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Abstract

Purpose of Review Application of deep learning (DL) is growing in the last years, especially in the healthcare domain. This
review presents the current state of DL techniques applied to electronic health record structured data, physiological signals,
and imaging modalities for the management of heart failure (HF), focusing in particular on diagnosis, prognosis, and re-
hospitalization risk, to explore the level of maturity of DL in this field.

Recent Findings DL allows a better integration of different data sources to distillate more accurate outcomes in HF patients,
thus resulting in better performance when compared to conventional evaluation methods. While applications in image and
signal processing for HF diagnosis have reached very high performance, the application of DL to electronic health records
and its multisource data for prediction could still be improved, despite the already promising results.

Summary Embracing the current big data era, DL can improve performance compared to conventional techniques and
machine learning approaches. DL algorithms have potential to provide more efficient care and improve outcomes of HF
patients, although further investigations are needed to overcome current limitations, including results generalizability and
transparency and explicability of the evidences supporting the process.

Keywords Deep learning - Heart failure - Artificial intelligence - Prognosis - Diagnosis - Readmission

Introduction

Heart failure (HF) represents a severe condition affect-
ing approximately 2% of the adult worldwide population,
thus counting around 36 million of individuals globally; it
consists of a chronic and progressive syndrome character-
ized by structural or functional cardiac dysfunctions with
reduced (HFrEF; <40%) or preserved (HFpEF; >50%) left
ventricular ejection fraction [1, 2, 3, 4]. HF represents the
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most rapidly growing cardiovascular disorder globally. Its
pathological spectrum involves numerous symptoms able to
greatly affect the patient’s quality of life, as dyspnea, fatigue,
and poor exercise tolerance, leading to frequent hospitaliza-
tions and shortened life expectancy [2, 3].

Cardiac conditions and causes of death vary in the HF
population, and although the main underlying causes of this
syndrome have been identified, including coronary artery
disease, valvular heart disease, hypertension, cardiomyopa-
thies and other (Fig. 1), the prevalence of HF is expected to
increase, accounting for a substantial burden to the health-
care system [4, 5]: specifically, due to the ageing population,
treatment costs relevant to HF are expected to double by
2030 [6].

Despite advancements in clinical management, surgi-
cal procedures, and medical devices in the treatment of all
causes associated with HF, significant challenges still persist
in current treatments [5], and HF remains one of the main
global health concerns [6]. Modeling the driving factors of
HF for achieving high prediction accuracy in both diagno-
sis and prognosis is still an unmet medical need. Accord-
ingly, there is the need for novel approaches to optimize
the management of this chronic disease, to improve clinical
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Fig.1 Schematization of the different pathological conditions that
may lead to heart failure

decision-making, and to ultimately reduce related healthcare
expenditures. As HF has been recognized as a heterogene-
ous multifactorial syndrome, improvement in the assessment
and management of HF patients requires to integrate data
obtained by different sources (e.g., laboratory, echocardio-
graphic and morphologic data) and to handle the complex
interplay of various symptoms and comorbidities (both
cardiovascular and non-cardiovascular) involved in the HF
pathology.

Healthcare is undergoing a new era characterized by the
availability of a massive amount of biomedical data, which
necessarily opens to new opportunities. The advancement of
big data solutions within the healthcare system has allowed
to store and manage huge amount of data with the aim to
develop new disease risk assessment tools and prediction
models, but exploiting in clinical practice these advances
leads to unprecedented challenges regarding data analysis
and interpretation, as well as many difficulties related to het-
erogeneity, quality, and integrity of the healthcare data [7].

Machine learning (ML) and deep learning (DL) meth-
ods, as a branch of artificial intelligence (Fig. 2), have
experienced a rapid growth over the past few years achiev-
ing state-of-the-art performance in various domains,
including medical imaging, diagnosis, and prognosis [8,
9, 10]. DL is a subfield of ML and represents a family of
algorithms that can be used to learn complex and highly
predictive patterns that generally remain unexplored using
conventional statistic approaches. In contrast to ML,
learning solutions based on DL do not require to design a
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Fig.2 Evolution of artificial intelligence and its main components, in
which deep learning represents a subset of machine learning methods

priori feature extractors from which the learning algorithm
detects patterns [11]. In this way, the algorithm is free to
learn by itself, automatically defining the features to be
considered and the patterns to be searched in order to per-
form classification or prediction. An additional advantage
for DL solutions is the possibility to integrate different
structured and unstructured data types as input, which is
particularly relevant considering the typical heterogeneity
of the healthcare data [11].

