(EC50) (EC50 in pM).
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Seven variants were designed. The variants, the parental and
reference antibodies were profiled in silico for the aggregation
risk and the immunogenicity potential using the aggregation pre-
diction tool described here and EpibaseTM,24,25 an in silico plat-
form for identification of potential T cell epitopes and
immunogenicity risk screening. Table 3 shows the predicted
aggregation risk for the antibody variants. The WT and REF
antibodies were predicted to be at high risk of aggregation, as
well as variants #6–7. Variants #1–5 were predicted to be at low
risk of aggregation. Figure 5 shows the predicted immunogenic-
ity potential expressed as the DRB1 score for the antibody var-
iants and also for the individual heavy and light chains. The
DRB1 score combines information on potential T cell epitopes
present in an antibody sequence and population frequencies of
affected human leukocyte antigen (HLA) types. REF, WT and
variant #1 have higher DRB1 scores (i.e., higher predicted risk of
immunogenicity) than variants #2–7.

Taking into account both predicted properties of the variants,
aggregation and immunogenicity, 4 variants, #2–5, have a good
overall profile. These four variants were progressed to in vitro
stages, expressed and characterized.

The four variants, WT and REF antibodies were transiently
expressed in 150 ml GS CHOK1SV cell cultures, Protein A puri-
fied, and the titer, percentage of monomer recovery and binding
affinity were measured, as shown in Figure 6. The productivity
of variants #2, #4 and #5 was comparable or better to that of
REF and WT antibodies. Figure 6B shows that variants #2–5
were free of detectable aggregates and 100% of monomer recov-
ery was achieved. Figure 6C shows binding affinity of the variants
to human IFNg. Variants #2, #4 and #5 retained binding
affinity.

Taking into account experimentally measured titer, aggrega-
tion, binding affinity and predicted immunogenicity of antibody
variants, the variants with the best overall profile are #2, #4, and
#5. This result shows that the aggregation prediction tool can be
reliably used to enable optimal lead selection and progression of
the best candidates to in vitro stages, with potential to substan-
tially reduce the number of molecules progressing to in vitro
characterization.

Discussion

Comparison to existing aggregation prediction tools
A number of different aggregation predictive tools have been

reported in recent years.5,6,26,27 Some of these tools have been
either exemplified or validated in therapeutically relevant proteins

or biopharmaceuticals, showing the interest in finding better
ways of designing and selecting optimal biopharmaceutical candi-
dates for development.7 Most tools to date are based on aggrega-
tion hot-spot detection. The DI9 is a well-known tool for
assessing aggregation propensity of therapeutic proteins, with a
focus on antibody molecules, and to the best of our knowledge,
is the only approach, apart from the method described here, that
allows assessment of overall aggregation propensity of an anti-
body and that can be used to rank antibodies.

The DI is based on principles which assume that protein
aggregation is mainly driven by hydrophobic interactions and
that net change acts as a modulator of protein-protein interac-
tions. The tool combines SAP,8 which computes the relative
hydrophobic character of different regions on the surface of a
molecule, and the net charge from an antibody structure. It was
developed as a mathematical model incorporating the effects of
electrostatic and hydrophobic interactions with the parameters of
the model defined and validated using experimental data on 12
antibodies that were subjected to long-term stability studies (stor-
age up to 2 y under controlled conditions) and then characterized
by size-exclusion chromatography. The method was developed
using 7 IgG1 antibodies and tested on 2 IgG1, 2 IgG2 and one
IgG4. It was demonstrated that further parameterization of the
method against therapeutically relevant proteins and experimen-
tal data is beneficial for qualitative ranking of antibodies by
aggregation potential.9

We have compared the tool described here to the DI/SAP tool
using 45 antibodies from the ‘external’ data set. Homology mod-
els were constructed and used to predict the DI for each anti-
body. The DI is a quantitative measure of the antibody
aggregation propensity, as opposed to the qualitative measure
provided by our tool, which predicts High or Low aggregation
risk. Therefore, to enable a comparison of 2 predictions, a suit-
able threshold for DI values was identified to classify antibodies
as High or Low aggregation risk. The threshold was selected
using DI values and experimental aggregation values for a subset
of 30 antibodies from the data set used for the training of the
aggregation prediction tool described herein.

