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The presence of a poly(A) tail is indispensable for the post-tran-
scriptional regulation of gene expression in cancer. This dy-
namic andmodifiable feature of transcripts is under the control
of various nuclear and cytoplasmic proteins. This study aimed
to develop a novel cytoplasmic poly(A)-related signature for
predicting prognosis, clinical attributes, tumor immunemicro-
environment (TIME), and treatment response in hepatocellular
carcinoma (HCC). Utilizing RNA sequencing (RNA-seq) data
from The Cancer Genome Atlas (TCGA), non-negative matrix
factorization (NMF), and principal-component analysis (PCA)
were employed to categorize HCC patients into three clusters,
thus demonstrating the pivotal prognostic role of cytoplasmic
poly(A) tail regulators. Furthermore, machine learning algo-
rithms such as least absolute shrinkage and selection operator
(LASSO), survival analysis, and Cox proportional hazards
modeling were able to distinguish distinct cytoplasmic poly(A)
subtypes. As a result, a 5-gene signature derived from TCGA
was developed and validated using International Cancer
Genome Consortium (ICGC) HCC datasets. This novel classi-
fication based on cytoplasmic poly(A) regulators has the poten-
tial to improve prognostic predictions and provide guidance
for chemotherapy, immunotherapy, and transarterial chemo-
embolization (TACE) in HCC.

INTRODUCTION
Globally, hepatocellular carcinoma (HCC) accounted for 75%–85%
of primary liver cancer cases and ranked sixth in cancer diagnoses
and third in terms of cancer-related deaths, with approximately
906,000 new cases and 830,000 deaths in 2020.1 A substantial propor-
tion of HCC patients present with intermediate- or advanced-stage
disease. For recurrent or advanced HCC, chemotherapy, immuno-
therapy, and transarterial chemoembolization (TACE) are preferred
treatment options, but the overall survival of HCC patients remains
poor.2 In recent years, high-throughput sequencing has become pop-
ular and holds promise as a tool for predicting potential therapeutic
targets in personalized medicine. Bioinformatics analysis of molecu-
Mole
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lar mechanisms has emerged as a critical approach in cancer
research.3 Therefore, it is imperative to explore novel biomarkers in
order to enhance prognostic predictive models for HCC.4

Polyadenylation is a critical post-transcriptional modification that oc-
curs during mRNA processing in eukaryotic cells, involving the addi-
tion of an adenine nucleotide chain to the 30 end of pre-mRNA mol-
ecules.5 Various polyadenylation-regulating complexes and factors
interact with the poly(A) tail of mRNA in the nucleus to ensure accu-
rate cleavage and recognition of polyadenylation. Cytoplasmic poly-
adenylation determines the fate of RNA after export into the cyto-
plasm with the RNA-protein complex.6 Since its discovery in sea
urchin embryos in the 1970s, cytoplasmic polyadenylation has been
observed in oocytes and early embryos across various animal spe-
cies.7–13 In somatic cells, elongation of poly(A) tails occurs in the
cytoplasm, a process also demonstrated during neuronal plasticity
and mitosis.6,14 The dynamic and modifiable nature of the cyto-
plasmic poly(A) tail emphasizes the significance of sequences and
proteins in regulating its length. Various sequence elements in the
30 UTR, such as AU-rich elements, GU-rich elements, poly(A)
limiting elements, and poly(A) signals, all play a role in influencing
cytoplasmic poly(A) tail length through their interaction with
poly(A)-binding proteins.15 Furthermore, the presence of poly(A)
tails in the cytoplasm can modulate translation efficiency during spe-
cific developmental stages by governing mRNA quality control and
degradation.16–18 In addition to impacting gamete development,
inflammation, tumorigenesis and metastasis, obesity, synaptic plas-
ticity, and long-term memory, post-transcriptional regulation of
cular Therapy: Oncology Vol. 32 June 2024 ª 2024 The Author(s). 1
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.omton.2024.200816
mailto:zouchaoxia006@hrbmu.edu.cn
mailto:lq_79224@163.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omton.2024.200816&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Molecular Therapy: Oncology
cytoplasmic poly(A) tails influences a diverse array of biological pro-
cesses.19–23 However, there is currently limited understanding
regarding the regulators of cytoplasmic poly(A) tails in HCC. There-
fore, the objective of this study was to identify genes that regulate
cytoplasmic poly(A) tails in HCC and establish a prognostic signature
to gain insights into clinical outcomes, molecular mechanisms, and
potential treatment strategies.

Numerous studies have investigated the correlation between bio-
markers and HCC prognosis, yet the exploration of cytoplasmic
poly(A) tail regulators as post-transcriptional modulators remains
limited. The incorporation of cytoplasmic poly(A) tail-related signa-
tures into prognostic models is seldom reported. A comprehensive
analysis of cytoplasmic poly(A)-related cluster variations has been
conducted using multi-omics analysis for both The Cancer Genome
Atlas (TCGA) and independently validated International Cancer
Genome Consortium (ICGC) cohorts, encompassing clinical rele-
vance, survival analysis, and characterization of the tumor immune
microenvironment. Furthermore, a nomogram was developed to pre-
dict the overall survival of HCC patients by integrating the prognostic
signature of cytoplasmic poly(A) tail regulators with clinical data.
Additionally, this study revealed an association between predicted
risk and somatic mutations, tumor immune microenvironment traits,
biological pathways, and HCC treatment options.