In this context, the aim of this review is to provide key
concepts for DL that clinicians need to be familiar, and
to give an overview of the current advancements of DL
research in several clinical applications for the treatment
of HF patients.

The paper is organized as follows: in the “Deep Learn-
ing: Key Concepts for Clinicians” section, the fundamen-
tal concepts of DL along with a presentation of common
DL models used in cardiology are given; in the “Deep
Learning in HF Diagnosis” and “Deep Learning in HF
Prognosis (End of Hospitalization)” sections, an overview
of recent DL approaches for HF diagnosis and progno-
sis, respectively, are described. Thereafter, in the “Deep
Learning for Predicting HF Readmission: from EHR to
Home Monitoring” section, a review of DL solutions
for predicting HF hospital readmission is presented, and
in the “Challenges for Deep Learning” section, current
challenges for DL solutions are discussed. Finally, in the
“Conclusion” section, conclusions are drawn with a focus
on the future directions for DL applied to the treatment
of HF patients.
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Deep Learning: Key Concepts for Clinicians

As previously introduced, DL constitutes a subset of ML
methods building on the foundations of neural networks,
thus trying to mirror the way the human brain processes
data (in particular, its learning ability). In contrast to
conventional ML methods, requiring human interaction
to define which features in the available data have to be
considered important for the solution of the classification/
prediction problem, DL is meant to learn by itself how to
extract knowledge from the data, without being explic-
itly programmed [12]. In other words, DL automatically
extracts the features from the data that are considered
important to solve the given task, thus removing the need
to select them beforehand, and without involving prior
knowledge to explain the observed variability in the data.
These fundamental characteristics have generated enthu-
siasm about the potential of DL to solve problems beyond
the human capability, and in recent years, the utilization
of DL approaches, that have demonstrated to perform
at human-level efficiency and in certain tasks even with
higher performance than expert clinicians [12, 13, 14],
has surpassed that of ML. The main reasons behind this
success, compared to learning algorithms based on hand-
designed methods, have to be found in the increasing avail-
able computational power, in the larger availability of data,
and in the rapid algorithms’ development. Indeed, in few
years, DL has been able to show its potential in defining
new opportunities for improving therapies and treatment,
in performing early diagnosis and in reducing the length
of hospitalization.

Within DL, artificial neural network (ANN) is an infor-
mation-processing system, whose structure and function-
ality simulate the nervous system and the human brain
[15]. The main element is the neuron, a simple process-
ing unit, that sends information to other neurons through
action potentials, and working in parallel these neurons
define a layer. As the brain processes information through
multiple stages of transformation, similarly the ANN is
characterized by multiple layers of neurons, in order to
achieve learning capability [15]. Thanks to the fact that
each layer performs a nonlinear mapping based on the pre-
vious layer’s output, this allows the network to learn via
progressive levels of information abstraction [15, 16]. This
ability to learn features at multiple level of abstraction
allows the network to learning complex functions, without
depending on manually developed features.

The most common type of ANN is the convolutional
neural network (CNN), which was inspired by the struc-
ture of the human visual system. A CNN can be consid-
ered an ANN with many identical copies of neurons in
its layers, thus utilizing the local relationship within the
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data to extract spatial features. This allows the network
to increase the number of neurons, and hence its com-
putational power, while keeping the number of learnable
parameters relatively small. CNNs are designed to process
arrays of data: in 1D as signals (e.g., electrocardiographic,
audio, or textual data); in 2D as images; and in 3D as
video or volumetric data [16]. Considering an image as
input, the first layers of the CNN are associated in learn-
ing how to recognize basic lines and curves; moving more
deeply, the following layers apprehend shapes and blobs,
while in the last layers the ability to classify increasingly
complex objects within the image is reached. One of the
most popular CNN architecture for medical image analysis
is represented by the U-Net [17], that has shown impres-
sive performance, even with a scarce amount of training
samples.

Recurrent neural network (RNN) represents another class
of ANN, able to recognize patterns in temporal or sequen-
tial data [15, 18]. In contrast to common ANN, where the
inputs are independent from each other, the main character-
istic of RNN is the ability to remember information from
prior inputs to generate the current output. In this way, the
output of RNN depends on the current input and on all the
previous elements of the sequence, where each neuron acts
as a memory cell while computing operations. While CNNs
are suitable for handling spatial information, RNNs are more
suitable for handling temporal or sequential information. For
example, given a sequence of frames, a RNN takes the first
frame and makes a prediction; the prediction of the follow-
ing frame is conditioned by the information obtained on the
previous frame. Two popular architectures in the RNN fam-
ily are the gated recurrent units (GRU) and the long short-
term memory (LSTM), designed to process information over
extended time [19, 21].