The results of the comparison study are shown in Table 4.
The DI tool appears to be very accurate in predicting High aggre-
gation risk antibodies, but at the expense of being over-predic-
tive. Half of the antibodies with observed Low risk were
predicted incorrectly as High risk by the DI tool, resulting in
48% accuracy in class Low for the DI tool. If used as an early
development screening platform, these predictions would lead to
many antibodies at Low aggregation risk being wrongly de-
selected. The accuracy of the aggregation prediction tool

Table 4. Comparison of the aggregation prediction tool to the Developability Index tool on antibody variants from the ‘external’ data set

DI prediction tool Lonza’s aggregation prediction tool

Observed aggregation class Number of antibodies Accuracy Number of antibodies Accuracy

Low 40 48% 43 84%
High 5 100% 6 83%
Overall 45 53% 49 84%
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described here is 84% and 83% in classes Low and High, respec-
tively, and the overall accuracy (84%) is exceeding that of the DI
tool (53%). Since the DI tool offers a quantitative measure of the
aggregation propensity, a correlation between experimental
aggregation data and the predicted DI values was calculated. The
Pearson correlation coefficient between the experimental percent-
age of soluble aggregates and the DI values is r D ¡0.31 and the
Spearman rank correlation coefficient is r D ¡0.48. Additional
benefits of the tool described here are that antibody structures
and homology models are not required, and the input is simply
the antibody amino acid sequence, with no requirement for fur-
ther parameter optimization.

Application of the aggregation prediction tool
in developability assessment of antibodies

During drug discovery and early development, the majority
of drug candidates are initially screened and selected based on
affinity and functionality. However, there are other properties
and attributes that need to be considered during lead selection
and optimization in biotherapeutic development, such as pro-
tein yield, aggregation, chemical stability (e.g., susceptibility to
degradation through oxidation, deamidation), formulability and
immunogenicity, which should form part of a comprehensive
developability risk assessment.1 The concept of developability is
used to define the suitability of a drug candidate to be devel-
oped as a drug. In the context of biopharmaceutical drugs,
developability assessment can be grouped into 3 major compo-
nents – manufacturability, safety and pharmacology/mode of
action.28

The manufacturability component identifies whether a bio-
therapeutic drug can be produced with a sufficient yield, with
suitable quality attributes (such as lack of aggregation, good
chemical stability profile, low risk of oxidation and deamidation)
and successfully formulated for the desired route of administra-
tion and dosing. The safety component includes assessment of
the immunogenicity, immunotoxicology and target-specificity of
the product. Finally, the pharmacology/mode of action compo-
nent addresses issues related to product delivery, route of admin-
istration, half-life, dosage regime and efficacy.

This is a simple way of organizing potential risk assessment,
but these different components are inter-related, e.g., aggregation
can be a determining factor in immunogenicity, or formulability
can have an effect in the pharmacology and therapeutic window
of a product.

Several platforms have been put forward to address the differ-
ent components of the developability assessment, including in sil-
ico predictive tools, in vitro assays reproducing relevant process
and biological environments, ex vivo assays using human donor-
derived samples, and in vivo assays making use of animal mod-
els.1 In silico platforms that could be used for rapid screening
exist for several developability properties, including aggregation
prediction tools as the one described here, models for prediction
of degradation and post-translational modification sites, and plat-
forms for assessment of immunogenicity that evaluate the pres-
ence of T cell epitopes in a protein sequence.24,29

The aggregation prediction model discussed here is highly
suitable for early assessment of antibody drug candidates and
selection of leads with reduced risk of aggregation. The tool is a
sequence-based statistical model developed and validated using
experimental measurements of aggregation for over 500 anti-
bodies. The model focuses on intrinsic aggregation propensity
and predicts a risk of aggregation for an antibody. This platform
was validated on a further 49 antibodies and demonstrated
excellent overall accuracy, correctly predicting the aggregation
risk for 84% of antibodies. The tool requires only the antibody
amino acid sequence, does not require additional parameter
optimization, and can be applied in a high-throughput manner
early in the drug development process before any expression
work has been initiated, enabling early selection of low risk
candidates.