RESULTS
The landscape of cytoplasmic poly(A) tail regulators in HCC

The study collected a total of 24 genes involved in the regulation of
cytoplasmic poly(A) tail mechanisms in eukaryotes. By analyzing
the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-
LIHC) data on tumor and normal tissue expression profiles, we eval-
uated the differential expression profiling of these cytoplasmic
poly(A) tail regulators in HCC. Our analysis revealed that most of
these genes exhibited significantly higher levels in HCC compared
to normal tissues, as demonstrated by a boxplot (Figure 1A). Further-
more, our investigation into copy number variation (CNV) showed
that amplifications were more prevalent than deletions among the
cytoplasmic poly(A) tail regulators (Figure 1B). In contrast, genetic
mutations of cytoplasmic poly(A) tail regulators were infrequent in
HCC (Figure 1C). Additionally, at the transcriptomic level, positive
correlations were observed among cytoplasmic poly(A) tail regulators
(Figure 1D). Moreover, our further analysis indicated frequent inter-
actions among the cytoplasmic regulators of poly(A) tails (Figure 1E).
Collectively, these findings suggest that cytoplasmic poly(A) tail reg-
ulators may play a significant role in modulating the progression
of HCC.

Identification of cytoplasmic poly(A) tail-related HCC subgroups

by the NMF method

Based on the analysis of differential expression profile of cyto-
plasmic poly(A) tail regulators in HCC, followed by identification
of subgroups using non-negative matrix factorization (NMF), it is
evident that cytoplasmic poly(A) tail regulators play a significant
role in modulating HCC progression and are associated with
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distinct prognostic outcomes. We conducted an analysis of 24
cytoplasmic poly(A) tail regulators using a univariate Cox regres-
sion model. NMF clustering was applied to the TCGA-LIHC
cohort, and the optimal number of clusters (K = 3) was determined
based on optimal cophenetic coefficients from the “NMF” R pack-
age (Figures 2A and 2B). Three-dimensional principal-component
analysis (3D-PCA) visually demonstrated distinct transcriptomic
subgroups among the three clusters (Figure 2C). Notably, HCC pa-
tients in cluster 2 exhibited favorable overall survival compared to
those in clusters 1 and 3, which had a poor prognosis (Figure 2D).
Furthermore, noticeable differences were observed in the distribu-
tion of the cytoplasmic poly(A) tail regulator transcriptomic heat-
maps among these three clusters (Figure 2E). Additionally, there
were variations in clinical information across different clusters as
well (Figure 2F).

Correlation between cytoplasmic poly(A) tail-related subgroups

and TIME

After identifying distinct subgroups of HCC based on cytoplasmic
poly(A) tail-related analysis using NMF, we examined the correla-
tions between these subgroups and the tumor immune microenvi-
ronment (TIME), shedding light on potential impacts on immune
regulation and mutational patterns. To gain an overview of the mo-
lecular mechanisms in the TCGA cohort, gene set variation analysis
(GSVA) was performed to explore biological processes across the
three clusters (Figure S1A). These results revealed strong activation
of cell metabolism pathways such as fatty acid metabolism, xenobi-
otic metabolism, bile acid metabolism, adipogenesis, and peroxi-
somes in cluster 2, suggesting that cytoplasmic poly(A) tail regula-
tors influence tumor cell metabolism. In contrast, clusters 1 and 3
showed inactivation of these metabolic pathways. Additionally, im-
mune cell subpopulation correlations among the three clusters were
assessed using boxplots generated by the CIBERSORT algorithm
(Figure S1B). The findings demonstrated suppressed levels of mono-
cytes, M1 macrophages, and M2 macrophages in clusters 1 and 3
compared to enhanced regulatory T cells, M0 macrophages, and
follicular helper T cells. Waterfall plots showed that cluster 1 had
the highest mutation rates in 10 genes: TP53 (30%), TTN (18%),
CTNNB1 (15%), MUC16 (15%), AXIN1 (12%), CSMD3 (12%),
PCLO (12%), ABCA13 (11%), ARID1A (11%), and SPTA1 (11%).
In contrast, cluster 3 displayed the highest rates in 10 genes:
TP53 (45%), TTN (25%), CTNNB1 (24%), MUC16 (20%), ALB
(16%), CUBN (11%), MUC17 (11%), OBSCN (11%), PCLO
(11%), and RYR2 (11%). Cluster 2 exhibited the highest rates in
another 10 genes: CTNNB1 (32%), TTN (24%), TP53 (21%),
MUC16 (15%), ALB (13%), APOB (11%), PCLO (10%), PRKDC
(9%), LRP1B (9%), and OBSCN (9%) (Figures S1C–S1E). Clusters
1 and 3 exhibit similar immune-related mutation patterns. These
clusters also appear more mutationally active in certain immune-
related genes vs. cluster 2.