More recently, generative adversarial network (GAN) has
been introduced in the field of DL, and has increasingly been
used in several medical image analyses applications, such
as denoizing, reconstruction, segmentation, synthetization,
classification, and image-to-image translation. Thanks to its
impressive performance, GAN has gained a lot of attention:
as its name suggests, unlike conventional ANN, GAN con-
sists of two networks, known as generator and discrimina-
tor, trained in an adversarial way [22]. While the generator
tries to generate new data, the discriminator learns to dis-
tinguish the synthetic data from the real ones. The goal of
the discriminator is to force the generator in improving its
performance in learning to generate a more realistic data
distribution, with the aim of deceiving the discriminator.

For all these methods, the common development pro-
cedure starts from the availability of a labeled (i.e., gold
standard) dataset, where each data is classified by the
expert binary (i.e., healthy and pathologic) or multi-class
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classification. This dataset is divided into training, valida-
tion, and testing sub-datasets: the training dataset is used
to automatically generate the features able to reach the
expected goal, compared to the gold standard labels in terms
of specific, sensitivity, and accuracy, often summarized in
the area under the receiver operating characteristics (ROC)
curve. The validation is used to further tune other parameters
in the network in the attempt to further optimize its perfor-
mance. Finally, the real performance is computed by testing
the developed network on the testing dataset.

Deep Learning in HF Diagnosis

An early diagnosis of HF may reduce patients’ mortality
and morbidity. Consequently, wide efforts have been put in
the research to develop algorithms to support clinicians in
early diagnosing HF. HF diagnosis may be achieved through
the analysis of electrocardiography (ECG), as well as medi-
cal images, mainly acquired through magnetic resonance
(MRI) and ultrasound (US) images. Furthermore, electronic
health records (EHRs, also known as medical records) can
be used to this purpose. Early approaches mainly exploited
model-based algorithms, while more recently data-driven
algorithms (i.e., ML and DL) have shown interesting results
given their ability to tackle the complexity and variability
of clinical data acquired from subjects at risk of developing
HF. The papers surveyed in this section are summarized in
Table 1, where the publication date, data source, aim, algo-
rithm, and dataset size are specified.

The widest literature in the field can be found for the pro-
cessing of the ECG signal. In Kwon et al. [23ee], a ML algo-
rithm based on ANN was proposed for HF identification.
The ANN processes both demographic and ECG features,
achieving an area under the receiver operating characteristics
curve (AUC) of 0.89. In Cinar et al. [24], a more advanced
algorithm based on CNNs was used to automatically extract
features from the ECG spectrogram. The features were clas-
sified using support vector machines (SVMs), achieving an
accuracy of 0.97.

A fully DL-based pipeline was proposed by Acharya et al.
[25] which exploits a CNN to automatically extract relevant
features from the ECG signals and performs an early diagno-
sis of HF. The pipeline allows to perform end-to-end train-
ing, lowering the training time, with an achieved accuracy
of 0.99. Lih et al. [26] coupled CNNs with long short-term
memory (LSTM) to keep into account the temporal informa-
tion naturally encoded into the ECG, obtaining an accuracy
of 0.98. A similar approach was used in [27], which further
included an inception module in the CNN to allow multi-
scale analysis, thus achieving an accuracy of 0.99.

A more complex CNN architecture, based on U-Net, was
proposed in [28], where residual blocks were exploited to

perform a more accurate feature extraction and classifica-
tion, reaching an AUC of 0.90. Residual block adds the out-
put of a previous layer to the output of the following layer
to extract some additional spatial information. In [29], the
first layer of a custom CNN was replaced by Gabor filters
to lower the training complexity while extracting relevant
high-frequency ECG features, with a reported accuracy of
0.99. Gabor filters are linear filters used for texture analy-
sis and feature extraction, which have been shown excellent
localization properties both in spatial and frequency domain,
simulating the receptive fields of the human visual system
[30ee].

As regards other signals, a recent work [29] investigated
the possibility to diagnose HF from heart sounds, where
logistics regression and gated recurrent units were used to
identify the presence of HF: despite the promising results
(accuracy =0.99), more research is still required in this field.