We advocate application of the aggregation prediction tool as
part of a developability assessment workflow. Combined with
other in silico tools for prediction of immunogenicity and post-
translational modifications, this tool can be utilized early in the
drug development pipeline and contributes to rational product
design to ensure progression of leads with optimal properties,
i.e., increased safety, reduced aggregation and good stability pro-
files. Early developability assessment has the potential to reduce
drug attrition at later stages of drug development, reduce produc-
tion costs and increase the probability of success.9,30-33

We presented here an example of a developability assessment
performed during antibody engineering. Variants were designed,
screened in silico for the risk of aggregation and potential immu-
nogenicity using the EpibaseTM T cell epitope profiling platform.
The preferred variants were then progressed to expression and in
vitro characterization. This project validated application of the
aggregation prediction tool to lead selection and demonstrated
that early application of in silico tools results in selection of the
optimal variants.

The high accuracy and high-throughput applicability of the
aggregation prediction platform make this tool highly suitable
for use as part of a developability screening of biotherapeutic
candidates in combination with other in silico and in vitro
methods. In addition, the aggregation prediction tool can be
used to support re-engineering to reduce aggregation and
improve stability of antibodies, by quickly screening structurally
feasible residue mutations and assessing the aggregation risk of
the variants.

Materials and Methods

Computational methods and algorithms
Antibody set design
The ‘design’ set consists of a full factorial expansion of 6 heavy

chain families with 6 different CDR3s in each family (36 sequen-
ces) and 8 light chain families (4 k C 4 l) with 2 different CDRs
in each family (8C8 sequences); 576 antibodies in total, 288 k
and 288 l sequences. For the ‘PDB’ set, human and humanized
antibody variable domains (Fvs) with available crystal structures
were downloaded from the PDB13 and curated, resulting in 186
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unique Fv sequences; in addition, the sequences of therapeutic
antibodies were collected from Chemical Abstracts Service.14

The diverse set of sequences was selected from the initial set of
antibodies. Antibody variable domains were aligned according to
the AHo numbering scheme, and a set of important positions to
cluster on was decided upon; the positions were composed of the
CDRs according to the AHo scheme, the upper core (AHo),
framework positions contributing to canonical loop conforma-
tions (Chothia) and VH/VL interface. The Fv sequences were
clustered using a hierarchical clustering algorithm with distance
metric based on percentage identity. Matlab R2011b implemen-
tation34 of hierarchical clustering was used. As a result, the selec-
tion included 147 k type antibodies (75 ‘PDB’ and 72 ‘design’)
and 68 l type antibodies (33 ‘PDB’ and 35 ‘design’). The ‘PDB’
set was then expanded to 376 combinations (272 k and 104 l)
of different light and heavy chains.

Twelve antibodies did not express sufficiently for further char-
acterization and were excluded from the final antibody set. The
final antibody set consisted of 341 antibodies with k light chain
and 131 antibodies with l light chain.

Physico-chemical sequence descriptors
Nine amino acid scales were used to describe amino acid

sequences of antibodies: 3 z-scales,35 4 divided physico-chemical
property scores (DPPS),16 isotropic surface area (ISA)16 and elec-
tronic charge index (ECI).16 Z-scales descriptors (z1, z2 and z3)
are obtained by principal component analysis of 29 physico-
chemical properties of amino acids, and interpreted as related to
hydrophilicity (z1), size (z2) and electronic properties (z3).

35

DPPS (D1, D2, D3 and D4) are obtained by principal compo-
nent analysis of 119 electronic (D1), steric (D2), hydrophobic
(D3) and hydrogen bond (D4) amino acid properties.16 ECI is
the sum of the absolute values of the charges for each atom pre-
sented in the amino acid side-chains. ISA is the sum of surfaces
of the side-chain atoms accessible to nonspecific solvent
interactions.

Descriptors were pre-filtered by excluding features with low
occurrence (less than 2% non-zero values in the set) and low vari-
ance (standard deviation of the descriptor across the set is less
than 0.0001). In case of highly correlated descriptors (correlation
coefficient exceeding 0.95), only one of the pair/group remained
in the set. This procedure was performed on the training sets and
the excluded descriptors were then removed from the corre-
sponding test sets. In the k set, 1474 descriptors remained after
pre-filtering; in the ‘k and l’ set, 1567 descriptors remained after
pre-filtering.