To further validate the similarity of clusters 1 and 3, we performed
GSVA to assess differential gene set expression across three
groups: cluster 1 vs. cluster 2, cluster 1 vs. cluster 3, and cluster



Figure 1. The landscape of cytoplasmic poly(A) tail regulators in HCC

(A) Differential expression profiling of cytoplasmic poly(A) tail regulators in HCC between tumor (n = 374) and normal (n = 50) tissue samples. (B) The CNVmutation frequency

of cytoplasmic poly(A) tail regulators in the TCGA-LIHC cohort. The frequencies of copy number gain (red) and loss (blue) are shown. (C) Mutations of cytoplasmic poly(A) tail

regulators were studied using the TCGA-LIHC cohort. Each sample is represented by a column, and each row corresponds to a specific cytoplasmic poly(A) tail regulator. The

distinct mutations are indicated using different colors. (D) Correlations among cytoplasmic poly(A) tail regulators at the transcriptomic levels in HCC. (E) The PPI network of

cytoplasmic poly(A) tail regulators.
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2 vs. cluster 3 (Figures S2A–S2C). Subsequently, we conducted
Gene Ontology (GO) enrichment analysis on the differentially ex-
pressed gene sets. The prominent shaded elements in Figure S2B
suggest that there are no significant dissimilarities between clusters
1 and 3.
Generation of a cytoplasmic poly(A) tail regulator predictive

signature in the TCGA-LIHC cohort

Investigation into the association between cytoplasmic poly(A) tail-
related HCC subgroups and the tumor microenvironment provided
valuable insights into immune regulation and mutational patterns,
Molecular Therapy: Oncology Vol. 32 June 2024 3
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Figure 2. Identification of the cytoplasmic poly(A) tail-related subgroups of HCC by the NMF method

(A) Non-negative matrix factorization clustering of cytoplasmic poly(A) tail regulator-related subgroups in the TCGA-LIHC cohort. (B) Heatmap showing the consensus matrix

of NMF clustering results using the gene expression data in the TCGA-LIHC cohort, colored by three HCC subgroups. (C) PCA among the three subgroups. (D) Kaplan-Meier

survival analysis showed the different survival statuses among three HCC subgroups. (E) Transcription profile heatmap of cytoplasmic poly(A) tail regulators among three HCC

subgroups. (F) Clinical information distribution of cytoplasmic poly(A) tail regulators in related subgroups.

Molecular Therapy: Oncology
leading to the development of a prognostic signature based on a sub-
set of these cytoplasmic poly(A) tail regulators. To optimize the prog-
nostic model’s utility, least absolute shrinkage and selection operator
(LASSO) logistic regression analysis identified five prognostic
genes and their corresponding coefficients from 24 cytoplasmic
poly(A) tail regulators (Figures 3A and 3B). The predictive model
4 Molecular Therapy: Oncology Vol. 32 June 2024
was constructed by incorporating the product of expression level
and relative coefficient for each LASSO regression gene: risk score =
(�0.3461481 � CPEB1 expression) + (�0.2409169 � CPEB3
expression) + (0.2658785 � CELF1 expression) + (0.3793
337 � CNOT6 expression) + (0.1531105 � CNOT11 expression)
(Figure 3E). Among 340 patients with complete clinical data, we



(legend on next page)
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calculated the five-gene signature risk score and determined an
optimal threshold value (cut point = 1.818584). Patients surpassing
this threshold (n = 170) were classified as high-risk individuals, while
those below it (n = 170) were categorized as low-risk individuals.
Compared to the low-risk group, the high-risk group exhibited signif-
icantly shorter overall survival rates (Figure 3C). Time-dependent
receiver operating characteristic (ROC) curves were employed to
evaluate the accuracy of risk scores in predicting overall survival out-
comes. The area under the curve (AUC) values at the 1-, 3-, and
5-year time points were found to be excellent at 0.751, 0.678, and
0.673, respectively, indicating strong predictive ability for prognosis
assessment (Figure 3D). Elevated risk scores and death events were
observed in HCC patients (Figures 3F and 3G). Notably, CNOT6,
CELF1, and CNOT11 demonstrated upregulated expression, whereas
CPEB3 displayed a negative correlation with risk scores. However, the
heatmap representation of key genes did not clearly depict the expres-
sion pattern of CPEB1 (Figure 3H).

Formulation and assessment of a nomogram for predictingOS in

the TCGA-LIHC cohort

Establishing a cytoplasmic poly(A) tail regulator prognostic signature
provided valuable HCC prognosis insights and paved the way to
formulate and assess a nomogram for predicting overall survival
(OS) in the TCGA-LIHC cohort. The independence of the signature
was assessed through univariate and multivariate Cox regression an-
alyses. After adjusting for clinical parameters, the risk score retained
robust prognostic capability for predicting OS (Figure 4C). An all-en-
compassing nomogram was formulated, incorporating all clinico-
pathological parameters (Figure 4A). Time-dependent ROC curve
AUC analysis revealed that the nomogram exhibited superior prog-
nostic capacity compared to using only the risk score alone (Fig-
ure 4B), highlighting its enhanced diagnostic precision. Calibration
curves showed excellent performance of the nomogram when
compared to an ideal model (Figure 4D). The nomogram facilitated
more accurate prediction of 1-, 3-, and 5-year OS, yielding greater
net benefits across most threshold probabilities (Figure 4E).