In the last decades, also the analysis of EHRs to perform
HF diagnosis has been receiving attention, thanks to the
large availability of digitalized data, as well as to the devel-
opment of more and more accurate ML/DL algorithms. Choi
et al. [30ee] proposed a milestone paper on the use of recur-
rent networks for early detecting HF onset (achieving an
AUC of 0.88) and, based on it, several works have been pub-
lished following a similar paradigm. Examples include [31],
that used LSTM to process time-stamped EHRs containing
medicinal information achieving an AUC of 0.89, and [32],
that classified a large variety of features (e.g., demographic,
procedural, medicinal features) with LSTM achieving an
AUC of 0.82. A more advanced approach was proposed by
Ma et al. [33¢] that built an embedding from the EHR using
CNNs and attention mechanisms, where the embedding was
classified with a custom-built prediction model achieving an
accuracy of 0.91.

With the goal of predicting HF onset, applications of ML
and DL to the field of image processing have been also pro-
posed. In particular, several papers have focused on MRI
imaging: in [34], a DL algorithm for the automatic segmen-
tation of the left ventricle as a prior to evaluate the cardiac
function in HF patients was proposed, where a Dice similar-
ity coefficient of 0.97 was achieved. A ML method based
on k-nearest neighbors was used in [35] to perform texture
analysis of myocardial maps and identify early symptoms of
HF, achieving an AUC of 0.85.

Besides MRI, other works focused on echocardiographic
imaging: Tabassian et al. [36¢] analyzed spatiotemporal
patterns of echocardiographic deformation curves using
k-nearest neighbors with an accuracy of 0.89, while Cikes
et al. [37e¢] evaluated echocardiographic patterns using
k-means clustering to identify pathogroups in patients with
HF. An interesting attempt of predicting HF markers from
chest radiographs with DL was performed by Seah et al. [38]
obtaining promising results (AUC=0.82), but more research
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is still needed to understand the potentiality of DL in pro-
cessing chest radiographs for HF diagnosis.

Deep Learning in HF Prognosis (End
of Hospitalization)

Several studies have used DL to predict different outcomes
in HF patients [39, 40e]. Specifically, the measured out-
comes that were studied include mortality, hospitaliza-
tions, readmissions, risk prediction, need for mechanical
circulatory support, heart transplantation, and treatment
effect (Table 2). The general process of DL techniques
regarding HF prognosis is based on data obtained through
the EHRs that might include demographic information,
treatment and medication, laboratory results, ECG, and
echocardiographic findings before and during hospital
stay. Wang et al. [41ee] applied ANN for early detection of
patients’ HF death in three observation windows (i.e., in-
hospital, 1-month and 1-year mortality), studying 10,203
in-patient EHRs. It is noteworthy the introduction of a
focal loss function [42] into the proposed framework, to
deal with the imbalanced class problem, and a feature rear-
rangement layer to improve feature representation of the
convolutional network. The proposed ANN provided an
AUC in predicting mortality of 0.904 (in-hospital), 0.891
(1-month observation), and 0.887 (1-year observation).
Kwon et al. [43] used a DL-based model in a multi-
center cohort of acute HF patients for predicting in-hospi-
tal mortality, and at 12 and 36 months, by integrating clini-
cal and laboratory data. Training included 2165 patients,
while validation was performed on 4759, reaching an
AUC for predicting in-hospital and 12 and 36 months
mortality of 0.880, 0.782, and 0.813, respectively. Over-
all, DL outperformed both the conventional Get with the
Guidelines—Heart Failure (GWTG-HF) score, and the
Meta-Analysis Global Group in Chronic Heart Failure
(MAGGIC) score [44, 45], as well as other ML models.
Since GWTG-HF and MAGGIC cannot be used for initial
treatment or screening, Kwon et al. [46¢] applied DL to
predict in-hospital mortality only on echocardiographic
data in 25,776 patients. In a subgroup analyses of HF,
DL provided an AUC (0.913) higher than both MAGGIC
(0.806) and GWTG-HF (0.783) scores. Medved et al. [47]
compared the International Heart Transplantation Survival
Algorithm (IHTSA) based on DL, with the Index for Mor-
tality Prediction After Cardiac Transplantation (IMPACT),
for predicting 1-year survival after heart transplantation.
In 27,705 patients (5597 in the test cohort), DL exhibited
an AUC of 0.654, with improved performance compared
to the IMPACT model (AUC 0.608). Although IHTSA
was designed to predict long-term survival, it showed
better discrimination at 1-year mortality than IMPACT.

Therefore, even though modest, these results are promising
for DL techniques applications in clinical practice.