Algorithms and validation procedures
The split of the initial data set into training and test set (75%

and 25%, respectively) was performed by hierarchical clustering
algorithm in the space of descriptors using Matlab R2012b
implementation.34 The number of clusters was selected in such a
way that it was possible to take at least one member from each
cluster into the test set. All centroids and singletons were
included in the training set.

Final models for k set and ‘k and l’ set were built using the
Adaptive boosting classification tree ensemble algorithm (Ada-
Boost) using Matlab R2012b implementation.34 Various internal
parameters in the algorithm were considered and optimized. In
the k model, an ensemble of 80 trees was used with all default
parameters except for the prior probability parameter, which was
set to p D 0.5. In the ‘k and l’ model, an ensemble of 100 trees
was used with all the default parameters except for the prior prob-
ability parameter, which was set to p D 0.4 (p is the prior proba-
bility for the Low aggregation class).

Model validation by MC simulations was performed as fol-
lows. The data set was split randomly into 5 cross-validation
groups. Models were trained using 4 groups and validated on a
remaining leave-out group, 5 models in total. The performance
on the whole set was obtained using predictions on leave-out
groups. The procedure of random splits into 5 groups was
repeated 30 times. The performance statistics were averaged
across 30 repeats.

EpibaseTM immunogenicity profiling
EpibaseTM is a T cell epitope screening platform that analyses

and predicts the potential immunogenicity of proteins25 by iden-
tifying potential T cell epitopes present in the protein sequence,
based on the prediction of HLA/peptide binding. The platform
analyses the HLA binding affinities of all 10-mer peptides derived
from a target sequence for up to 85 HLA class II allotypes. The
DRB1 score combines counts of potential T cell epitopes present
in a protein sequence and population frequencies of affected
HLA types to provide an immunogenicity risk score for individ-
ual peptides and whole proteins.

DI predictions
The DI predictions were performed using Discovery Studio

v3.5 (Accelrys, BIOVIA) implementation.36 Default values were
used for parameters pH D 6 and b D 0.05. As recommended by
the Discovery Studio software support, the parameters for the DI
tool need to be optimized on 30 to 50 in-house antibodies to
enable classification of DI values into High and Low risk. The
threshold for classification was optimized on 30 antibodies from
the training data set.

Fab homology models of 30 antibodies from the training data
set and 49 from the ‘external’ data set were constructed using the
MODELLER implementation in Discovery Studio v3.5.36 The
templates were typically: a Fab structure with the best sequence
identity across the framework of both variable domains, highly
similar variable domains and CDR templates in the common
fashion.37 Finally, the CL and CH1 domains of a high resolution
Fab structure were used to compensate for the cases where the
Fab template constant domains had unresolved loops.

Expression and analytical characterization
Gene synthesis
Heavy and light chain genes were synthesized by GeneArt

AG� (Life Technologies) and sub-cloned into Lonza Biologics
GSTM Gene Expression system vectors, pEE6.4 and pEE12.4. A
20 amino acid signal sequence was added N-terminal to the light
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chain sequence, and a 19 amino acid signal sequence was added
N-terminal to the heavy chain sequence. A Kozak sequence pre-
ceded the signal sequence, following the N-terminal restriction
site.

DNA amplification
One ml of vector DNA was used to transform Subcloning

EfficiencyTM DH5a Chemically Competent Escherichia coli cells
(Life technologies, 18265–017) using the heat-shock method
according to manufacturer’s instructions. Cells were spread onto
ampicillin-containing (50 mg/ml) Luria Bertani agar plates (LB
Agar, Sigma-Aldrich) and incubated overnight at 37�C until bac-
terial colonies were evident. For maxi-preps, single bacterial cul-
tures were used to inoculate 300 ml Luria Bertani (LB) medium
(Sigma-Aldrich) containing 50 mg/ml ampicillin, incubated at
37�C overnight with shaking. Vector DNA was isolated using
the Nucleobond Maxiprep system (Thermo Fisher Scientific)
according to manufacturer’s instructions. DNA concentration
was measured using a Nanodrop 1000 spectrophotometer
(Thermo Fisher Scientific) and adjusted to 1 mg/ml. DNA qual-
ity was assessed by measuring the absorbance ratio at 260 and
280 nm.