Validation of a cytoplasmic poly(A) tail regulator predictive

signature in the ICGC LIRI-JP cohort

To validate the predictive accuracy of our model, we performed an
analysis on an independent cohort of HCC patients from the Interna-
tional Cancer Genome Consortium Liver Cancer in Japan (ICGC
LIRI-JP) dataset (n = 232). Employing the same cutoff value
(1.818584), patients were stratified into high-risk (n = 108) and
low-risk (n = 124) groups. Kaplan-Meier analysis revealed a signifi-
cantly shorter OS in the high-risk group compared with the low-
risk group (Figure S3A). Time-dependent ROC curves exhibited
AUC values of 0.704, 0.761, and 0.627 for predicting 1-, 3-, and
Figure 3. Generation of a cytoplasmic poly(A) tail regulator predictive signatur

(A) The partial likelihood deviation for the LASSO Cox regression analysis. (B) LASSO coe

showed the different survival statuses between low- and high-risk groups. (D) ROC curv

5-year OS. (E) Coefficients of 5 key cytoplasmic poly(A) tail regulators. (F) Risk score d

cytoplasmic poly(A) tail regulators.
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5-year outcomes, respectively (Figure S3B). Furthermore, elevated
risk scores and death events were observed in HCC patients
(Figures S3C and S3D). A heatmap was generated to visualize gene
expression profiles along with their corresponding risk scores for all
included patients (Figure S3E).

Correlation between the TIME and cytoplasmic poly(A) tail

regulator predictive signature

In the TCGA cohort, the low- and high-risk patient distribution
across the three clusters was examined, revealing a substantial low-
risk proportion in cluster 2, while high-risk patients predominated
in clusters 1 and 3. These high-risk patients displayed heightened
cytoplasmic poly(A) tail regulator mRNA expression (Figure S4A).
In both the TCGA and ICGC cohorts, most cytoplasmic poly(A)
tail regulators were notably upregulated compared to low-risk pa-
tients, as demonstrated by a boxplot to illustrate the expression of
each cytoplasmic poly(A) tail regulator (Figures S4B and S4C),
emphasizing the importance of transcriptomic distinctions between
different risk groups. To investigate differences in immune cell infil-
tration, the relationships between immune cell infiltration and
different risk groups were assessed using single-sample gene set
enrichment analysis (ssGSEA). CD8+ T cells exhibited a negative cor-
relation with cytoplasmic poly(A) tail regulators, while CD4+ T cells
showed a positive correlation (Figures S5A and S6A). Diminished
monocytes, CD8+ T cells, and natural killer cells alongside increased
CD4+ T cells and activated dendritic cells were observed in high-risk
compared to low-risk patients in the TCGA cohort (Figure S5B).
Similar results were obtained in the ICGC cohort using ssGSEA (Fig-
ure S6B). Analysis of immune checkpoint molecule expression across
cohorts revealed statistically significant differential expression of
CTLA4, NT5E, PDCD1, KLRC1, TIGIT, and VSIR between low-
and high-risk groups in the TCGA cohort (Figure S5C), suggesting
a potential mechanism for immune tolerance and evasion. However,
no significant differences in immune checkpoint expression were
observed in the ICGC cohort (Figure S6C).

Functional enrichment analysis of the DEGs between the low-

and high-risk groups

To investigate gene function and pathway differences between the two
risk model subgroups, the “edgeR” R package was utilized to extract
differentially expressed genes (DEGs) based on criteria of false discov-
ery rate (FDR) < 0.01 and |log2FoldChange| R 1. A Venn diagram
analysis revealed a total of 409 upregulated and downregulated genes
shared by both databases (Figure 5A). Functional enrichment analysis
using GO indicated involvement in processes such as cell division/
proliferation, lipoprotein synthesis/metabolism, lipid metabolism,
and oxidoreductase activity (Figure 5B). Additionally, Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analysis suggested
e in the TCGA-LIHC cohort

fficient profile plots for each independent variable. (C) Kaplan-Meier survival analysis

es of the cytoplasmic poly(A) tail regulator risk score for risk prediction of 1-, 3- and

istribution. (G) Heatmap of survival status. (H) Expression profile heatmap of 5 key



Figure 4. Formulation and assessment of a nomogram for predicting OS in the TCGA-LIHC cohort

(A) Generation of a nomogram combining the cytoplasmic poly(A) tail regulator risk score with other independent clinicopathological factors. (B) ROC curves of the nomogram

for risk prediction. (C) Univariate and multivariate Cox regression analyses of the cytoplasmic poly(A) tail regulator risk score and clinicopathological parameters. (D) Cali-

bration curves were generated to compare predicted survival probabilities from the nomogram with actual observed survival outcomes. On the x axis, the predicted survival

probabilities from the nomogram are shown, while the y axis represents the corresponding actual survival probabilities. The diagonal reference line serves as a benchmark,

representing the outcomes of a perfectly accurate predictive model. (E) Decision curve analysis of survival benefits corresponding to 1, 3, and 5 years.

www.moleculartherapy.org

Molecular Therapy: Oncology Vol. 32 June 2024 7

http://www.moleculartherapy.org


(legend on next page)

Molecular Therapy: Oncology

8 Molecular Therapy: Oncology Vol. 32 June 2024



www.moleculartherapy.org
pathways including cell cycle, bile secretion, as well as glycolysis/
amino acid metabolism (Figure 5C). Notably, TP53 (43%), TTN
(23%), MUC16 (17%), CTNNB1 (16%), and AXIN1 (11%) were
found to be the top 5 mutated genes in the high-risk group (Fig-
ure 5D), while CTNNB1 (35%), TTN (23%), ALB (16%), MUC16
(15%), and PCLO (15%) were observed as the top five mutated genes
in the low-risk group (Figure 5E). These findings suggest a higher
prevalence of immune-related mutations within the high-risk group,
aligning with cluster 1/3 characteristics.