To model early HF readmission prediction, a deep unified
network, an innovative architecture designed to avoid overfit-
ting including both structured (i.e., demographics, clinical and
laboratories results) and unstructured (physician notes and
discharge summaries) data from EHRs of 11,510 patients,
was applied [48e]. Obtaining an AUC of 0.705, the developed
30-day readmission model reported the best performance
compared to logistic regression (LR) (0.664), gradient boost-
ing (0.650), and maxout networks (0.695). In a novel study
applying DL to EHRs for treatment effect prediction on 736
HF patients, the proposed generated GAN learning strategy
outperformed benchmark models in terms of both accuracy
(0.688) and AUC (0.654) [49e]. The DL treatment effect pre-
diction model used two auto-encoders for learning features
of both patient characteristics and treatments from EHRs.
Specifically, the DL scheme could generate and discriminate
the predicted treatments from the real ones so that highly rep-
resentative features were extracted from the EHRs data [49e].

In [50e], 93,260 HF patients were analyzed to identify pre-
ventable outcomes, such as hospitalization and emergency
department visits. Compared to ML and LR models, DL
produced the highest AUC of 0.778 and 0.681, respectively.
Remarkable was the effort of Li et al. [S1ee] in terms of inter-
preting DL models, by developing an interactive clinical risk
prediction system based on RNN with an intuitive visualiza-
tion design, increasing transparency to the information infra-
structure, thus allowing visual interpretation of the prediction
results. On 554 HF and 1662 control patients, the proposed DL
model outperformed the state-of-the-art approaches by approxi-
mately 1.5%. Recently, Lu et al. [S2ee] proposed a DL approach
to model long-term and short-term HF clinical trajectories on
8093 patient with congenital heart disease. The network out-
performed various baseline models and was able to predict
different types of patient trajectories (AUC 0.863). A separate
study used DL to add prognostic value of data acquired from
a cardiopulmonary exercise test (CPET) [53]. In another study
involving 1156 HF patients, DL demonstrated little improve-
ment compared to statistical model (AUC 0.842 vs. 0.837),
while both were superior to CPET-risk score (AUC 0.759) [54].

Finally, ML and DL seem promising in identifying distinct
patient subgroups with HFpEF using unsupervised learn-
ing to deliver more tailored clinical care. These techniques
make it possible to learn from an input dataset without the
need for training with labeled data (expected outputs). In fact,
the model learns to draw inferences and identify significant
features within the unlabeled data space, for the purposes of
clustering or data reduction. The pathological development of
HFpEF has been attributed to a complex interplay of cardiac
and extracardiac dysfunctions [55, 56] leading to a marked
phenotypic heterogeneity among patients of this population.
This diversity highlights the fact that there is not a single
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Table 2 Summary of recent studies exploiting deep learning algorithms in HF prognosis

Author Year Outcome Data source Dataset Algorithm Results
Medved et al. [47] 2018 Survival prediction =~ EHRs 27,705 patients ANNSs Reduction of 12% for
after heart trans- ROC and 10% for
plantation C-index by using
deep learning tech-
nique
Wang et al. [41®®] 2020 Mortality prediction EHRs 10,203 patients CNNs AUC in-hospital 0.904,
1-month 0.891,
1-year 0.887
Golas et al. [48®] 2018 Readmission predic- EHRs 11,510 patients Deep unified net- AUC 0.705
tion works
Kwon et al. [43] 2019 Mortality prediction ~EHRs 6924 patients ANNs AUC in-hospital 0.880,
12-month 0.782,
36-year 0.813
Lewis et al. [S0®] 2021 Preventable hospitali- Clinical history 93,260 patients ANNs AUC for deep learning
zations, emergency were 0.778, 0.681,
department and and 0.727, respec-
costs tively
Ashfag etal. [39] 2019 Readmission predic- EHRs 7655 patients RNNs with long AUC 0.77
tion short-term memory
Chu et al. [499] 2020 Treatment effect EHRs 736 patients GAN AUC 0.688
prediction
Kwon et al. [46®] 2019 In-hospital mortality = Clinical +echocardi- 760 HF ANNs AUC 0913
ography
Lietal. [S1ee] 2020 Risk prediction EHRs 554 HF + 1662 RNNs RNN outperforms
controls the state-of-the-
art approaches by
approximately 1.5%
Pandey et al. [S9] 2021 Phenotyping diastolic Echocardiography 1242 patients ANNs AUC 0.88
dysfunction in HF
with preserved
ejection fraction
Hearn et al. [53] 2018 Clinical deterioration Cardiopulmonary 1156 HF ANNs AUC 0.842
exercise test data
Lu et al. [52ee] 2021 Long-term trajectory EHRs 8093 HF RNNs with gated AUC 0.863