Duetz transfection
3 mg of plasmid encoding the heavy chain and 3 mg of plas-

mid encoding the light chain were mixed and added with
150 mL of GS CHOK1SV cells at 6 £ 106 cells/mL to each well
of a 96 well plate. Electroporation at 300 V, 900 mF was deliv-
ered using Bio-Rad Gene Pulser MXCellTM electroporator. Cells
were then transferred into a 96-well deep-well plate with 150 mL
of pre-warmed CD-CHO media (Life technologies) supple-
mented with 6 mM L-Glutamine. Plates were sealed with Duetz
lids, transferred to Duetz clamps and incubated for 72 h at
36.5�C, 5% CO2, 85% humidity with shaking at 350 rpm.
Supernatants were collected after centrifugation and stored at
C4�C. There were 4 biological replicates per transfection.

Transient transfection of GS CHOK1SV
CHOK1SV transfections were carried out via electroporation

using the Gene Pulser XCellTM (Bio-Rad). For each transfection,
viable cells were resuspended in pre-warmed CD-CHO media
supplemented with 6 mM L-Glutamine to 2.86 £ 107 cells/ml.
80 mg DNA was aliquotted into each cuvette (Bio-Rad, Gene-
Pulser cuvette, 0.4 cm gap) and 700 ml cell suspension added.
Cells were electroporated at 300 V, 900 mF and incubated in a
shaking incubator at 36.5�C, 10% CO2, 85% humidity,
140 rpm for 6 d. Supernatants were then harvested by centrifuga-
tion and stored at C4�C prior to purification.

Transient transfection of HEK293F
Serum-free adapted HEK293F cell suspension cultures (Life

Technologies) were transfected using 293FectinTM (Life Tech-
nologies) following manufacturer’s instructions. Cells were cul-
tured in FreeStyleTM 293 (Life Technologies) medium and
incubated in a shaking incubator at 36.5�C, 10% CO2, 85%

humidity, 140 rpm for 6 d. Supernatants were then harvested by
centrifugation and stored at C4�C prior to purification.

Protein A affinity chromatography
For all purifications, culture supernatant was harvested and

clarified by centrifugation at 2000 rpm, 10 mins. The superna-
tant was then loaded onto a pre-packed 5 ml HiTrap MabSelect
SuRE column (GE Healthcare) on an AKTA purifier (10 ml/
min). The column was equilibrated with 50 mM sodium phos-
phate, 125 mM sodium chloride, pH 7.3, washed with 50 mM
sodium phosphate and 1 M sodium chloride pH 7.3 and eluted
with 10 mM sodium formate, pH 3.5. Eluted fractions were
immediately pH adjusted to pH 7.3.

IgG titer ELISA
Technical and biological replicates of filtered supernatant

samples were analyzed using appropriate dilutions. A 9-point
standard (ranging from 1000–4 ng/ml) was generated using
Human IgG1 Kappa UNLC (Southern Biotech) or Human
IgG1 Lambda UNLC (Southern Biotech). The ELISA was per-
formed using Microplate Immuno MaxiSorp 96-well flat bottom
plates coated with 100 ml per well of AffiniPure F(ab’)2 Frag-
ment Goat Anti-Human IgG -Fcg Fragment Specific (Caltag) at
a concentration of 4 mg/ml in coating buffer (50 mM sodium
carbonate, pH 9.6) and incubated overnight at C4�C. The plate
was washed 3 £ 250 ml per well using ELISA wash buffer
(10 mM sodium phosphate, 100 mM sodium chloride,
12.7 mM EDTA, 200 mg/L Tween-20, 1% v/v Butan-1-ol, pH
7.2). Wells were blocked using ELISA blocking buffer 200 ml
per well (50 mM sodium carbonate, 66.7 mM Casein Hammer-
stein) for 1 h, room temperature, with shaking at 300 rpm then
washed 3 £ 250 ml per well. Supernatant samples were diluted
using ELISA sample/conjugate buffer (100 mM Trisma base,
100 mM sodium chloride, 26.7 mM Casein Hammerstein,
40 mg Tween 20, pH 7.0). 100 ml of standard or sample was
loaded per well and incubated at room temperature with shaking
at 300 rpm for 1 h. Plates were washed as described previously
and 100 ml of suitably diluted Anti-human IgG kappa HRP
(Caltag) or Anti-human IgG Lambda HRP (Sigma-Aldrich)
added and incubated at room temperature with shaking at
300 rpm for 1 h. The plate was washed again (3 £ 250 ml per
well) and 100 ml of 3,3,5,5‘-tetramethylbenzidine (TMB) sub-
strate (Sigma-Aldrich) was added and incubated at room temper-
ature for 15 min (Lambda) or 10 min (Kappa). 50 ml of 0.5 M
sulfuric acid was added per well to quench the reaction. Optical
density values were detected at 450 nm using a BioTek Synergy
HT plate reader and titer values were calculated using the stan-
dard curves obtained using the standards.