Relationship between the cytoplasmic poly(A) tail regulator

signature and drug sensitivity and mainstream therapies (TACE

and sorafenib)

The relationships between the cytoplasmic poly(A) tail regulator signa-
ture and drug sensitivity/mainstreamHCC therapies were investigated.
The Genomics of Drug Sensitivity in Cancer (GDSC2) drug response
dataset identified 63 potential compounds for low- and high-
risk groups (Figure S7). Immunotherapy response across HCC was
evaluated using tumor immune dysfunction and exclusion (TIDE)
scores, revealing decreased scores in high-risk patients (Figure 6A).
Conversely, low-risk patients exhibited elevated exclusion scores (Fig-
ure 6B), while high-risk patients showed greater dysfunction scores
(Figure 6C). Age younger than 65 years and female gender were signif-
icantly associated with elevated risk scores (Figures 6D and 6E). Higher
risk scores were also correlated with advanced pathological grade/stage
(Figures 6F and 6G), suggesting their utility as indicators of HCC pro-
gression. Analysis of the GSE109211 dataset showed increased non-
responsiveness in high-risk patients (Figures 6I and 6J). High-risk pa-
tients also displayed higher expression of the sorafenib targets FGFR1,
BRAF, RAF1, FLT1, and PDGFRB compared to low-risk patients (Fig-
ure 6H). Investigation of TACE response using the GSE104580 dataset
found no significant difference between low- and high-risk groups
(Figures 6K–6L), indicating limited benefits from conventional thera-
pies for high-risk HCC patients.

Correlation between cytoplasmic poly(A) tail regulators and

biological function and KEGG pathway in HCC

GSVAwas employed to investigate the variation in biological process/
KEGG pathways between different risk groups. The low-risk group
showed significant enrichment in pathways such as oxidative
phosphorylation, cholesterol homeostasis, fatty acid metabolism,
xenobiotic metabolism, bile acid metabolism, adipogenesis, and per-
oxisomes. On the other hand, the high-risk group displayed enrich-
ment in carcinogenic pathways, including unfolded protein response,
myelocytomatosis oncogene (MYC) targets, DNA repair, mTORC1
signaling, G2/M phase cell cycle checkpoints, and E2F targets (Fig-
ure S8A). Furthermore, various metabolic activities, including amino
acid metabolism, lipid metabolism, carbohydrate metabolism, and
nucleotide metabolism, were significantly inhibited in the high-risk
group (Figure S8B), affecting processes like hormone/vitamin synthe-
Figure 5. Functional enrichment analysis of the DEGs between the low- and hi

(A) Venn diagram showing the intersection results of up-regulated and down-regulated D

DEGs. (D and E) Waterfall plots showing the most frequently mutated genes in low- an
sis and drug/toxin metabolism. The results clearly demonstrate a
distinct functional differentiation between the different risk groups.

Experimental verification of CNOT6 and its relationships with

HCC cell migration and proliferation

Considering the highest coefficient obtained from the LASSO regres-
sion algorithm, CNOT6 was selected as a representative example to
explore its effect on HCC progression in vitro. Initially, CNOT6
was silenced in HCC cells to assess the transfection efficiency.
siCNOT6-1 or siCNOT6-2 was transfected into Huh7 and Hep-G2
cells, demonstrating that small interfering RNA (siRNA) was success-
fully introduced into HCC cells (Figure 7A). Among these,
siCNOT6-2 exhibited superior knockdown efficiency compared to
siCNOT6-1 and was chosen for phenotypic experiments. A wound
healing assay showed that silencing CNOT6 enhanced the migration
capacity of both Huh7 and Hep-G2 cells (Figure 7B). Additionally, a
Cell Counting Kit-8 (CCK-8) assay demonstrated a significant in-
crease in cell viability upon knocking down CNOT6 in Huh7
and Hep-G2 cells (Figure 7C). Further evidence supporting this
observation was provided by the Transwell assay, which showed
that siCNOT6 promoted migration of both Huh7 and Hep-G2 cells
(Figure 7D).