prediction

recurrent units

HF, heart failure; HERs, electronic health records; AUC, area under the curve; ANN, artificial neural network; CNNs, convolutional neural net-
works; RNNs, recurrent neural networks; GAN, generative adversarial networks

pathological process underlying the observed dysfunction,
thus affecting the targeted management plan. Recently, dif-
ferent studies made progress in clustering HFpEF patients by
integrating multiple patient data, as step towards personalizing
treatment and improving prognosis of the disease [57, 58].
Pandey et al. [59] analyzed 1242 HFpEF to predict high- and
low-risk phenogroups and validated the network in 5 external
cohorts. The DL approach showed higher AUC than the 2016
American Society of Echocardiography guideline—based left
ventricular grades [60] for predicting elevated left ventricular
filling pressure (0.883 vs. 0.676). Kaptein et al. [61] proposed
an unsupervised learning approach to identify subgroups of
patients with asymptomatic diastolic dysfunction, where three
subgroups were identified. Similarly, in [62], a model-based
clustering on clinical and echocardiogram variables in 320
HFpEF patients was applied, from which six phenogroups
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were derived. Although HFpEF remains a challenging clini-
cal condition to manage, clustering patients with model-based
learning using echocardiographic and EHRs data may provide
better granularity with improved prognostic benefit for patients
with HFpEF compared to the current clinical paradigm, thus
creating phenotype clusters that are strongly linked to survival.
This new approach may lead to improved personalized care
pathways for treating patients with HF.

Deep Learning for Predicting HF
Readmission: from EHR to Home Monitoring

The significantly high rate of readmissions in hospital after
HF, with 61.3% of the patients being readmitted for HF
within 1 year after discharge [63], has a negative impact
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on patients’ quality of life, as well as on the healthcare sys-
tems. Therefore, it appears crucial to develop efficient tools
in order to predict patient’s re-hospitalization probability
and related causes of readmission. This would primarily help
tailor patients’ remote support and education after discharge.
Also, the early identification of patients at higher risk would
improve the scheduling of potentially life-saving follow-
ups. Accordingly, several works focused on this problem,
exploring the use of DL methods applied to different types
of data. Those studies are discussed below, and summarized
in Table 3.

Since discharge, e-Health solutions could support the
prediction of patient’s outcome and probability of re-hos-
pitalization. Among these, EHRs contain a huge amount
of data, ranging from anthropometrics and demographic to
prescribed therapies, comorbidities, and vital signs. Several
works in the literature examined the possibility to apply
DL models to EHRs in order to make accurate predictions
of hospital readmissions in HF patients. An example of
the increasing interest towards this field is represented by
CONTENT [64¢], a DL model based on a RNN with gated
recurrent unit aiming at predicting 30-day hospital readmis-
sions. It was developed using the EHRs of 5393 congestive
HF patients, embedding data relevant to patients’ diseases,
laboratory tests, and medications. Although outperform-
ing other existing models, the results obtained in this work
remain unsatisfactory, with 38.94% mean precision-recall
AUC, 61.03% receiver operating characteristic AUC, and
69.34% accuracy. Similar results were also obtained with a
multi-layer perceptron ANN applied to a linked administra-
tive health dataset (10,757 over-65 HF patients) obtained
from the Western Australian Data Linkage System [65¢],
as well as with a RNN combined with conditional random
fields applied to a large hospital claims dataset [66¢]. A deep
unified network model developed on data obtained during
inpatient and outpatient visits provided slightly improved
results, with mean AUC equal to 70.5% and an accuracy of
76.4% in predicting 30-day readmission in HF patients [48e].

A key characteristic for a successful introduction of an Al
model in the clinical practice stands in its interpretability,
thus generally resulting in a higher propensity towards ML
compared to DL techniques. Attention-based neural network
prediction models represent a valid solution. A recent study
[40e] evaluated the possibility to predict all-cause readmis-
sion in HF patients within 1 year after discharge using an
attention-based neural network built on data contained in the
EHRs of 736 HF patients. The proposed model assigns to
each feature an “attention weight” indicating its importance
in predicting readmission, and thus supporting clinicians in
identifying patients at higher risk of a forthcoming relapse.
For example, the analysis of the levels of B-type natriuretic
peptide is widely used in clinical practice for the diagnosis
of HF. As expected, this clinical feature was associated with

considerably higher attention rates in the majority of the
patients compared to the other features. Results appeared
promising, although the achieved statistics, including mean
F1-score and AUC values, remained below 80%, and thus
requiring further improvements.