Oligomer detection assay
ODA was used to assess antibody aggregation. The assay was

performed using Microplate Immuno MaxiSorp 96-well flat bot-
tom plates coated with 100 ml per well of monoclonal anti-
human IgG Fc-specific antibody (Sigma-Aldrich) at a concentra-
tion of 4 mg/ml in coating buffer (50 mM sodium carbonate,
pH 9.6) and incubated overnight at 4�C. The plate was washed
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3 £ 250 ml per well using ODA wash buffer (1 £ PBS, 0.05%
Tween-20, 150 mM NaCl) and wells then blocked with 200 ml
per well of ODA blocking buffer prepared with wash buffer (as
above) and 0.3% BSA, for 2 h at 37�C. The plate was washed 3
£ 250 ml and 100 ml of internal aggregation standards or crude
supernatant sample was loaded per well and incubated at room
temperature for 1 h. Plates were washed as described previously
and 100 ml of monoclonal anti-human IgG Fc-specific antibody-
biotin conjugate (Sigma-Aldrich), diluted in blocking buffer, was
added and incubated at room temperature for 1 h. The plate was
washed again (3 £ 250 ml per well) and 100 ml of streptavidin-
HRP (Stratech), diluted in blocking buffer was added and incu-
bated at room temperature for 1 h. Plates were washed as above
and 100 ml of TMB substrate (Sigma-Aldrich) was added and
incubated at room temperature for 5 min. 50 ml of 0.5 M sulfu-
ric acid was added per well to quench the reaction. Optical den-
sity values were detected at 450 nm using a BioTek Synergy HT
plate reader. The absorbance readings are directly proportional to
the antibody aggregation.

Size-exclusion chromatography HPLC
Duplicate samples were analyzed by SE-HPLC on an Agilent

1200 series HPLC system, using a Zorbax GF-250 4.6 mm ID
£ 25 cm column (Agilent). Aliquots of sample at a concentration
of 1 mg/ml were filtered through a 0.2 mm filter prior to injec-
tion. 100 ml aliquots were injected and run at 1 ml/min for 20
minutes. Soluble aggregate levels were analyzed using Chemsta-
tion software.

Ligand binding assay
Half maximal effective concentration (EC50) was calculated

using an ELISA assay in which 100 ng/ml of His6-tagged recom-
binant human IFNg (Prospec) was immobilized to a His-Select�

Nickel coated 96-well flat bottom plate (Sigma-Aldrich). Plates
were washed 3 times in 1 £ PBS, 0.05% Tween-20 and incu-
bated with 150 ml of 1 £ PBS, 0.05% Tween-20, 0.5% BSA,
pH 7.4 for 1 h at room temperature. Titrations of the different
antibody variants were applied to the plate and incubated at
room temperature for 1 h. Following a repeat of the washing
steps, 100 ml of a 1:1000 dilution of a HRP conjugated goat
anti-human IgG antibody (Jackson ImmunoResearch) was
applied to wells and incubated at room temperature for 1 h. Fol-
lowing further washing steps, TMB Superslow (Sigma-Aldrich)
was applied to the wells and the reaction was stopped after up to
5 minutes by the addition of 0.5 M sulfuric acid. Absorbance at
450 nm was measured on a BioTek Synergy HT plate reader.
EC50 was extrapolated as the concentration value for the curve
point that was midway between the min and max parameters.

Access to Software

Access to the aggregation prediction tool is provided by Lonza
Biologics, and is available for evaluation at a charge.
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