DISCUSSION
Based on previous comprehensive reviews and experimental findings,
24 genes have been identified that modulate the length of cytoplasmic
poly(A) tails through distinct biological pathways, thereby influ-
encing the initiation and progression of human disease.6,24,25 Howev-
er, recent research has revealed a more intricate role: cytoplasmic
poly(A)-binding proteins can stimulate tail removal, impacting stabil-
ity and translation, which, in turn, influences tail length.25 Early in-
vestigations indicate that most mRNAs subject to cytoplasmic polya-
denylation in oocytes and early embryos are directly associated with
meiotic or mitotic processes.26–28 In neuronal cells, cytoplasmic poly-
adenylation-mediated translation regulation in dendrites is thought
to play a role in synaptic remodeling.29 Cytoplasmic polyadenylation
has also been implicated in the regulation of senescence and tumor-
igenesis.30 Furthermore, the regulation of poly(A) tail size in the liver
during the circadian rhythm involves both transcriptional upregula-
tion and other mechanisms,31 indicating widespread cooperation
among different poly(A) regulatory factors. The increasing interest
of researchers in cytoplasmic polyadenylation prompted our study
to shed light on the significance of cytoplasmic poly(A) tail regulators
in HCC. By modulating the length, stability, and structure of the tail,
these factors may regulate RNA molecule function and fate, repre-
senting a crucial mechanism in HCC progression. We developed a
signature for cytoplasmic poly(A) tail regulators that reflects patient
subgroups with different transcriptomic profiles of the cytoplasmic
poly(A) tail regulator, which holds potential for improving HCC
treatment and research.
gh-risk groups

EGs in the two datasets. (B) GO analysis of DEGs. (C) KEGG enrichment analysis of

d high-risk groups, respectively.
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By analyzing the transcriptomic expression of 24 cytoplasmic poly(A)
tail regulators in HCC tissues, NMF revealed the presence of three
distinct subgroups. It was observed that clusters 1 and 3 were associ-
ated with a shorter OS compared to cluster 2. Furthermore, analysis of
the TCGA cohort indicated that clusters 1 and 3 exhibited higher frac-
tions of macrophages and Treg cells, which have previously been
linked to poor OS in HCC.32,33 LASSO analysis identified five prog-
nostic genes (CPEB1, CPEB3, CELF1, CNOT6, and CNOT11) that
regulate the poly(A) tail of mRNA in the cytoplasm. High-risk indi-
viduals exhibited significantly worse survival outcomes, establishing
a link between the risk score and tumor progression. This finding
was further validated in an independent ICGC LIRI-JP cohort. A
nomogram integrating clinical data and risk score enabled optimized
prediction of HCC. The identification of these five prognostic genes
may represent important biomarkers for HCC. Specifically, CPEB1,
a sequence-specific RNA-binding protein that regulates mRNA poly-
adenylation and translation, contributes to the suppression of cancer
stemness in HCC.34 In the same protein family as CPEB1, CPEB3 ex-
erts inhibitory effects on hepatocarcinogenesis and tumor metastasis
by modulating MTDH protein translation in HCC.35 CELF1, also
known as CUGBP1, exhibits high expression levels in the liver and
governs the translation of proteins crucial for maintaining liver
function.36 Additionally, CNOT6, a component of the catalytic core
of the CCR4-NOT transcriptional regulation complex, promotes
mRNA decay of IRP1 in hepatoma carcinoma cells.37 Furthermore,
CNOT11, another constituent of the CCR4-NOT complex, initiates
mRNA degradation by catalyzing poly(A) tail shortening in a process
referred to as deadenylation.38 In conclusion, all genes included in the
prognostic model have been implicated previously in posttranscrip-
tional modification. However, the specific role of these genes in influ-
encing HCC patient prognosis through polyadenylation or deadeny-
lation processes of certain genes remains to be elucidated, as there is
limited research on how cytoplasmic polyadenylation-mediated regu-
lation of gene poly(A) tail length impacts HCC occurrence and pro-
gression. It is noteworthy that knockdown of CNOT6 has been shown
to accelerate HCC progression, which may seem contradictory to the
positive coefficient obtained from LASSO regression analysis. Never-
theless, this result highlights the dual nature of CNOT6 as a potential
biomarker for HCC. On one hand, its positive coefficient in LASSO
regression reflects its upregulated expression in HCC tissue, suggest-
ing that altered expression of CNOT6 may contribute to tumorigen-
esis.39 On the other hand, the knockdown of CNOT6 leads to the
destabilization of mRNA, which, in turn, may enhance the transcrip-
tion of certain oncogenic genes through a mechanism of mRNA
steady-state buffering in human HCC.40 Intriguingly, while CNOT6
is highly expressed in HCC, its reduction can further propel cancer
progression via this buffering mechanism. This dual role of CNOT6
in HCC highlights the complex interplay between gene expression
Figure 6. Relationship between the cytoplasmic poly(A) tail regulator signature

(A) Difference in the TIDE score between the low- and high-risk groups. (B) Difference

dysfunction score between the high- and low-risk groups. (D–G) Comparison of the ris

stage (G). (H) Heatmap of the expression of several sorafenib targets in the low- and high

non-responders in the GSE109211 cohort. (K and L) Difference in the risk score betwe
and cancer progression, opening up numerous scientific inquiries
for further investigation.