The application of interpretable DL methods could also
take advantage of big data coming from EHRs in order to
characterize subtypes of HF patients. An example can be
observed in the study of Xiao and colleagues [64¢], in which
the authors were able to identify 20 subgroups of congestive
HF patients, each possibly exhibiting different comorbidi-
ties that could impact the progression of this syndrome and
consequently the readmission risk [3]. This approach could
pave the way towards the identification and development of
personalized and targeted home-care pathways.

In this context, remote monitoring solutions could effec-
tively support HF patients in managing their condition and
improving their quality of life, thus reducing the risk of read-
mission and mortality [67, 68]. Current methods primarily
include telemonitoring with implantable devices, such as in
the CardioMems [69] and the IN-TIME approach [70], which
are recommended as Class II for use in selected patients by
the 2016 ESC guidelines for the diagnosis and treatment of
acute and chronic HF [3]. Thanks to the advances in technol-
ogy and communication systems, non-invasive telemedicine
solutions, including telephone-based monitoring and educa-
tion, wearable and mobile health, have been implemented
and tested, appearing particularly promising for patients that
are not assigned to an implanted monitoring approach.

For example, remote monitoring of body weight is recom-
mended in HF patients. However, daily monitoring of this
parameter alone showed no evidence in identifying higher
risk patients [71, 72]. A successful example of non-invasive
multi-parametric remote patient monitoring is represented
by the TIM-HF2 (Telemedical Interventional Management
in Heart Failure II) prospective randomized controlled trial,
with 796 patients assigned to the remote monitoring group
and 775 to the control group [73ee]. The study involved
the daily measurement and transmission of several physi-
ological parameters, including body weight, blood pressure,
electrocardiogram, heart rate, and peripheral capillary oxy-
gen saturation, as well as a self-rated score of the health
status, fostering the cooperation of the telemedical center
with cardiologists and general practitioners. The collected
data were analyzed using the CE-marked Fontane telemedi-
cine software (T-Systems International GmbH, Frankfurt,
Germany), which integrates scalable business intelligence
methods in order to assign a patient to a risk category [67].
Results showed that this approach effectively supported the
identification of higher risk patients, accelerating tailored
intervention and consequently reducing days lost during
1 year of follow-up and all-cause mortality. A recent study
further improved these results, implementing a DL neural
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network model based on the TIM-HF2 database, which
allowed to reach a mean AUC value of 84% [74ee].

Wearable devices could additionally promote the con-
tinuous monitoring of patients’ health after discharge, thus
representing an opportunity to improve remote monitoring
and healthcare [75]. The LINK-HF study aimed at evaluat-
ing the accuracy of predicting deterioration which leads to
re-hospitalization in HF patients using a wearable sensor
(Vital Connect, San Jose CA) worn on the chest [76ee]. Of
note, this device recorded continuous acquisition of ECG,
accelerometric signal, skin impedance, and skin tempera-
ture, thus permitting the monitoring of heart rate and its
variability, arrhythmia burden, respiratory rate, physical
activity, and body posture. Collected data were streamed
to a smartphone and analyzed in Cloud. Similarity-based
ML algorithms were able to generate a multivariate index
which indicates the level of change of the acquired vital
parameters. The presented platform appeared successful
in predicting patient’s readmission due to worsening HF
with a sensitivity from 76.0 to 87.5% at a specificity level
of 85%.

Challenges for Deep Learning

DL has demonstrated promising results with better perfor-
mance in HF evaluation compared to ML and conventional
algorithms, which could not be expected a priori. As DL
algorithms require larger amount of data in order to provide
high-quality results, this may limit their development espe-
cially in a clinical context, considering that the labeling data
procedure is a time-consuming and tedious task for expert
clinicians. Moreover, normal cases are often predominant
over pathological ones, leading to unbalanced datasets which
may originate biased predictions.

In contrast to conventional diagnostic and prognostic
models, and similarly to ML, DL does not assume linear
relationship among variables, leading to a better patient-
level therapy treatment decisions. In some clinical trials,
DL provided performance comparable to those of sta-
tistical linear models as logistic regression, suggesting
how, depending on the type of data, a different analysis
might be more suitable. Specifically, future studies could
facilitate the integration of ML/DL models with statistical
classifiers.