Compared to low-risk patients, high-risk patients demonstrate a
modified distribution of immune cells, characterized by a decrease
in monocytes, CD8+ T cells, and natural killer cells and an increase
in CD4+ T cells and activated dendritic cell cells. This suggests the
presence of a potential immune microenvironment conducive to dis-
ease progression or unfavorable clinical outcomes.41 In high-risk pa-
tients, GSVA and GO analyses have revealed complex alterations in
the regulation of biological processes. These changes encompass
metabolic imbalance, aberrant immune responses, and abnormal
cell growth cycles. Furthermore, KEGG pathway analysis identified
alterations inmetabolic pathways in high-risk patients. Various meta-
bolism pathways, including one-carbon pool metabolism, amino acid
metabolism, and lipid metabolism, were impacted. These changes are
likely to affect hepatic metabolic regulation, encompassing lipid
metabolism, amino acid metabolism, and antioxidant pathways.
Additionally, the inhibition of drug metabolism pathways indicates
a potential decrease in drug metabolism capability. Taken together,
these findings suggest an aberrant state of hepatic cell metabolism
in high-risk patients with implications for the onset and progression
of liver cancer.42

Immune checkpoint inhibitors (ICIs), chemotherapy, TACE, and
sorafenib are conventional clinical strategies for managing HCC.43

This study confirmed the drug sensitivity of 63 compounds with a
significance of p < 0.0001. These findings suggest that the risk
score of cytoplasmic poly(A) tail regulators serves as a crucial
biomarker for assessing immune status. Additionally, our investiga-
tion extended to explore the therapeutic response rate of ICIs based
on the TIDE score. The high-risk group demonstrated a lower TIDE
score, indicating potentially heightened responsiveness to ICI treat-
ment. The aforementioned observations implied that patients in the
high-risk group may display reduced sensitivity to sorafenib treat-
ment. Consequently, we proposed a risk score with significant im-
plications for chemotherapy, immunotherapy, and sorafenib treat-
ment for HCC.

In conclusion, our study introduced a novel prognostic model based
on cytoplasmic poly(A) tail regulators. This model demonstrated in-
dependent correlation with OS in both derivation and validation co-
horts, providing insights into HCC prognosis, TIME, and potential
therapeutic strategies.

Limitations of the study

While the ICGC validation cohort was incorporated into our research,
it is important to acknowledge that public datasets may introduce bias
and therapeutic response

in the exclusion score between the high- and low-risk groups. (C) Difference in the

k score between subgroup patients stratified by age (D), gender (E), grade (F), and

-risk groups. (H and I) Difference in the risk score between sorafenib responders and

en TACE responders and non-responders in the GSE104580 cohort.
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Figure 7. Experimental verification of CNOT6 and its relationships with HCC cell migration and proliferation

(A) The expression of CNOT6 after transfection of small interfering Negative Control (siNC), siCNOT6-1 or siCNOT6-2 in Huh7 andHep-G2 cells was detected via RT-PCR. (B)

Themigration of Huh7 andHep-G2 cells after transfection of siNC or siCNOT6-2 was calculated through awound healing assay. Scale bar, 1,000 mm. (C) The viability of Huh7

and Hep-G2 cells after transfection of siNC or siCNOT6-2 was assessed by CCK-8 assay. (D) Transwell of Huh7 and Hep-G2 cells after transfection of siNC or siCNOT6-2.

Scale bar, 64 mm.
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that could potentially impact our findings. The underexplored areas of
differential sorafenib/ICI response, immunological profile, and meta-
bolic dysfunction by cytoplasmic poly(A) tail regulators warrant
further investigation in future studies. Larger prospective studies are
necessary to better validate the association between cytoplasmic
poly(A) tail regulators, prognosis, and therapies. Currently, gene
expression assessment relies on 5 cytoplasmic poly(A) tail regulators
as a cost-effective alternative to full sequencing. The contribution of
cytoplasmic poly(A) tail regulation to liver cancer development re-
mains unclear and requires additional investigation.
12 Molecular Therapy: Oncology Vol. 32 June 2024
MATERIALS AND METHODS
Patient cohort for multiple analyses

From the TCGA database (https://portal.gdc.cancer.gov/), tran-
scriptional RNA sequencing, CNV, somatic mutation, and clinical
data were obtained for the TCGA-LIHC cohort. The RNA
sequencing panel included 374 HCC tumor tissues. Transcripts
per kilobase million (TPM) and fragments per kilobase of tran-
script per million mapped reads (FPKM) values were utilized.
TPM values were available for 374 HCC and 50 normal samples
for analysis. A total of 371 samples from the TCGA were analyzed

https://portal.gdc.cancer.gov/
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for somatic mutations. Complete clinical data and cytoplasmic
poly(A) tail regulator transcriptomic profiles were available for
340 patients. Raw read counts from the ICGC database (https://
dcc.icgc.org/releases/current/Projects/LIRI-JP) were converted to
comparable FPKM values. All 232 HCC samples with clinical
data and RNA sequencing from ICGC were downloaded as an
external validation set. Differential expression analysis of cyto-
plasmic poly(A) tail regulators was performed between tumors
and paired normal tissues, gene CNV and somatic mutation land-
scapes were analyzed, and Pearson correlation analysis of cyto-
plasmic poly(A) tail regulator expression was conducted. Cyto-
plasmic poly(A) tail regulators were uploaded to the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING) database
(https://string-db.org/)44 to generate a protein-protein interaction
(PPI) network.
NMF classification of cytoplasmic poly(A) tail regulator

subgroups

An NMF package called “NMF” was used to investigate unique cyto-
plasmic poly(A) tail-related subgroups.45 This allowed decomposi-
tion of the original matrix into three non-negative matrices via the
NMF algorithm, revealing potential gene expression profile charac-
teristics. The number of clusters was set to range from 2 to 10.
Optimal cluster number was determined by co-occurrence, disper-
sion, and contour indices as 3. The PCA scoring system based on
the selected cytoplasmic poly(A) tail regulators was developed using
the R package “FactoMineR.” With the “survival” R package, OS
for subtypes was analyzed, and Kaplan-Meier survival curves were
plotted.
Estimation of TIME

To ensure reproducibility of the findings, three algorithms were uti-
lized to estimate the TIME: Cell-type Identification by Estimating
Relative Subsets of RNA Transcripts (CIBERSORT)46 for estimating
tumor-infiltrating immunological cell composition, ssGSEA47 for
estimating immune status, and TIDE48 for predicting tumor cell
escape capability.
Building and validating the cytoplasmic poly(A) regulator

predictive signature

To further narrow down the candidate cytoplasmic poly(A) regula-
tors, LASSO logistic regression and multivariate Cox regression
models were utilized. This identified five key prognostic genes—
CPEB3, CPEB1, CELF1, CNOT6, and CNOT11—based onminimum
criteria. Using multivariate Cox regression coefficients, risk scores
were computed by multiplying gene expression by a linear combina-
tion of the regression coefficients. Patients were assigned to high- and
low-risk groups based on the median risk score. ROC curves and
Kaplan-Meier analysis with the “timeROC” and “survival” R packages
evaluated predictive reliability. To validate the signature in the ICGC
cohort, identical analysis methods, risk score formula, and cutoff
value were applied.
Establishment of a nomogram

Independent risk factors identified through multivariate Cox
regression analysis were utilized to construct a nomogram for pre-
dicting OS probability with the “rms” R package.49 The nomogram
AUC was assessed using the “timeROC” package to determine reli-
ability. Harrell’s concordance index (C-index) quantified nomo-
gram discrimination performance. The nomogram was validated
with 1,000 bootstrap resamples to calculate a robust C-index,
with 0.5 indicating random chance and 1.0 indicating maximum
accuracy per ROC curve standards. Calibration curves evaluated
calibration performance. Furthermore, decision curve analysis
showed nomogram clinical utility and benefit at various threshold
probabilities.50

Functional enrichment analysis

Gene sets for GSVA were obtained from the publicly accessible Mo-
lecular Signatures Database (https://www.gsea-msigdb.org/gse),
including Hallmark (h.all.v2023.1.Hs.symbols), KEGG (c2.cp.kegg.
v2023.1.Hs.symbols), and GO (c5.go.v2023.1.Hs.symbols) collec-
tions.51 GSVA ascribed signaling pathway variation scores to gene
sets, assessing biological significance.52 TCGA-LIHC patients were
divided into high- and low-risk groups based on the median risk
score. DEG functional enrichment between groups was evaluated,
with p values adjusted by Benjamini-Hochberg correction. DEGs
were screened based on |log2FoldChange| R 1 and FDR < 0.01
criteria. Additionally, DEGs underwent GO and (KEGG) enrichment
analysis using the “clusterprofiler” R package53 to identify enriched
biological pathways and functions associated with cytoplasmic
poly(A) tail regulators.

Therapeutic response analysis

The GSE10458054 and GSE10921155 datasets were utilized to
analyze TACE and sorafenib sensitivity. Half-maximal inhibitory
concentration values for 198 compounds were obtained from the
GDSC2 database (https://www.cancerrxgene.org/). Subsequently,
the “oncoPredict” R package determined compound sensitivity
scores for individual high- and low-risk patients. Statistical signifi-
cance was assessed by the Wilcoxon test at a significance threshold
of p < 0.0001.

In vitro verification

The proliferation capability of HepG2 and Huh7 cells was estimated
by using the CCK-8 assay (GlpBio, Montclair, CA, USA). The cells
were inoculated in a 96-well plate (2 � 103/well) with 3 wells for
each group. After silencing of CNOT6, the CCK-8 assay was per-
formed by adding 10 mL of CCK-8 solution to each well, with subse-
quent incubation in an incubator for 2 h in a dark environment.
Finally, the absorbance was analyzed at a 450-nm wavelength under
a microplate reader (Tecan, Männedorf, Switzerland). A Transwell
chamber (8-mm pore size, Corning, Corning NY, USA) was used.
For the migration assay, cells (5.0 � 104 and 5.0 � 104 HepG2 and
Huh7 cells, respectively) were suspended in 200 mL of fetal bovine
serum (FBS)-free medium, and then the cells were pipetted into the
upper chamber. At 48 h post-incubation at 37�C, methanol and
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0.1% crystal violet were added to fix and stain the invaded cells in the
lower chambers. A wound healing assay was used to assess the migra-
tion of HepG2 and Huh7 cells. After the cells formed a single cell
layer, the cell monolayers were lightly scratched with the tip of a
200-mL pipette. Afterward, the cells were incubated in medium
without FBS at 37�C for 24 h.

Statistical analysis

Statistical analyses for all bioinformatics were conducted using R soft-
ware (v.4.2.1). The experimental data were analyzed and visualized
using GraphPad Prism 9.5.1 software and statistically summarized
with mean ± SD. Statistical analysis was performed using a Student’s
t test, with p % 0.05 considered statistically significant. (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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