In addition, DL application in healthcare poses more
challenges because data are often highly heterogene-
ous, noisy, and incomplete, and the number of available
patients is usually limited, thus complicating the proper
convergence of the DL algorithm and reliability of the
results (i.e., garbage in results in garbage out). Moreo-
ver, the repeatability of the performance obtained with
supervised models trained on specific datasets (i.e.,

monocentric, or obtained using the same equipment) onto
data collected within other centers as well as with other
equipment, or with different underlying patient factors
(i.e., gender distribution, ethnicity, morbidities), needs
to be further validated to avoid introducing biases in the
results. Therefore, a standardized framework on how to
perform and validate clinical studies would be required
before implementation of DL into routine clinical use.
Indeed, the impact of DL on the clinical decision-making
process, on resources utilization and on value-based prac-
tice, has not been yet properly investigated. Moreover,
the current literature reports an unbalance distribution of
studies between ML and DL, with a limited number of DL
studies, probably due to the limited availability of data.
Indeed, in [77], the authors suggest that a substantially
investment will be required in order to create high-quality
annotated datasets for the development and the success
of DL methods.

Another main limitation of DL models is inherent to
the limited explicability of their results in a way that cli-
nicians could understand. Opposite to ML, as the features
are determined by the network itself, without a relation
with possible features that a human could extract (i.e.,
mean, standard deviation, common parameters in the tem-
poral or in the frequency domain), often it is not possible
to understand which parameters and why have contrib-
uted to the generated output. This is particularly criti-
cal for decision support systems, where there is the need
for the physician to comprehend and evaluate the source
of the suggested action before taking the final decision
and associated responsibility. Also in other fields, ethi-
cal issues have been raised concerning poor explicability,
possibly leading to severe consequences [78, 79]. This
condition of non-interpretability collides against the
concept of evidence-based medicine, the cornerstone for
clinical applications of DL, thus potentially limiting its
utilization into clinical practice [80]. Possible solutions
to cope with this limitation consist in the introduction of
attention-base explainable DL methods, where the net-
work is forced to learn on pre-defined attention maps on
the original data, that can be visualized to better under-
stand the origin of its results.

An additional aspect that could limit diffusion of DL
in the medical field concerns the need for clinical assess-
ment related to the software certification as medical
device, as currently regulated by the EU legislation [81].
In fact, such software must undergo approval by notified
bodies before being introduced in clinical practice, and
proper accuracy and increased benefit over risk need to
be demonstrated a priori. Additionally, as these networks
are currently evolving based on the constant availability
of data, the problem of re-certification over time has been
posed to verify the same longitudinal performance.
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Conclusion

It is evident from the literature that DL algorithms have
witnessed increasing applications in different aspects of
the management of HF patients, with the aim to improve
efficiency in diagnosis and prognosis. These methods have
already demonstrated to overcome the performance of con-
ventional approaches in different clinical setting, being
able to integrate different data sources in order to improve
diagnosis and prediction, potentially leading to tailored
treatments.

The results described in this review have illustrated the
potential capabilities of DL methods to improve prediction
relevant to mortality and hospital readmission, highlighting
how these promising tools could introduce substantial positive
and significant changes in the clinical workflow in the future
treatment of HF in the near future. For example, the increasing
availability of smart analysis in EHRs based on DL appli-
cations will reduce the need for scoring systems, enabling
personalized treatment for HF patients. DL analytical skills
have been shown to be superior to those of expert clinicians,
since humans can handle only a limited number of cogni-
tive information (i.e., variables in structure data) at once [82,
83], thus facilitating clinical support for early HF risk iden-
tification. With a rapidly growing scenario in cardiovascular
medicine, DL has the potential of paving the way towards a
new generation of predictive methods in healthcare that could
automatize essential processes involved in treatment planning,
helping in identifying hidden information in complex and het-
erogeneous datasets to effectively support clinicians in their
daily activities. In this scenario, DL has showed potential to
classify HF patients into novel phenotypes who might ben-
efit of specific treatments, as well as for early diagnosis of
HF to improve its prognosis. The integration of different data
sources including EHRs, genomics, and remote patient moni-
toring could provide a better description on the HF patient
individual status, which might support clinicians regarding
appropriate intervention and therapy, hospital discharge, and
hospital re-admissions. However, for DL to become part of
clinical practice, several ethical and regulatory issues need to
be properly addressed and solved. These challenges introduce
both new opportunities and the need of further research to
provide more evidence about the effective benefit of these
algorithms in being translated into better quality of care for
patients, improved outcomes, and lower healthcare costs.
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